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Abstract

The computation of trajectory similarity is a crucial task in
many spatial data analysis applications. However, existing
methods have been designed primarily for trajectories in Eu-
clidean space, which overlooks the fact that real-world tra-
jectories are often generated on road networks. This paper
addresses this gap by proposing a novel framework, called
GRLSTM (Graph-based Residual LSTM). To jointly cap-
ture the properties of trajectories and road networks, the pro-
posed framework incorporates knowledge graph embedding
(KGE), graph neural network (GNN), and the residual net-
work into the multi-layer LSTM (Residual-LSTM). Specifi-
cally, the framework constructs a point knowledge graph to
study the multi-relation of points, as points may belong to
both the trajectory and the road network. KGE is introduced
to learn point embeddings and relation embeddings to build
the point fusion graph, while GNN is used to capture the
topology structure information of the point fusion graph. Fi-
nally, Residual-LSTM is used to learn the trajectory embed-
dings.To further enhance the accuracy and robustness of the
final trajectory embeddings, we introduce two new neighbor-
based point loss functions, namely, graph-based point loss
function and trajectory-based point loss function. The GRL-
STM is evaluated using two real-world trajectory datasets,
and the experimental results demonstrate that GRLSTM out-
performs all the state-of-the-art methods significantly.

Introduction
With the ubiquitousness of GPS-enabled devices, massive
trajectory data is being collected at an unprecedented rate. A
trajectory portrays the spatial-temporal motion of an object
over a while. Trajectory similarity computation is an essen-
tial function in many real-world applications, such as trajec-
tory clustering (Lee, Han, and Whang 2007), anomaly tra-
jectory detection (Meng et al. 2019), route planning(Shang
et al. 2012; Chen et al. 2019; Chen, Shang, and Guo 2020;
Chen et al. 2021), transportation optimizations (Zheng et al.
2013; Yang et al. 2021; Zheng et al. 2021; Li et al. 2021),
and trajectory matching (Shang et al. 2014, 2017a).

Many existing metrics (Yi, Jagadish, and Faloutsos 1998;
Vlachos, Gunopulos, and Kollios 2002; Chen and Ng 2004;
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Figure 1: An example of multi-relation of points on the road
network. {p1, p2, p3, p4, p5, p6, p7, p8} is a point set of the
road network and ⟨p1, p2, p3, p5, p6, p7⟩ is a trajectory se-
quence. There are three types of edges: (i) Virtual edges
(e.g., {e12, e35}) exist solely in trajectories and do not exist
in the road network, (ii) Dual edges (e.g., {e23, e56}) exist
in both the road network and trajectories. (iii) Road network
edges (e.g., e67) exist solely in the road network.

Chen, Özsu, and Oria 2005) adopt pairwise matching and
rely on dynamic programming to compute the optimal align-
ments, which results in quadratic time complexity O(n2),
where n is the average length of trajectories. Thus, these
methods are not desirable for large-scale trajectory data.
To address this issue, some recent studies (Li et al. 2018;
Yao et al. 2019; Zhang et al. 2020) propose to leverage
embedding-based similarity computation methods, where
each trajectory is encoded as a latent vector with deep learn-
ing models. This means that the trajectory similarity can be
computed in linear time with vector similarity computation.

Although these methods mentioned above are effective
for measuring trajectory similarity in Euclidean space, they
are not as effective as expected for computing trajectory sim-
ilarity on the road network. Road network (Wang et al. 2021)
refers to a road system consisting of various roads that are
interconnected and interwoven into a network. Previously, a
handful of studies (Chen et al. 2010; Shang et al. 2017b; Li,
Cong, and Cheng 2020) have attempted to solve the problem
of trajectory similarity computation on road networks. Espe-
cially, these studies adopt hand-crafted heuristic approaches
to align trajectories to the road network and define some ef-
fective similarity functions (Shang et al. 2017b) to measure
trajectory similarity over the road network. However, these
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methods still suffer from the issue of high computation com-
plexity.

To solve the above challenges, the latest framework GTS
(Han et al. 2021) utilizes deep learning method and Graph
Neural Network (GNN) (Kipf and Welling 2017) on the road
network and achieves decent performance. However, GTS
leaves out two issues. First, GTS only considers the road
network information and ignores the trajectory information
during the graph processing. A key point is that adjacent
points in a trajectory are not necessarily adjacent on the road
network due to data loss or inconsistent sampling rates. As
shown in Figure 1, virtual edges {e12, e35} are in trajectories
while do not exist on the road network. On the other hand,
GTS uses the optimization strategy on trajectories without
considering point optimization.

