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Abstract

Deep learning-based digital watermarking frameworks have
been widely studied recently. Most existing methods adopt an
“encoder-noise layer-decoder”-based architecture where the
embedding and extraction processes are accomplished sepa-
rately by the encoder and the decoder. However, one potential
drawback of such a framework is that the encoder and the de-
coder may not be well coupled, resulting in the fact that the
encoder may embed some redundant features into the host
image thus influencing the invisibility and robustness of the
whole algorithm. To address this limitation, this paper pro-
poses a flow-based robust watermarking framework. The ba-
sic component of such framework is an invertible up-down-
sampling neural block that can realize the embedding and ex-
traction simultaneously. As a consequence, the encoded fea-
ture could keep high consistency with the feature that the
decoder needed, which effectively avoids the embedding of
redundant features. In addition, to ensure the robustness of
black-box distortion, an invertible noise layer (INL) is de-
signed to simulate the distortion and is served as a noise layer
in the training stage. Benefiting from its reversibility, INL
is also applied as a preprocessing before extraction to elimi-
nate the distortion, which further improves the robustness of
the algorithm. Extensive experiments demonstrate the supe-
riority of the proposed framework in terms of visual quality
and robustness. Compared with the state-of-the-art architec-
ture, the visual quality (measured by PSNR) of the proposed
framework improves by 2dB and the extraction accuracy af-
ter JPEG compression (QF=50) improves by more than 4%.
Besides, the robustness against black-box distortions can be
greatly achieved with more than 95% extraction accuracy.

Introduction
Robust digital watermarking is widely used for copyright
protection and leaking source tracing. By embedding in-
visible watermark signals, the watermarked carrier is en-
dowed with authorized information. When a copyright dis-
pute arises from an illegal copy, we can extract the water-
mark for copyright authentication. The most important prop-
erty of robust watermarking is robustness, which greatly af-
fects the applicability of the algorithm. Robustness refers to
the ability to resist distortion, i.e., whether the watermark
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(a) The architecture of END-based framework.

(b) The architecture of flow-based framework.

Figure 1: The network comparison of END and flow-based
framework.

can be losslessly recovered when the watermarked signal
has been distorted. In pursuit of robustness, traditional al-
gorithms often embed watermarks in transform domain co-
efficients, commonly in the discrete cosine transform (DCT)
domain (Ko et al. 2020), discrete wavelet transform (DWT)
domain (Daren et al. 2001) and discrete Fourier transform
(DFT) domain (Urvoy, Goudia, and Autrusseau 2014).

With the success of deep learning in many applica-
tions, deep-learning-based watermarking frameworks (Mun
et al. 2017, 2019; Ahmadi et al. 2020) have recently been
proposed. The main backbone of such frameworks is an
autoencoder-like architecture which contains an encoder, a
noise layer, and a decoder (END), as shown in Fig. 1 (a).
The encoder aims to embed the watermark message into the
host image. The noise layer distorts the watermarked image
with several differentiable distortions. The decoder tries to
extract the watermark message from the distorted images.
Based on the joint training of these three components, ro-
bustness can be well guaranteed.

Although the whole framework could be trained end-to-
end in an automatic way, it suffers from the potential draw-
back that the encoder may not be well coupled with the de-
coder. The consequent result is that the encoder may embed
redundant features that are useless for decoding, thus lim-
iting the performance of the framework. In addition, most
of the existing noise layers are designed for white-box dis-
tortions (differentiable/non-differentiable), such as Gaussian
noise, JPEG compression, print-shooting, etc. These distor-
tions have been studied extensively, so that they can be sim-
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ulated by one or several differentiable operations. The sim-
ulated operation could effectively serve as a noise layer to
ensure the corresponding robustness. However, in real life,
there are not only white-box distortions but also many black-
box distortions, such as style transferring in social media ap-
plications. The mechanisms of these distortions are often un-
known. When facing such black-box distortions, traditional
noise layers may not be effective in guaranteeing targeted
robustness.

