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Abstract

In the scene of self-supervised graph learning, Mutual In-
formation (MI) was recently introduced for graph encoding
to generate robust node embeddings. A successful represen-
tative is Deep Graph Infomax (DGI), which essentially op-
erates on the space of node features but ignores topologi-
cal structures, and just considers global graph summary. In
this paper, we present an effective model called Deep Graph
Structural Infomax (DGSI) to learn node representation. We
explore to derive the structural mutual information from the
perspective of Information Bottleneck (IB), which defines a
trade-off between the sufficiency and minimality of represen-
tation on the condition of the topological structure preserva-
tion. Intuitively, the derived constraints formally maximize
the structural mutual information both edge-wise and local
neighborhood-wise. Besides, we develop a general frame-
work that incorporates the global representational mutual
information, local representational mutual information, and
sufficient structural information into the node representation.
Essentially, our DGSI extends DGI and could capture more
fine-grained semantic information as well as beneficial struc-
tural information in a self-supervised manner, thereby im-
proving node representation and further boosting the learn-
ing performance. Extensive experiments on different types of
datasets demonstrate the effectiveness and superiority of the
proposed method.

1 Introduction
Graph is a flexible and universal data structure consisting
of a set of nodes and edges, where nodes can represent
any kind of object and edges indicate some relationships
between node pairs. For mining graph data, Graph Neural
Networks (GNNs) have achieved remarkable performance
on various tasks in different domains, such as node/graph
classification (Hamilton, Ying, and Leskovec 2017; Li et al.
2021; Zhao et al. 2021; Veličković et al. 2018; Jiang et al.
2019; Zhang et al. 2021), computer vision (Han et al. 2022;
Cui et al. 2022), recommendation (Zhang et al. 2020b; Wang
et al. 2021), biomolecules (Morehead, Chen, and Cheng
2022; Somnath, Bunne, and Krause 2021).

However, most of the existing GNNs require sufficient la-
beled data to obtain satisfactory generalization abilities, and
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the labeled data usually needs expensive cost to collect while
the unlabeled data is easy to access. Thus, research commu-
nity has proposed techniques (Veličković et al. 2019; Jing,
Park, and Tong 2021; Kipf and Welling 2016b; Hong et al.
2021; Yang et al. 2020; Liu et al. 2022) for learning rep-
resentation in a self-supervised manner, which designs and
extracts supervision signals from the unlabeled data itself.
Deep InfoMax (DIM) (Hjelm et al. 2019) was first proposed
in computer vision, Deep Graph Infomax(DGI) (Veličković
et al. 2019) then extended it to graph domain and achieved a
promising result by maximizing the mutual information be-
tween local node representation and global graph summary.
As a pioneer work, however, DGI has two major limita-
tions on the use of mutual information. First, after obtaining
the encoded node representation and computing the graph
summary by a readout function, DGI maximizes the mutual
information between local node representation and global
graph summary, which indeed ignores more fine-grained
mutual information in different-sized receptive fields. Sec-
ond, DGI just considers the mutual information in the fea-
ture space, and does not explore the structural mutual in-
formation that is actually meaningful for graph data. As
a result, only less informative node representation is ob-
tained, leading to a suboptimal performance on the down-
stream tasks. Peng et al. (Peng et al. 2020) proposed to
learn topology-aware mutual information by reconstructing
the adjacency matrix, which is insufficient to capture the di-
versity of local neighborhoods.

The Information Bottleneck (IB) principle is appealing,
since it defines what we mean by a good representation, in
terms of the fundamental trade-off between having a concise
representation and one with good predictive power (Tishby
and Zaslavsky 2015). Information Bottleneck theory pro-
vides a framework for constraining task-relevant informa-
tion sufficiently retained in the learned representation, which
encodes representation that is maximally informative about
the target while being minimally informative about input
data (Yang et al. 2021; Alemi et al. 2017). Essentially, the
Information Bottleneck seeks a trade-off between data fit
and model generalization. And based on the IB principle,
the learned representation is naturally more robust. IB has
been applied to learn informative representation in the fields
of computer vision and natural language processing. For ir-
regular data, Yu et al. (Yu et al. 2020, 2021) learned the max-
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imally informative subgraph for graph classification via IB.
VIB-GSL (Sun et al. 2022) learned graph structure to distill
the actionable information under a variational information
bottleneck framework. Both of them adopt IB to construct
subgraphs for classification in a supervised framework.