To leverage the point information of trajectories and road
networks, we propose a novel framework, namely GRL-
STM. In particular, we take into account that each point
has multiple relations in the road network and trajectories
by building a knowledge graph. Then, we apply the KGE
method to the knowledge graph and further build a fusion
graph by k-nearest selection. Next, the GAT (Velickovic
et al. 2018) is introduced to capture the topology structure
information of the fusion graph. The final trajectory rep-
resentation is learned by the multi-layer LSTM. To solve
the vanishing gradient problem between layers in the deep
layer LSTM, we design a novel module, namely Residual-
LSTM, by incorporating the residual network (He et al.
2016) into the multi-layer LSTM. In addition, we design
two new neighbor-based point-aware loss functions to opti-
mize GRLSTM: (i) Graph-based point loss. To optimize the
graph-level point embedding, we consider that points con-
nected in the graph should be similar. (ii) Trajectory-based
point loss. We consider that points in a trajectory as a similar
set. In other words, point embeddings in the same trajectory
should be similar. This is based on the observation that a
trajectory is usually sampled from the same vehicle.

In short, the main contributions of this paper are summa-
rized as follows:
• We propose GRLSTM, a novel trajectory similarity

computation framework on road networks. It models
multi-relation of points with knowledge graph using
KGE. We introduce the residual network into multi-layer
LSTM to learn trajectory embeddings, which can solve
gradient vanishing problem.

• We design two new neighbor-based point-aware loss
functions (i.e., graph-based point loss and trajectory-
based point loss) to effectively train GRLSTM.

• We conduct extensive experiments on two real-world
datasets. The experiments show significant improve-
ments of our method over state-of-the-art methods.

Related Work
Trajectory Similarity without Deep Learning
In traditional methods, there are two main streams of tra-
jectory similarity computation methods. One is based on the
Euclidean space where dynamic programming is used to an-
alyze trajectory segments, such as Dynamic Time Warping

(DTW) (Yi, Jagadish, and Faloutsos 1998), longest com-
mon subsequence (LCSS) (Vlachos, Gunopulos, and Kol-
lios 2002), edit distance with real penalty (ERP) (Chen and
Ng 2004), and edit distance on real sequences (EDR) (Chen,
Özsu, and Oria 2005). These methods commonly utilize
some optimization (Rakthanmanon et al. 2012) techniques
to reduce computation time but will be disturbed by the noise
points, resulting in a decrease in the final accuracy. The other
trajectory similarity computation is based on road networks.
In these methods, all coordinate points of each trajectory
need to be mapped into the road network to find the corre-
sponding node. Then the similarity function is used for sim-
ilarity computation between trajectories. The early methods
simply apply the shortest path algorithm and set similarity to
calculate the trajectory similarity. Later, Shang et al. (Shang
et al. 2017b, 2018, 2019) proposed a joint similarity func-
tion after considering the similarity of spatial and tempo-
ral, and accelerated the calculation through pruning and in-
dexing techniques. There was also appearing to design new
functions (Wang et al. 2018) to compute the similarity be-
tween trajectories. (Zheng et al. 2021) propose a distributed
in-memory management framework to accelerate trajectory
similarity queries. However, the traditional methods based
on road constraints are either too simple or affected by high
computational complexity, which is difficult to be applied in
practice because of the issue of handling large-scale data.

Trajectory Similarity with Deep Learning
In recent years, deep learning models have shown excellent
performance on trajectory similarity computation. There are
some studies on applying deep learning to spatial data anal-
ysis (Han et al. 2019, 2020; Zhao et al. 2020). Due to the
characteristics of trajectory sequence, some existing stud-
ies apply the deep learning model of natural language pro-
cessing to generate trajectory representation. The similarity
between trajectories can be obtained by measuring the re-
lationship between trajectory representations. The encoder-
decoder model is adopted by Li et al. (Li et al. 2018) to
obtain trajectory embedding. Yao et al. (Yao et al. 2019,
2020) introduces the attention mechanism into the spatial
network and uses the pair-wise distance to assist the learning
processing, making the performance more effective. To im-
prove the learning quality of trajectory embeddings, Zhang
et al. (Zhang et al. 2020) devise several new loss functions.
Han et al. (Han et al. 2021) first introduces the GNN into
trajectory similarity computation on the road network.