To address these two limitations, we propose a flow-based
watermarking framework with an invertible noise layer. For
the unsatisfactory coupling between encoder and decoder,
inspired by invertible neural network (INN), we propose a
flow-based architecture which consists of multiple invert-
ible “up-down-sampling” blocks. The proposed architecture
can effectively achieve forward-encoding and backward-
decoding functions with the same network, as shown in Fig.
1 (b). Thus, both encoding and decoding share the same pa-
rameters, which ensures tight coupling between the encoder
and the decoder.

For black-box distortions, we propose to use another INN
to simulate such distortions and treat it as a noise layer. The
resulting invertible noise layer effectively ensures robust-
ness to black-box distortions. In addition, benefiting from
the reversibility of the invertible noise layer, we can utilize
the backward process as a denoising operation before ex-
traction which could further improve the robustness. Con-
sequently, the proposed framework achieves state-of-the-art
performance on invisibility, white-box robustness and black-
box robustness.

The main contributions of this paper are summarized as
follows:

1) In dealing with the unsatisfactory coupling of encoder
and decoder in existing END-based watermarking archi-
tecture, we proposed a flow-based robust watermarking
framework, which guarantees a tight coupling of encoder
and decoder where the same parameters are utilized for
both encoding and decoding.

2) We propose an invertible noise layer, which can be used
both for forward-training and backward-denoising, thus
effectively ensuring robustness to black-box distortion.

3) Extensive experiments indicate the superior performance
of the proposed scheme compared with the state-of-the-
art DNN-based watermarking schemes on visual quality,
and robustness for both white-box distortion and black-
box distortion.

Related Work
Steganography&Watermarking
Steganography (Chen et al. 2018) is a technique for hid-
ing information in a carrier to enable covert communica-
tion. Most traditional image steganography focuses on im-
proving the performance of embedding efficiency and anti-
detection, such as HUGO (Filler and Fridrich 2010), UNI-
WARD (Holub, Fridrich, and Denemark 2014)and HILL (Li
et al. 2014). In recent years, many DNN-based steganog-
raphy schemes have also been proposed, among which, the

flow-based schemes (Jing et al. 2021; Xu et al. 2022) achieve
the best performance thanks to the reversibility of INN.
Different from steganography, in which the most important
property is concealmenty, digital watermarking is mostly de-
signed for realizing copyright protection, and its most im-
portant property is robustness to different distortions. Re-
cently, many end-to-end deep-learning-based robust water-
marking frameworks have been proposed. Zhuet al. (Zhu
et al. 2018) first proposed the END architecture and suc-
cessfully guaranteed several image processing robustness
by setting different noise layers. Based on END, Tancik et
al. (Tancik, Mildenhall, and Ng 2019) proposed to simulate
the print-shooting process with several differentiable oper-
ation and generate the corresponding noise layer. As a re-
sult, the print-shooting robustness was effectively guaran-
teed. Wengrowski et al. (Wengrowski and Dana 2019) pro-
posed to use a network named CDTF to approximate the
screen-shooting distortion and set the well-trained CDTF as
the noise layer to satisfy the screen-shooting robustness. Jia
et al. (Jia, Fang, and Zhang 2021) proposed a method for
JPEG compression distortion called MBRS whereby robust-
ness is achieved by alternatively training the network with
“real JPEG” and “simulated JPEG” noise. These methods
are one-stage methods that attempt to simulate the distor-
tion in the noise layer. In addition to the one-stage method,
Liu et al. (Liu et al. 2019) proposed a two-stage method for
black-box distortion, they first initialized an encoder and a
decoder and further fine-tuned the decoder with black-box
distorted images to achieve stronger robustness. However,
the biggest drawback of all these schemes is that tight cou-
pling between the encoder and the decoder cannot be ef-
fectively ensured, which may affect the robustness. Since
steganography is fundamentally different from digital wa-
termarking, we do compare with steganography methods.
Normalizing Flow-based Model
Normalizing flow-based model can directly compute the
likelihoods, which is widely used for generation tasks. The
structure of the flow-based model is invertible neural net-
works, which could effectively achieve the forward and
backward mapping with the same network and the same pa-
rameters. Based on the reversibility of INN, the normaliza-
tion mapping could be well satisfied. Previous research, such
as NICE (Dinh, Krueger, and Bengio 2014) and RealNVP
(Dinh, Sohl-Dickstein, and Bengio 2016), has discovered the
powerful generation ability of flow-based models. (Gilbert
et al. 2017) gives a great explanation of reversibility. Based
on NICE and RealNVP, Glow (Kingma and Dhariwal 2018)
and i-RevNet (Jacobsen, Smeulders, and Oyallon 2018) fur-
ther update the specific architecture of INN for density esti-
mation and achieve better generation performance. The re-
versibility of the flow-based method is naturally well suited
to the needs of robust watermarking, as it can effectively
achieve full coupling of encoder and decoder.