In this paper, we present an effective self-supervised
method called Deep Graph Structural Infomax (DGSI) to
enrich node representation. As a universal data structure, the
graph consists of nodes and edges, both of which are vital
for mining meaningful information. Although some work
has proposed to design/apply mutual information between
features/representations, to the best of our knowledge, few
studies have focused on the mutual information on struc-
ture, which is a challenging but significant problem. Ad-
vanced by Information Bottleneck principle, we explicitly
derive the structural information constraints to guide the net-
work learning in a self-supervised manner. Intuitively, the
derived constraints formally maximize the structural infor-
mation both edge-wise and irregular local neighborhood-
wise. Therefore, the learned node representation not only
encodes the semantic information of the node, but also con-
tains the topological structure information. Besides, for the
learning of semantic information, we not only maximize the
mutual information between node representation and graph
summary but also constrain a more fine-grained connec-
tion, i.e., between the node and its local receptive field re-
gion, which enables the node representation to character-
ize both local and global semantic information. Ultimately,
we integrate structural and representational mutual informa-
tion constraints as graphical mutual information constraint,
and develop a general framework to incorporate them into
the node representations. Extensive experiments on different
types of datasets demonstrate the superiority of our proposed
method in a self-supervised paradigm.

2 Preliminaries and Notations
We start by formally introducing the notations used in this
paper. A graph is denoted as G (V , E), where V represents
a set of nodes with the number |V| = n and E is a set of
edges with the number |E| = e. According to the link rela-
tion in E , the corresponding adjacency matrix can be defined
as A ∈ Rn×n, if (vi, vj) ∈ E , we set Aij = 1, otherwise
Aij = 0. Aij may be assigned to a real value when edges
have different weights. Besides, each node usually carries
a feature description with a dx-dimension vector x ∈ Rdx .
And the features of all nodes could be stacked by rows into
a feature matrix X ∈ Rn×dx . To state conveniently, we use
Xi· or xi to denote the feature of the i-th vertex.

The goal is to learn an encoder in a self-supervised man-
ner where the graph is the input and the learned node
representations are the output, formally, genc : Rn×dx ×
Rn×n −→ Rn×dh . Node features are then abstracted and
transformed into high-level semantic representations h ∈
Rdh . Such representations can then be used for various
downstream tasks, such as node classification, link predic-
tion, etc. Below we illustrate two basic concepts before in-
troducing our method.

Mutual Information (MI): For two random variables x
and y whose joint probability distribution is p(x, y), the mu-

tual information (Thomas, Thomas, and Joy 1991; Shannon
and Weaver 1949) between them is given by,

I(x; y) =

∫
dx dy p(x, y) log(

p(x, y)

p(x)p(y)
). (1)

Mutual information is one of many quantities that mea-
sures how much one random variable tells us about an-
other. It can be thought of as the reduction in uncertainty
about one random variable given knowledge of another.
DGI (Veličković et al. 2019) first extended DIM (Hjelm
et al. 2019) to the graph domain by maximizing MI between
node and graph representations. Since then, increasing at-
tention (Jing, Park, and Tong 2021; Dong et al. 2022; Sun
et al. 2020, 2021; Peng et al. 2020) has been paid to extend-
ing DGI, where GMI (Peng et al. 2020) was proposed to
learn graphical MI by reconstructing the adjacency matrix,
which is insufficient to capture the diversity of local neigh-
borhoods.

Information Bottleneck (IB): Given an input x and its
target y, the Information Bottleneck principle aims to learn
the minimal sufficient representation h satisfying,

max IB = I(h, y)− βI(h, x), (2)

where β is the Lagrangian multiplier trading off sufficiency
and minimality. A variational approximation is developed by
Alemi et al. (Alemi et al. 2017) to solve the above objective
function, approximately equivalent to optimizing,

L =
1

n

n∑
i=1

E[−log q(yi|h) + βDKL(p(h|xi)||r(h))], (3)

where q(yi|h) is the variational approximation of the true
posterior p(yi|h), and r(h) is a variational approximation to
distribution p(h).

Information Bottleneck was proposed for data compres-
sion (Tishby, Pereira, and Bialek 1999) while maximally
preserving the useful information. Recently, GIB (Wu et al.
2020) extended IB into graph neural networks, regulariz-
ing structural as well as the feature information to enhance
the robustness of the learned representation. Then some
works (Yang et al. 2021; Xu et al. 2021; Yu et al. 2020,
2021; Sun et al. 2022; Suresh et al. 2021) introduced IB
to learn meaningful representations or structures on graphs.
Differently, we explicitly derive the structural information
constraints based on IB principle to guide the network learn-
ing in a self-supervised manner.