Preliminaries
In this section, we define the basic data structure of the road
network and trajectory. Then we give a brief description of
our target problem.

Trajectory with Road Network
A road network is a graph G = (V,E), where V and E are
the sets of nodes and edges, respectively. Each node v ∈ V is
a point featured with a geographic coordinate, representing
an endpoint of a road segment or a road intersection. Each
edge e = ⟨u, v⟩ ∈ E represents a road segment connecting
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Figure 2: The overall of GRLSTM.

points u and v. A length-n trajectory τ = ⟨v1, v2, ..., vn⟩ in
the road network graph G consists of an ordered sequence
of n points (i.e., their geographical coordinates).

Problem Definition
Given a graph G = (V,E) of a road network and a trajec-
tory set T = {τ1, τ2, ..., τm}, for ∀τa ∈ T , the trajectory
similarity computation is to find τb ∈ T such that τb is most
similar to τa, where a ̸= b.

Graph-based Residual LSTM
In this section, we introduce a novel framework GRLSTM
for trajectory representation learning, which includes three
parts: point knowledge graph embedding, fusion graph em-
bedding, and Residual-LSTM. Figure 2 shows the overall
framework of our model.

Knowledge Graph Embedding on Point
Each point belongs to both the road network and the trajec-
tory. Due to different sampling rates of devices or data loss,
the trajectory is usually not a continuous sequence on the
road network, which means that adjacent points within the
trajectory are not necessarily adjacent to each other on the
road network. In other words, there are some virtual edges
existing in the trajectory while not in the road networks, as
edges {e12, e35} shown in Figure 1.

To solve the above problem, we combine road networks
and trajectories to construct a knowledge graph. The knowl-
edge graph is a semantic network that can reveal the rela-
tions between entities. Specifically, given a trajectory dataset

and road network graph, we construct a road network-
trajectory knowledge graph G = (V, E ,R), where R has
three relation types: road network edge rn, trajectory virtual
edge rt, dual edge rnt. Therefore, each e = ⟨u, v⟩ ∈ E with
a relation r ∈ R can be built a triplet (e.g., ⟨u, rn, v⟩).

To effective reveal the relations between entities (i.e,
points), we use TransH (Wang et al. 2014) to learn entity and
relation embeddings. The basic idea of TransH is to use dif-
ferent hyperplanes to represent different relation spaces and
regard relations as translation operation on hyperplanes. For-
mally, given a triplet ⟨u, r, v⟩, where u, v ∈ V and r ∈ R,
the corresponding entity embeddings eu and ev are first pro-
jected to the hyperplane wr with constraint ||wr||2 = 1,
which is detailed as follows:

eu⊥ = eu − wT
r euwr, (1)

ev⊥ = ev − wT
r evwr, (2)

where eu⊥ and ev⊥ denote projection embeddings of eu and
er, respectively. Then, we use a score function f(·) to com-
pute the difference of the triplet, which can be denoted as:

f(eu, ev) = ||eu⊥ + hr − ev⊥ ||22, (3)

where hr is the translation embedding on the hyperplane.
The desired result of the score function f(·) is a lower value
if the relation of the triplet is correct, and a higher value if
the opposite is true.

So far, each entity (i.e., point) and each relation have been
represented by embeddings. To capture the correlation of
points within different relations, we design a entity-relation
similarity function s(·) to compute embedding similarity be-
tween point u and point v within specific relation r. Inspired
by the KGE algorithms, the distance between u and v can be
written as:

dr(eu, ev) = ||eu + er − ev||, (4)

where eu, ev denote the learned embeddings of point u and
point v, respectively, er is the learned relation embedding
between u and v and || · || represents L2-norm. The lower
result of the distance function dr(·) means the closer dis-
tance. To show higher similarity for the closer distance, we
compute similarity between u and v as follows:

s(eu, ev) = e−dr(eu,ev), (5)

To integrate trajectory and road network information, we
construct the point fusion graph Gf ∈ R|V |×|V | by similar-
ity. Here, we use k-nearest selection to obtain point vi neigh-
bor set Ns(vi) based on similarity to keep sparsity on graph
and decrease noisy. Then, we have the following graph:

Gf (i, j) =

{
1 if point vj ∈ Ns(vi) or i = j,

0 otherwise.
(6)

Gf is a new graph that has new edges constructed by simi-
larity. Note that the adjacent points in the trajectory are not
necessarily adjacent in the fusion graph either. However, the
point of the fusion graph can contain both road network and
trajectory characteristics by modeling the point with KGE as
well as similarity. Thus, Gf can better represent the proper-
ties of each point in fusion graph, which is not available in
the road network graph.
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Graph Embedding on Point
To capture the topology in the fusion graph Gf , we adopt
the graph attention network (GAT) (Velickovic et al. 2018)
to learn graph embedding. GAT uses message passing graph
neural network to implement the aggregate and update
processing. Formally, given the points embedding P ={
p1, p2, ..., p|V |

}
, we updates node embedding as follows:

αij =
exp

(
LeakyReLU

(
aT

[
Wpi|| Wpj

]))
∑

k∈Ni
exp

(
LeakyReLU

(
aT

[
Wpi||Wpk

])) , (7)

p̂i = σ
( ∑

j∈Ni

αijWpj

)
, (8)

where W and a are learnable parameters, σ is the activation
function, || represents concatenation, and Ni is the neighbor
set which can be obtained from Gf . To improve the feature
expressiveness of GAT, we use multi-head GAT as suggested
by (Velickovic et al. 2018). We concatenate the output em-
beddings of multi-head GAT, which is presented as follows:

p̂i = ||Hh=1σ
( ∑

j∈Ni

αh
ijWhphj

)
, (9)

where H is the number of the heads, || is the concatenation
operation, and σ is the activation function.

So far, new point embeddings are learned by graph em-
bedding layers, which contain the rich graph structure infor-
mation from Gf . Then we take these point embeddings as
the input of the Residual-LSTM module to learn trajectory
embeddings.

Multi-Layer LSTM with Residual Network
The trajectory data is a typical sequential structure, thus
RNN-based method is an appropriate method. In our im-
plementation, we choose LSTM to learn trajectory embed-
dings. Specifically, we first transform each point in a trajec-
tory to graph-based point embeddings. Then we use LSTM

to fuse sequence embeddings. Here, we take the last time
step output of LSTM as the final trajectory embeddings. To
achieve better performance, we further apply the multi-layer
LSTM in our model. However, simply stacking the layers of
the LSTM causes serious gradient vanishing problem, mak-
ing a sharp drop in convergence and getting worse learning
results. In addition, the multi-layer LSTM also makes the
training time longer. Therefore, we need to find a way to
solve the gradient vanishing problem of multi-layer LSTM
without increasing the training time.

Inspired by ResNet (He et al. 2016), we introduce the
residual network into the multi-layer LSTM. ResNet has
made a big splash in computer vision and effectively solve
the gradient vanishing problem of deep model learning. Due
to its excellent performance, we integrate ResNet into the
multi-layer LSTM in our model. For every timestep i in the
multi-layer LSTM, we denote the residual block in Residual-
LSTM by follows:

p̂
(l)
i = H

(
p̂
(l−1)
i

)
+ ReLU

(
F
(
p̂
(l−1)
i ;W(l)

i

))
. (10)

where p̂
(l−1)
i and p̂

(l)
i are the input and output of the layer l

Residual-LSTM at timestep i, respectively. W(l)
i denotes all

learnable parameters of the time step i in the layer l. F(·)
is the residual function, which stands for the learned residu-
als. H(·) reprensents the identity connection, which can be
obtained by H(p̂

(l−1)
i ) = p̂

(l−1)
i . We take the last timestep

hidden output of the last layer in the Residual-LSTM as the
final trajectory embedding.

As shown in the Figure 3, we build the identity connec-
tion operation between different LSTM layers. We combine
the input of the previous layer l with the output of the previ-
ous layer l as the input of the next layer l+1. This structure
brings two benefits. On the one hand, the introduction of the
residual network can solve the gradient vanishing problem in
the multi-layer LSTM by identity connection. One the other
hand, the residual block does not add any additional training
parameters except for the element-wise addition and activa-
tion operation. Consequently, compared with the multi-layer
LSTM, the increase of Residual-LSTM in training time is al-
most negligible.