Proposed Framework
Overview
The main purpose of the proposed method is to design a ro-
bust watermarking framework that could be used not only
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Figure 2: The framework of the proposed method. The main architecture of the algorithm is a flow-based encoder and decoder,
which consists of several invertible neural blocks and can be used for a forward-encoding process and a backward-decoding
process. Between the encoder and decoder, a noise layer which contains the white-box and black-box distortions is performed
to distort the watermarked image into a distorted version for decoder training.

for white-box distortion but also for black-box distortion, as
shown in Fig. 2. The main component to be trained is a flow-
based encoder/decoder (FED) with several invertible neu-
ral blocks. Due to the structural reversibility of FED, it can
implement both forward-encoding and backward-decoding
processes with the same parameters. The forward-encoding
process hides the watermark information M in the host im-
age Io to obtain the watermarked image Iem and the redun-
dant Rf . Then the noise layer effectively distorts the water-
marked image Iem and provides the distorted image Id for
decoder training. The backward-decoding process takes the
distorted image Id which is processed by the noise layer and
the all-zero matrix Rb as input, and decodes them to obtain
the extracted watermark signal Mex. For white-box distor-
tion, we use the existing differentiable noise layer for train-
ing. As for black-box distortion, we will adopt another INN
to simulate such distortions and use the well-trained model
as the noise layer named invertible noise layer (INL), de-
tails of which will be illustrated in Section . In testing stage,
when facing the black-box distortion, we first use the back-
ward process of INL to denoise the distorted image Id into a
denoised version Ide, and feed Ide into the FED for further
decoding.

Flow-based Encoder/Decoder
As aforementioned, the flow-based network is naturally suit-
able for watermarking tasks. There are two basic compo-
nents of flow-based models, the forward-encoding function
denoted as fθ and the corresponding inverse function f−1

θ
with the same parameter θ. In forward-encoding process, it
receives the watermark matrix M ∈ Rh×w×1 and the host
image Io ∈ RH×W×3 as inputs and then outputs the wa-
termarked image Iem ∈ RH×W×3 and the redundant in-
formation Rf ∈ Rh×w×1. For backward-decoding process,
the all-zero matrix Rb ∈ Rh×w×1 and the distorted image
Id ∈ RH×W×3 are fed into the FED for decoding to obtain

the extracted watermark Mex ∈ Rh×w×1 and the recovered
image Ire ∈ RH×W×3.

FED are combined with n invertible neural blocks. Fig.
3 shows the structure of the ith invertible neural block,
which consists of an up-sub-network Ui, and two down-sub-
networks D1

i and D2
i . Ui aims to up-sample mi ∈ Rh×w×1

to the same size as the image Io ∈ RH×W×3. D1
i and D2

i

aim to down-sample xi+1 ∈ RH×W×3 to the same size as
mi ∈ Rh×w×1. For the ith invertible neural block in the
forward-encoding process, the inputs are mi and xi, and the
outputs mi+1 and xi+1 can be formulated as follows:

xi+1 = xi + Ui (mi)

mi+1 = mi ⊗ exp
(
D1

i (xi+1)
)
+D2

i (xi+1)
(1)

where ⊗ indicates the dot product operation. After the last
invertible neural network, we can obtain mn+1 and xn+1

which correspond to the final outputs, i.e., redundant infor-
mation Rf and the watermarked image Iem.