3 Methodology
In this section, we present our proposed DGSI in detail.
Specifically, we build our model from two aspects: Struc-
tural Mutual Information (SMI) and Representational Mu-
tual Information (RMI), then we formulate the final Graph-
ical Mutual Information (GMI) with a self-supervised infer-
ence objective. The whole framework of DGSI is illustrated
in Figure 1, where topological structures and representation
constraints are jointly optimized. The proposed framework
allows various choices of network architectures. We opt for
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Figure 1: The framework of our deep graph structural infomax.

simplicity and adopt the commonly used GCN (Kipf and
Welling 2016a) as our basic graph encoder, i.e.,

hi = σ(
∑
j∈Ni

(D̂− 1
2 ÂD̂− 1

2 )ijf(xj)), (4)

where Â = A+I and D̂ii =
∑

j Âij , Ni is the set including
the neighbors of node vi and itself. f is a linear transforma-
tion. σ is the activation function such as ReLU.

3.1 Structural Mutual Information
Topological structures describe the inherent property of
graphs, thus those graph-related tasks cannot be divorced
from the encoding or representation of graph structures. Al-
though it is challenging due to the irregularity, we aim to
formulate mutual information constraint on graph structures
for enhancing the network learning process and improving
the node representation, differently from only encoding node
features in (Veličković et al. 2019). Specifically, we derive
structural mutual information constraint based on the the-
ory of information bottleneck (Yang et al. 2021; Alemi et al.
2017) which can learn maximally informative and robust
representation.

In the embedding space, the structural relationship may be
directly proportional to the relations of the associated nodes,
simply speaking, wij = R(hi, hj)

.
= σ(h⊤

i hj), where
hi, hj are the hidden node representations to be learned, σ
is the activation function such as sigmoid, and wij is the
expected edge connection strength between the i-th and j-
th node. Taking the adjacency matrix A of graph G as the
self-supervised signal, we explicitly define the structural in-
formation bottleneck to derive the structural mutual infor-
mation constraint.
Definition 1 (Structural Information Bottleneck) Given a
node vi, the information bottleneck with its the structural
representation can be formulated as

SIBΘ = max IΘ(wij ,Aij)− βIΘ(wij ,Gi), (5)

where Gi = {Xk,Ak|k ∈ Ni} represents the subgraph in-
cluding node features and edges related to central node vi,
Ni is the set including the neighbors of node vi and itself.
Aij is the element at row i and column j from the adjacency
matrix. wij denotes the learned local structural relation and
is computed from the node representation. Θ represents the
network parameters to be learned.

We explicitly model the structural constraint based on in-
formation bottleneck theory. The first term IΘ(wij ,Aij) en-
codes the mutual information between the learned structures
and the adjacency matrix. The second term IΘ(wij ,Gi) is
the mutual information between the learned structures and
the input subgraph. A Lagrangian multiplier β is introduced
to balance these two terms. Ideally, we expect the learned
node representation is maximally informative about the tar-
get while preserving the necessary information about input
data. In other words, we aim to encode sufficient and robust
node representation containing structural information.

Due to the high-dimensional feature vector, it is difficult
to accurately compute the mutual information between two
variables. To solve Eqn. (5), we resort to the variational in-
ference technique. Denote q(Aij |wij) as the variational ap-
proximation of the true posterior p(Aij |wij), we can derive
a lower bound of the first term as,

IΘ(wij ,Aij) ≥
∫

dGi dwij dAij p(Gi)p(wij |Gi)

p(Aij |Gi) log q(Aij |wij). (6)

Let r(Gi) denote a variational approximation to prior dis-
tribution p(Gi), the second term could reach an upper bound
as,

IΘ(wij ,Gi) ≤
∫

dwij dGi p(Gi)p(wij |Gi) log
p(wij |Gi)

r(wij)
.

(7)

By plugging Eqn. (6) and Eqn. (7) into Eqn. (5), we can
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derive the entire lower bound of structural information bot-
tleneck as:

SIBΘ ≥
∫

dGi dwij dAij

p(Gi)p(wij |Gi)p(Aij |Gi) log q(Aij |wij)

−β

∫
dwij dGi p(Gi)p(wij |Gi) log

p(wij |Gi)

r(wij)
.

(8)

We maximize the SIBΘ by optimizing the lower bound,
which is approximately equivalent to minimizing the follow-
ing objective formula,

ζS =
1

n2

∑
ij

E [−log q(Aij |wij)]

+ β DKL [p(wij |Gi)||r(wij)] . (9)

The first term indicates that the learned structural relation-
ship should be as close to the original adjacency as possible
for node vi, which can be written as LCE(Aij ,wij), where
LCE is the cross-entropy function. The second term rep-
resents the Kullback-Leibler (KL) divergence between the
p(wij |Gi) and its prior distribution r(wij). We can obtain
the statistic prior distribution from Aij . Since the value of
wij is predicted as 1 or 0 indicating if there exists an edge,
the KL divergence term in practice has the same effect as the
first term, i.e., constraining the learned wij to be as close
to the target Aij as possible. Thus, we instead compute the
KL divergence between the learned local structural distribu-
tion and its prior distribution, i.e., DKL(wi||Ai). So far we
reach the final structural mutual information constraint,

minΘ ζS = ζCE + βζKL (10)

=
1

n2

∑
ij

LCE(Aij ,wij) + β
1

n

∑
i

DKL(wi||Ai).