Objective Functions
Embedding Similarity
After training, all trajectories in the training set are con-
verted to trajectory embeddings. In this study, we use the
dot-product to measure similarity between trajectory em-
beddings. Suppose embeddings of trajectories τi and τj are
ti and tj , respectively. The trajectory embedding similarity
score can be computed as follows:

st(τi, τj) = tTi tj , (11)

Likewise, we can define the point embedding similarity
score using the dot-product. Suppose embeddings of points
vi and vj are pi and pj respectively. The point embedding
similarity score can be defined as:

sp(vi, vj) = pTi pj , (12)
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Then, we can define objective function to optimize our
model by these similarity functions.

Point-Aware Loss Function
The Figure 1 shows that points have different properties on
the road network, and the point fusion graph Gf is con-
structed based on these properties. Inspired by these differ-
ent relations, we define two neighbor-based point-aware loss
functions (i.e., graph-based point loss and trajectory-based
point loss) to optimize point embeddings. Here, we first de-
fine two types of point neighbor relations to better detail our
neighbor-based point-aware loss functions.

Graph-Based Point Neighbors. We define the graph-
based point neighbors as the first-order neighbors on the fu-
sion graph. Intuitively, each node on the graph has high sim-
ilarity to its first-order neighbors. We denote the first-order
neighbors set of a point as Ngp, which |Ngp| = k.

Note that the number of k-nearest selection has a sig-
nificant effect on the number of the first-order neighbors
on the fusion graph. To reduce these influence, we apply
pair-wise method within sampling which is widely used
in other ranking-based applications, to design the graph-
based point loss function. Formally, given a trajectory set
T = {τ1, τ2, ..., τm} and τi =

〈
vi1, v

i
2, ..., v

i
|τi|

〉
∈ T , we

define graph-based point loss function as follows:

Lgp = −
m∑
i=1

|τi|∑
j=1

log σ(sp(v
i
j , v

i
pos)− sp(v

i
j , v

i
neg)), (13)

where σ is sigmoid function, vij is a point of trajectory τi,
vipos is a positive point sampled from Ngp(v

i
j), and vineg /∈

Ngp(v
i
j) is a negative sample from fusion graph.

Trajectory-Based Point Neighbors. According to the
previous analysis, points that are adjacent in the trajectory
are not necessarily adjacent on the road network, which also
is true for the fusion graph Gf . However, there is a high
similarity between adjacent points in the trajectory, such as
the movement trend of a vehicle. Specifically, given a tra-
jectory τ =

〈
v1, v2, .., v|τ |

〉
and a point vi ∈ τ , we define

the previous point and the next point of vi as the trajectory-
based point neighbors, where v1 only has the next point and
v|τ | only has the previous point. We denote trajectory-based
point neighbors as Ntp and |Ntp| ∈ {1, 2}.

Similarly, we use the pair-wise to design trajectory-based
point loss function. Formally, given a trajectory set T =

{τ1, τ2, ..., τm} and τi =
〈
vi1, v

i
2, ..., v

i
|τi|

〉
∈ T , we de-

fine the trajectory-based point loss function for a trajectory
as follows:

Ltp = −
m∑
i=1

|τi|∑
j=1

log σ(sp(v
i
j , v

i
pos)− sp(v

i
j , v

i
neg)), (14)

where σ is sigmoid function, vij is a point of trajectory τi,
vipos is a positive point sampled from Ntp(v

i
j), and vineg /∈ τi

is a negative sample from fusion graph.

Beijing New York

#Nodes 28,342 95,581
#Edges 27,690 260,855

#Trajectories 5,621,428 10,541,288
Average Length 25 38

Table 1: Statistics of datasets.

Trajectory-Aware Loss Function
According to Equation 11, we can compute the similarity be-
tween two trajectories in the linear complexity. However, the
goal of our work is to find the most similar trajectories, not
just compute similarity scores. Therefore, we need define the
trajectory-aware loss function to optimize our model.

Following (Han et al. 2021), we also use the pair-wise
method to design the trajectory loss function. Formally,
given a trajectory set T = {τ1, τ2, ..., τm}, we define tra-
jectory loss function for a trajectory as follows:

Lt = −
m∑
i=1

log σ(st(τi, τpos)− st(τi, τneg)), (15)

where σ is sigmoid function, τpos is the most similar trajec-
tory to τi and τneg is negative sample from T/ {τi, τpos}.