For the backward-decoding process, the information
flows are from the (i+ 1)th invertible neural network to the
ith invertible neural network, as shown in Fig. 3. Specifi-
cally, for the first invertible neural network, the input is an
all-zero matrix Rb and the distorted image Id generated by
the noise layer, and the outputs of the first last invertible neu-
ral network in backward-decoding are rn and x′

n. For the ith
invertible neural network, the inputs are ri+1 and x′

i+1, and
the outputs are ri and x′

i which could be calculated with:

ri =
(
ri+1 −D2

i

(
x′
i+1

))
⊗ exp

(
−D1

i

(
x′
i+1

))
x′
i = x′

i+1 − Ui (ri)
(2)

After the process of the last invertible neural network in
the backward-decoding process, the output Mex, i.e., r1,
is obtained as the extracted watermark. It should be noted
that Rb ∈ Rh×w×1 is an all-zero matrix, so for decoding,
no prior information other than the distorted image Id is
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Figure 3: The backbone of the ith invertible neural block,
which consists of one up-sub-network Ui and two down-sub-
networks D1

i and D2
i .

needed, which ensures the blind extraction. In this paper,
the basic components of each Ui and Di consist of 6 “Conv-
LeakyReLU” blocks, as shown in Fig. 2.

Noise Layer
The noise layer is the key to ensure the robustness. In this
paper, we use different noise layers for white-box and black-
box distortion, respectively. For the white-box distortion,
we directly use the existing differentiable noise layer (e.g.,
JPEGSS (Shin and Song 2017) for JPEG compression). For
black-box distortion (e.g., style transferring), we propose a
novel way to achieve the corresponding robustness by using
INN to simulate the distortion and serving the well-trained
model as the noise layer. The details can be described as fol-
lows:

Training Data of INL To train the INL (denoted as Nθd
with parameter θd), we first generate the training data by
querying the black-box distortion process. Specifically, we
feed the original image I+ and obtain the corresponding dis-
torted version I−. Then the image pairs {I+, I−} are used as
the training data for INL.

Architecture of INL The architecture of INL is shown in
Fig. 4. The whole INL is composed of k invertible noise
blocks with the same architecture, which is constructed as
follows. For the ith block in the forward process, the inputs
are yhi and yli, and the corresponding outputs are yhi+1 and
yli+1, which can be formulated as follows,

yli+1 = yli + φi

(
yhi

)
yhi+1 = yhi ⊗ exp

(
ρi

(
yli+1

))
+ ωi

(
yli+1

) (3)

where φ, ρ and ω can be arbitrary functions and we choose
dense block in (Jing et al. 2021) which is proven to ensure
good representation ability. For the first block, the inputs of
which {yh1 ∈ RH/2×W/2×9, yl1 ∈ RH/2×W/2×3} are the
high frequency component and low frequency component
of image I+ ∈ RH×W×3 after DWT respectively. Each yhi
and yli maintains the same size as yh1 and yl1. After the fi-
nal block, the inverse DWT will be performed on the out-
put yhk+1 and ylk+1 to generate the final image Id+. Then the
backward process will be conducted with the input I− and
output the recovered image Ide− .

Figure 4: The backbone of the invertible noise layer, which
consists of several invertible noise blocks. Each invertible
noise block is combined with three modules ϕ, ρ, and ω,
which are arbitrary functions.

Training Loss of INL It is required that the distorted im-
age Id+ should be as similar as possible to the ground-truth
I− in the forward process, and when feeding ground-truth
I− in the backward, the resulting Ide− should also be similar
to the original image I+. Here, we use the term Ldis to min-
imize the average distance among each pair of training data,
which can be formulated by:

Ldis (θd) = MSE
(
Id+, I−

)
+ MSE

(
Ide− , I+

)
(4)

where Id+ is equivalent to Nθd(I+) with Nθd indicating the
forward process of INL, and Ide− is equivalent to N−1

θd
(I−)

with N−1
θd

indicating the backward process of INL. θd indi-
cates the parameters of the INL and MSE indicates the mean
square error. After training INL, it will be fixed as a noise
layer to train the former FED.

Loss Function
The total loss function is composed of two different losses:
the image loss to ensure invisibility, and the message loss to
ensure robustness.

Image Loss The forward-encoding process aims to em-
bed the watermark M into the host image Io to generate the
watermarked image Iem. To achieve invisibility, the water-
marked image is required to be close to the host image. To
achieve this goal, the image loss Limage is defined as fol-
lows:

Limage (θ) = MSE (Io, Iem) (5)
where Iem is equivalent to fθ(Io,M), with θ indicating the
parameter of the proposed FED.

Message Loss The backward-decoding process aims to
losslessly extract the watermark from the distorted image
Id. Toward this goal, we define the message loss Lmessage

as follows:

Lmessage (θ) = MSE (M,Mex) (6)

where Mex is equivalent to f−1
θ (Id, R

b) with f−1
θ indicat-

ing the backward process. Rb is the all-zero matrix with the
same size as M .

Total loss The total loss function Ltotal is a weighted sum
of image loss Limage, message loss Lmessage, as follows,

Ltotal = λ1Limage + λ2Lmessage (7)

Here, λ1 and λ2 are weights to balance these two losses. It
should be noted that we do not set any restriction on the
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Figure 5: The tested four black-box distortions.

forward redundant information Rf and the recovered im-
age Ire, because these two variables are not important in the
whole process of watermarking.

Experimental Results
Experimental Settings
Datasets and Settings In this paper, the DIV2K (Agusts-
son and Timofte 2017) training dataset is used for train-
ing. The testing dataset we choose is the classical USC-SIPI
(Viterbi 1977) image dataset. The width W and height H
of the image are set to 128, and the length of the water-
mark message is set to 64 bits, that is, h and w are set as
8. The parameters of λ1 and λ2 are fixed as 1 and 10, re-
spectively. The number of invertible neural blocks in FED n
is set as 8 and the number of invertible noise blocks k is set
as 8. The framework is implemented by PyTorch (Collobert,
Kavukcuoglu, and Farabet 2011) and is run on one NVIDIA
RTX 3090ti. 1 For parameter optimization of each network,
we utilize Adam (Kingma and Ba 2015) with a learning rate
of 1e-4 as default hyperparameters.

Benchmarks To verify the invisibility and robustness of
the proposed method, we compare it with several state-
of-the-art (SOTA) watermarking methods, including three
DNN-based methods: HiDDeN (Zhu et al. 2018), TSDL
(Liu et al. 2019) and MBRS (Jia, Fang, and Zhang 2021).
To test the robustness, we choose 7 white-box distortions
(“Cropout”, “Dropout”, “Gaussian Noise”, “Salt&Pepper
Noise”, “Gaussian Blur”, “Median Blur” and “JPEG Com-
pression”) and 4 black-box style transferring distortions
(“Crayon”, “Heavy Color”, “Reverse Color”, “Sketch”, as
shown in Fig. 5)2. For each distortion, we train a specific wa-
termarking network for better illustration. It should be noted
that for black-box distortion training, we use INL combined
with “Gaussian noise” pre-trained model for better conver-
gence. For a fair comparison, all the DNN-based methods
are re-trained with the same dataset and same noise layer. All
experiments are carried out with the image of size 128×128
and watermark of size 8× 8 bits.

1Source code: https://github.com/QQiuyp/FIN.
2https://pc.meitu.com/image

Figure 6: The coupling of different architectures.

Evaluations To measure the invisibility of the water-
marked image, we adopt peak signal-to-noise ratio (PSNR)
as the metric, and the larger value indicates the better in-
visibility. For robustness, we directly utilize the extraction
bit accuracy (ACC) as the evaluation metric, and the larger
ACC indicates better robustness.