Finally, the final objective function can be written as:

L = Lgp + Ltp + Lt. (16)

Experiments
In this section, we conduct a series of experiments. The main
presentation includes the dataset, hyperparameter settings,
and evaluation metrics. Then, we present a detailed analysis
of the experimental results.

Experiment Settings
Datasets. We use two real-world road networks from dif-
ferent cities, Beijing and New York. Table 1 shows the de-
tails of the two datasets. In the Beijing road network, there
are 28,342 nodes and 27,690 edges. For the trajectories in
Beijing, we use taxi trajectories from the T-drive project 1.
These taxi trajectories are collected by taxi id, GPS coordi-
nates, and timestamp from 10,357 taxis during several days.
We split these trajectories by hours and we drop the short-
length trajectories. Then we get 5,621,428 trajectories and
the average length of Beijing trajectories is 25. We use the
spatial similar function (Shang et al. 2017b) to create ground
truths on the Beijing road network by GPS coordinates. In
the New York road network, there are 95,581 nodes and
260,855 edges. For the trajectories in New York, we collect
taxi driving data from the website 2. We use the same prepro-
cessing method to process these trajectories and get ground
truths. Finally, we get 10,541,288 trajectories and the aver-
age length of these trajectories is 38. For both two datasets,
we randomly split these data into training set, validation set,
and test set in the ratio of [0.2, 0.1, 0.7].

1https://www.microsoft.com/en-us/research/publication/t-
drive-trajectory-data-sample

2https://opendata.cityofnewyork.us
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Beijing New York
HR@1 HR@5 HR@10 HR@20 HR@50 HR@1 HR@5 HR@10 HR@20 HR@50

Traj2vec 5.82% 10.57% 18.64% 28.83% 40.07% 4.95% 9.33% 16.13% 24.57% 37.24%
Siamese 6.33% 13.25% 20.17% 32.61% 45.58% 5.23% 11.12% 18.75% 27.74% 42.16%
NeuTraj 7.72% 19.78% 27.54% 39.63% 53.57% 6.15% 15.57% 23.28% 30.18% 48.43%
Traj2SimVec 7.81% 20.42% 29.17% 40.14% 56.75% 6.31% 17.03% 26.46% 32.52% 50.55%
GTS *9.21% *25.00% *35.48% *48.07% *66.12% *8.43% *21.64% *32.53% *41.69% *58.17%
GRLSTM 12.96% 32.71% 44.38% 57.34% 74.02% 11.33% 27.85% 39.36% 48.12% 62.47%
Improvement 40.71% 30.84% 25.08% 19.28% 11.95% 34.40% 28.65% 20.99% 15.42% 7.39%

Table 2: Experimental results on two datasets. The mark * indicates the compared baseline for improvements.

Hyperparameters. In our model, the dimension of em-
bedding is 128 and the same settings are applied to the base-
lines. We use Adam (Kingma and Ba 2015) to optimize our
model, and the learning rates are set as 5e-4 in the Beijing
dataset and 1e-3 in the Newyork dataset. The training batch
sizes are 256 in the Beijing dataset and 512 in the Newyork
dataset. We set the layer of Residual-LSTM as 4. The num-
ber head of GAT is set as 8, and the number of GAT layer is
1. The k-nearest selection is set as 10 in Beijing dataset and
30 in Newyork dataset. Our model is implemented in Py-
torch and trained on an Nvidia RTX3090 GPU. The detail
of implementation can be referred in this website. 3

Evaluation Metrics. Following the previous studies, we
adopt HR@K as the major performance metric. The top-
k hitting ratio (HR@k) examines the overlap between the
returned top-k results and the ground truth. In our exper-
iments, we adopt HR@1, HR@5, HR@10, HR@20 and
HR@50 as the major performance index.

Baselines. In our experiment, we evaluate GRLSTM
against the following competitors:
• Traj2vec (Yao et al. 2018): A sequence-to-sequence

model to learn trajectory embeddings. The mean squared
error is used as the loss function to optimize the model.

• Siamese (Pei, Tax, and van der Maaten 2016): A time
series learning method over the Siamese network. It uses
the cross-entropy loss function to train the model.