Coupling Measurement
As aforementioned, the existing END architecture may suf-
fer from the potential drawback that the encoder and the
decoder are not well coupled. However, the proposed FED
could effectively ensure the tight coupling of the encoder
and the decoder. In this section, we will give one typical ex-
ample to visually show the features of the encoder and the
decoder trained with JPEG compression for different archi-
tectures, as shown in Fig. 6.

As seen in Fig. 6, the first column is the original images,
the second column indicates the watermarked images, the
third and fourth columns represent the normalized features
that encoder embedded Ẽ and the normalized features that
decoder needed D̃. For D̃, we use the gradient map that is
generated by backpropagating the MSE-loss of the extracted
watermark and the original watermark message on the origi-
nal image to represent. We can see that for the three methods
compared, Ẽ is not highly consistent with D̃. The encoder
may embed more redundant features into the host image. But
for the proposed method, Ẽ and D̃ show the same character-
istics, which greatly shows that the encoder and decoder are
well coupled in the proposed framework.

Invisibility and Robustness Measurement
White-box Distortions As introduced before, 7 different
kinds of white-box distortions are tested in this paper. The
noise layer we used for training is same as the settings of
MBRS. The specific results of invisibility and robustness
are shown in Table 1. “Cropout” refers to the distortion that
crops a certain ratio of images and replaces the cropped re-
gion with zeros. In experiments, the test crop ratio ranges
from 0.1 to 0.5, as shown in Table 1. We can see that for
“Cropout” distortion, the proposed scheme maintains the
best invisibility. As for robustness, the extraction accuracy is
2% higher than the compared schemes when the crop ratio
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Method Cropout (%) Dropout (%)
VQ(dB)↑ r=0.1 0.2 0.3 0.4 0.5 VQ(dB) ↑ r=0.6 0.5 0.4 0.3 0.2

HiDDeN 40.62 95.6 94.7 88.8 76.9 61.7 42.59 82.7 86.7 87.1 89.6 90.2

TSDL 47.48 98.7 98.5 96.9 93.8 93.2 53.59 90.4 92.3 93.5 95.2 98.5

MBRS 48.05 99.7 99.2 97.2 90.4 83.5 57.25 90.6 92.6 94.2 94.7 96.3

Proposed 50.61 100 99.3 97.9 96.5 93.8 58.63 100 100 100 100 100

Method S&P Noise (%) JPEG Compression (%)
VQ(dB)↑ r=0.01 0.02 0.03 0.04 0.05 VQ(dB)↑ QF=50 60 70 80 90

HiDDeN 46.04 95.1 93.8 93.5 92.9 90.4 33.29 91.2 92.9 93.3 93.5 94.4

TSDL 51.16 97.3 95.6 93.5 92.7 91.5 39.39 91.5 94.0 94.2 94.4 94.7

MBRS 51.79 98.1 98.7 98.3 97.6 96.7 45.16 94.9 96.7 97.7 97.7 98.4

Proposed 51.97 100 100 100 100 100 47.21 99.71 100 100 100 100

Method Gaussian Noise (%) Gaussian Blur (%) Median Blur (%)
VQ(dB)↑ σ=0.01 0.03 0.05 VQ(dB)↑ σ=0.5 1 2 VQ(dB)↑ w=3 5 7

HiDDeN 36.25 89.6 84.0 79.2 46.21 95.2 94.3 84.4 37.07 86.3 83.7 79.7

TSDL 39.46 92.1 88.3 82.9 45.97 99.8 98.5 93.2 38.64 99.4 97.2 95.1

MBRS 39.70 99.9 98.1 94.2 47.91 98.3 97.7 87.8 40.98 99.4 98.9 97.3

Proposed 40.05 100 99.9 98.8 48.09 99.8 99.6 98.1 41.47 100 100 100

Table 1: Benchmark comparisons on invisibility and robustness against different white-box distortions.

is 0.4. Similar results could be found in “Dropout” distor-
tion, with 1dB higher of PSNR values, the proposed scheme
achieves the best performance of robustness.