• NeuTraj (Yao et al. 2019): This framework modifies the
structure of the LSTM to learn trajectory embeddings
based on the grid.

• Traj2SimVec (Zhang et al. 2020): This method employs
a new loss for the trajectory similarity by point matching.

• GTS (Han et al. 2021): The framework is the first model
that performs the trajectory similarity computation with
graph learning on the road network. It uses GCN and
LSTM to learn trajectory embeddings.

Overall Performance
Table 2 reports experimental results against baselines. From
the results, our analysis are summarized as follows:

Overall, our GRLSTM achieves the best performance on
the two datasets, significantly outperforming all the state-
of-the-art baseline methods in terms of top-k hitting ratio

3https://github.com/slzhou-xy/GRLSTM

index. The average improvement of our model to the best
baseline GTS is 25.57% on Beijing dataset and 21.37% on
New York dataset. It is worth mentioning that GRLSTM out-
performs GTS by relative HR@1 improvements of 40.71%
and 34.40% on Beijing and New York datasets, respectively.
These huge improvements can be attributed to four reasons:
1) We consider the multiple relations of point on the road
network and apply KGE to learn entity embeddings and re-
lation embeddings. Based on these embeddings, we further
construct the point fusion graph where each point integrates
the trajectory and road network information. 2) We use the
multi-head GAT to learn graph-based point embeddings,
which can capture properties of fusion graph from different
hidden channels. 3). We introduce the residual network into
multi-layer LSTM, which allows our model to train deeper
LSTM and substantially improve performance. 4) We design
two new neighbor-based point-aware loss functions, which
can optimize our model from different point aspects.

Specifically, the loss function of Traj2vec is designed
based on the fitting approach and and the accuracy is sig-
nificantly reduced for more complex models. GRLSTM
learns graph-based point embedding and uses these learned
point embeddings to represent trajectory embeddings. Three
pair-wise loss functions are adopted to optimize GRLSTM,
which is more effective than the mean squared error loss in
Trajvec, the cross-entropy in Siamese and the regression loss
in NeuTraj. Moreover, the pair-wise loss in our model can
learn the partial order relation which is more suitable for top-
k recommendation. Traj2SimVec uses L2-norm to compute
the difference between embedding vectors, while our model
uses the dot-product to compute the similarity, resulting in
the linear complexity and better results. Compared to GTS
which uses the simple GNN to aggregate the neighbors in-
formation, our model uses GAT that has a stronger ability to
learn graph representations than the simple GNN. More im-
portantly, our model considers multiple relations of points in
road networks and trajectories, while GTS learns trajectory
embeddings solely on road networks.

Ablation Experiment

We set up a variety of different experiments to verify the
validity of our model components:

• w/o FG: We remove the fusion graph and only use the
road network.
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HR@1 HR@5 HR@10 HR@20 HR@50
w/o FG 10.47% 27.92% 40.94% 52.16% 70.30%
w/o GAT 11.53% 30.63% 42.43% 55.51% 72.66%
w/o P 12.54% 31.43% 43.28% 56.23% 72.84%
w/o TP 12.06% 31.16% 42.54% 55.36% 71.99%
w/o ResNet 9.52% 25.57% 36.11% 48.52% 66.04%
GRLSTM 12.96% 32.71% 44.38% 57.34% 74.02%

Table 3: The ablation experiment.

• w/o GAT: In this method, we use GCN to replace the
multi-head GAT.

• w/o P: We remove the graph-based point loss function
and keep the other two loss functions.

• w/o TP: We remove the trajectory-based point loss func-
tion and keep the other two loss functions.

• w/o ResNet: We remove ResNet from GRLSTM and
keep the multi-layer LSTM.

We use the Beijing dataset to conduct the ablation experi-
ments and the results are shown in Table 3, and we have the
following analysis and conclusions.

First, we find that the point fusion graph can significantly
improve the performance. In fact, points in road networks
do not contain any trajectory sequence information. How-
ever, each point in the fusion graph fully incorporates road
network and trajectory information, which can better repre-
sent the multi-relation of points, because point fusion graph
is constructed by the entity-relation similarity which is com-
puted by entity (i.e., point) embeddings and relation embed-
dings from KGE.

Second, GAT achieves better performance than GCN, es-
pecially multi-head GAT. GCN uses degree information of
neighbors to update the central node embedding, while GAT
adopts the attention mechanism, which allows to aggregate
neighbor node embeddings and update central node embed-
dings with attention factors and benefits from assigning dif-
ferent weights to the neighbors.

Third, our two novel neighbor-based point-aware loss
functions have a great contribution to our model. For the
graph-based point loss function, it is based on the graph and
can optimize our model by using the neighbor information of
the graph. During the training, it uses the first-order neigh-
bor similarity in the graph as well as the pair-wise function
to optimize point embeddings. For the trajectory-based point
loss function, it uses the pair-wise function with positive and
negative sampling to measure the similarity of points on tra-
jectories.

Moreover, residual network improves performance of our
model significantly, which shows the importance of residual
network in the multi-layer LSTM. The multi-layer LSTM
cause severe gradient vanishing when back-propagating,
which leads to serious performance degradation problems.
The training time of multi-layer LSTM keeps increasing
with the number of layers. Through introducing the residual
network into multi-layer LSTM, it can solve gradient van-
ishing problem while not increase the training time.

HR@1 HR@5 HR@10 HR@20 HR@50
GLSTM-1 11.69% 30.30% 41.74% 54.41% 71.29%
GLSTM-2 11.03% 28.89% 39.89% 52.35% 69.31%
GRLSTM-2 11.66% 31.46% 43.30% 56.24% 72.80%
GLSTM-3 10.52% 27.22% 38.21% 51.96% 68.28%
GRLSTM-3 12.62% 32.49% 43.49% 57.25% 73.72%
GLSTM-4 9.52% 25.57% 36.11% 48.52% 66.04%
GRLSTM-4 12.96% 32.71% 44.38% 57.34% 74.02%
GLSTM-5 7.45% 21.35% 30.95% 42.69% 60.12%
GRLSTM-5 12.58% 32.20% 43.93% 56.77% 73.19%

Table 4: Residual-LSTM layers experiment.

Residual-LSTM Layers Experiment

To reveal the role of the residual network in multi-layer
LSTM, we design the Residual-LSTM layers experiment
based on the Beijing dataset. The results are shown in Ta-
ble 4, where GRLSTM-l represents the l-layer LSTM with
residual network, and GLSTM-l denotes the l-layer LSTM
without residual network.

First, the residual network can significantly improve the
performance of multi-layer LSTM. As the number of LSTM
layers increases, the performance of multi-layer LSTM be-
gins to decrease. In particular, compared to GLSTM-1,
the HR@1 performance of GLSTM-5 is even reduced by
36.27%. On the contrary, with the help of the residual net-
work, multi-layer LSTM has a substantial improvement. It is
clear that the residual network can solve the gradient vanish-
ing problem in the multi-layer LSTM well. Moreover, when
the number of LSTM layers exceeds 4, the final results of
GRLSTM have leveled off, which denotes that our model
reaches its optimum at layer-4. There is a slight decrease in
the performance of GRLSTM-5 compared to GRLSTM-4,
indicating that our model appears to be slightly overfitted.

Conclusion

In this paper, we proposed a novel trajectory similarity com-
putation framework named GRLSTM on road networks. In
our model, we studied multi-relation of points on road net-
works and construct a point knowledge graph. We utilize
the knowledge graph embedding method to learn entity (i.e,
point) and relation embeddings. We further constructed the
point fusion graph to integrate trajectory and road network
information by learning embedding and k-nearest selection.
To capture topology properties on the point fusion graph,
we use multi-head GAT to learn graph-based point embed-
dings. Then, we designed a novel module named Residual-
LSTM to learn the final trajectory embedding, where resid-
ual network in multi-layer LSTM can solve the gradient
vanishing problem. Moreover, we design two new neighbor-
based point-aware loss functions to optimize GRLSTM, in-
cluding graph-based point loss function and trajectory-based
point loss function. Extensive experiments show that our
model GRLSTM significantly outperforms the state-of-the-
art methods on two real-world datasets.

4978



Acknowledgments
This work was supported by the NSFC (U2001212,
62032001, and 61932004) and Sichuan Science and Tech-
nology Program (2021YFS0007).

References
Chen, L.; and Ng, R. T. 2004. On The Marriage of Lp-norms
and Edit Distance. In VLDB, 792–803.
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