In terms of noise distortion, the proposed scheme also
maintains the best performance in both invisibility and ro-
bustness. For salt&pepper noise, when facing the noise with
the ratio of 0.05, the proposed scheme guarantees an ex-
traction accuracy superiority of at least 3%. As for Gaus-
sian noise, the robustness is more advantageous in the case
of large variance. Under the premise of the highest PSNR
value, the extraction accuracy when noise variance is 0.05
achieves 98.8%, which is at least 4% higher than the com-
pared schemes.

Superior performance could also be found when facing
blurring distortions. For Gaussian blurring, the proposed
scheme maintains the highest extraction accuracy with the
highest PSNR value. As for median blurring, when facing
the strongest distortion with 7 × 7 filter window, the pro-
posed scheme can still maintain an extraction accuracy of
100% which is 2% higher than the other schemes.

As for JPEG compression, we use the JPEGSS (Shin and
Song 2017) noise layer for training and test the performance
with quality factor from 50 to 90. Similar to the other dis-
tortions, the robustness against JPEG compression of the
proposed scheme is also the best. With the advantage of
more than 2dB PSNR, the proposed method guarantees an
increase in extraction accuracy of nearly 5% when QF=50.
This result greatly indicates the robustness against JPEG
compression.

Since these methods are trained with the same dataset, the
same noise layer and the same training strategy, such a sig-
nificant performance improvement greatly indicates the ad-
vantage of the network structure. Utilizing invertible neural

network could effectively ensure the good coupling of the
encoder and the decoder, which further improves the robust-
ness and invisibility.

Black-box Distortions In this paper, we choose four dif-
ferent kinds of black-box style transferring attack to eval-
uate the performance of the proposed scheme. For HiD-
DeN and MBRS, since they are not designed for black-box
distortions, we directly use the combined noise to conduct
the experiments. For TSDL, we finetune the decoder as the
paper illustrated with the tested black-box distortions. For
the compared method, the PSNR values of each distortion
are the same. The PSNR values of the watermarked im-
age with HiDDeN, MBRS and TSDL are 31.82dB, 39.32dB
and 44.62dB respectively. The PSNR values of the proposed
scheme with “Crayon”, “Heavy Color”, “Reverse Color”,
“Sketch” distortions are 52.04dB, 47.08dB, 50.57dB and
46.11dB respectively. From the perspective of visual qual-
ity, the proposed scheme maintains the largest PSNR value,
which indicates the best invisibility of the framework. Under
such visual quality, we test the black-box distortions with
different strengths (light ’+’, medium ’++’, heavy ’+++’).

Examples of the black-box attacks are shown in Fig. 5. We
can see that these attacks have significantly influenced the
original appearance of the watermarked images, especially
for “heavy color” and “reverse color”. However, even under
such a stronger distortion, the proposed scheme still main-
tains a high level of extraction accuracy, as shown in Table 2.
For “crayon” and “reverse color” distortions, the extraction
accuracy achieves more than 99% even when the strength
is heavy. For all the distortions, the proposed method effec-
tively maintains the best PSNR value and the highest extrac-
tion accuracy, which indicates the excellent robustness of the
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Method Caryon (%) Heavy Color (%)
+ ++ +++ + ++ +++

HiDDeN 86.0 80.2 75.4 82.9 74.8 70.0

TSDL 92.0 90.8 90.8 83.7 79.5 77.5

MBRS 98.8 98.4 98.1 99.7 98.6 95.9

Proposed 99.8 99.6 99.5 99.8 98.6 96.8

Method Reverse Color (%) Sketch (%)
+ ++ +++ + ++ +++

HiDDeN 52.6 53.0 55.3 92.9 79.8 58.1

TSDL 86.4 93.5 94.8 58.7 61.0 65.2

MBRS 64.6 65.5 65.8 93.9 86.0 79.7

Proposed 99.9 99.9 99.9 99.2 98.1 95.1

Table 2: Benchmark comparisons on invisibility and robust-
ness against different black-box distortions.

Distortion Heavy Color Sketch
PSNR(dB) ACC(%) PSNR(dB) ACC(%)

G 42.17 94.4 44.62 92.5

INL 35.23 67.5 45.86 94.9

G+ INL 47.08 96.8 46.11 95.1

Table 3: Comparisons of different noise layer components
with black-box distortions.

proposed scheme.

Ablation Study
Importance of Pre-trained Model for INL For black-
box distortions, we use INL and a pre-trained model of
Gaussian noise for better convergence. To show the effec-
tiveness of INL and the pre-trained model, we conduct the
following experiments. We tested the performance of the
network that is trained only with Gaussian noise (denoted as
G), only with INL (denoted as INL) and with both (denoted
as G + INL), respectively. Each model will be trained for
400 epochs. Then we record the corresponding PSNR and
extraction accuracy as shown in Table 3.

It can be seen that only containing G may result in strong
robustness, but the invisibility is not good enough. As for
training only with INL, the network may not achieve good
performance, we believe it is mainly because the distortion
of INL is complex, it may not easy to converge to a general
solution. But when combining INL with G, it gives a pre-
defined direction, so fine-tuning will be easier to conduct,
and the performance with G+ INL will be the best.

Comparison of INL with CNN-Based Noise Layer As
aforementioned, we choose to simulate the black-box dis-
tortion with INN as the noise layer. However, such a process
can also be achieved by traditional CNN. In this section, we
will show and discuss the influence of the architecture of
the noise layer simulation network. We use the traditional
“ResNet” (He et al. 2016) based architecture which contains
9 “Res-Blocks” to conduct the comparison. Specifically, we
train one “ResNet” to simulate the forward noising process

Distortion Heavy Color Sketch
PSNR(dB) ACC(%) PSNR(dB) ACC(%)

Resf 42.72 90.8 42.81 79.3

Resb 42.72 82.5 42.81 76.6

INLf 47.08 95.6 46.11 91.8

INLb 47.08 96.8 46.11 95.1

Table 4: Comparisons of traditional CNN-based noise layer
and INL.

(denoted as Resf ) and another “ResNet” to simulate the
backward denoising process (denoted as Resb). Then we use
Resf as the noise layer for training. At the extraction stage,
we test the performance of the network trained with Resf

and the forward process of INL (denoted as INLf ). Since
we utilize the backward process of INL (denoted as INLb)
as denoising, we also test the accuracy on the distorted im-
ages with and without denoising. The experimental results
are shown in Table 4.

Compared with traditional CNN, the proposed INL will
achieve the better performance in invisibility and robustness,
which is 3dB larger in PSNR and 14% higher in extraction
accuracy. We summarize the reason for this as the invertible
nature of INNs significantly improves the generalizability of
the resultant model, so training with INL will lead to better
robustness. It should be noted that utilizing Resb to denoise
the distorted image will even degrade the performance. We
conclude the reason as the features of Resf and Resb are
not same. Therefore, Resb not only denoises the distortion
but also erase the watermark feature. However, when apply-
ing backward process of INL as denoising, the extraction
accuracy will be slightly higher than directly feeding the
distorted images. But the increase in extraction accuracy is
related to the specific distortion. For “heavy color”, it can
improve 1.5%, but for “sketch”, it can improve 3.3%. We
attribute the reason to the precision of the INL simulation.

Conclusion

To address the potential drawback of the existing END-
based watermarking framework where the encoder may not
be well coupled with the decoder, this paper proposes a flow-
based architecture which can tightly couple the encoder and
the decoder with the same parameters. As a consequence, the
encoded feature could keep high consistency with the feature
that decoder needed, which greatly avoids the embedding
of redundant features. In addition, to guarantee the robust-
ness for black-box distortion, we also design an INN-based
noise layer named INL which can simulate the black-box
distortion. The forward process of INL could serve as a noise
layer for training and the backward process of INL could be
utilized for denoising before extraction. Based on this, the
black-box distortion could be effectively guaranteed. Exten-
sive experimental results show that our method can achieve
strong robustness against not only white-box distortions but
also black-box distortions, which significantly outperforms
other SOTA methods both in invisibility and robustness.
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