Intuitively, the first term is an edge-wise prediction term,
which encourages that the edge values can be preserved
in the transformed feature space. The second term is the
neighborhood-wise prediction term, which promotes the
connection distribution of the local neighborhood centered
by node vi close to the statistic prior distribution. By jointly
constraining these two terms, we can more comprehensively
encode structure information into the node representation.
Please refer to the supplementary material1 for a detailed
derivation about Eqns. (6)-(9).

3.2 Representational Mutual Information
Representational Mutual Information mainly builds the en-
coding process on node features. To make full use of
different-sized receptive fields, we maximize representa-
tional mutual information from local to global receptive
spaces. Next we elaborate on the local and global mutual in-
formation constraints between representations, respectively.

Local Mutual Information Maximization: Given hid-
den node representation h, we define a local readout func-
tion as Rl : R|N |×dh −→ Rdh to acquire the neighborhood

1https://github.com/wtzhao1631/dgsi

summary. Taking node vi and its neighbors as an example,

sli =
1

|Ni|
∑
j∈Ni

hj , (11)

where Ni is the set including the neighbors of node vi and
itself, |Ni| is the number of neighbors. sli is local neighbor-
hood summary centered by node vi.

According to the information theory, the mutual informa-
tion between node j ∈ Ni and the local neighborhood sum-
mary sli can be written as

IΘ(hj ; s
l
i) =

∫
dhj ds

l
i p(hj , s

l
i) log(

p(hj , s
l
i)

p(hj)p(sli)
). (12)

We maximize the local mutual dependence IΘ(hj ; s
l
i) by

approximately minimizing the following objective based on
the Jensen Shannon divergence,

minΘ ζl = −E[logD(hj ; s
l
i)]− E[log(1−D(h̃j ; s

l
i))],

(13)

where h̃j is the output of shuffled graph G̃ through the same
graph encoder, and D is the discriminator function similar
to work (Veličković et al. 2019). Note that Eqn. (13) could
be implemented by the Gibbs sampling strategy, to cover as
many samples as possible, and we resample the positive and
negative pairs for each epoch during the training process.

Global Mutual Information Maximization: We employ
a global readout function as Rg : Rn×dh −→ Rdh to acquire
the graph summary sg like DGI (Veličković et al. 2019),

sg =
1

n

∑
k∈V

hk, (14)

where V includes all nodes in the graph, and n = |V| is the
number of nodes.

Thus the mutual information between node representation
and global graph summary can be represented as

IΘ(hk; s
g) =

∫
dhk ds

g p(hk, s
g) log(

p(hk, s
g)

p(hk)p(sg)
).

(15)

Similarly, we maximize I(hk; s
g) by optimizing the follow-

ing objective function,

minΘ ζg = −E[logD(hk; s
g)]− E[log(1−D(h̃k; s

g))].
(16)

Finally, we incorporate the local and global mutual infor-
mation maximization by a hyperparameter α to formulate
the final representational mutual information as,

minΘ ζR = ζg + αζl. (17)

For the representational mutual information, we maximize
local mutual information to encourage the node representa-
tion to capture local neighborhood information while maxi-
mizing global mutual information to facilitate the node rep-
resentation to embody global graph information. By the
joint self-supervised constraints, we learn node representa-
tion that indicates both local and global characteristics.
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3.3 Graphical Mutual Information
We define graph mutual information as consisting of two
parts: structural mutual information and representational
mutual information. Given a graph G(X,A), and the node
representation h learned by an encoder genc : Rn×dx ×
Rn×n −→ Rn×dh , then the graphical mutual information
is denoted as,

I(h;G) = IRMI + ISMI . (18)

Accordingly, we incorporate the representational and
structural constraints with a hyperparameter γ to formulate
the final graph objective function,

minΘ ζG = ζR + γζS . (19)

We develop a general framework that incorporates the
global representational mutual information, local represen-
tational mutual information, and sufficient structural infor-
mation into the node representation. As a result, the DGSI
model can capture more fine-grained semantic information
and beneficial structural information.

4 Experiments
4.1 Experimental Settings
Datasets. We conduct experiments on six real-world node
classification datasets: Cora, Pubmed, Citeseer (Kipf and
Welling 2016a), Cora-Full, Amazon Photo and Amazon
Computers (Shchur et al. 2018). The first four datasets are
constructed as citation networks, Cora-Full is an extended
version of Cora, Amazon Photo and Amazon Computers are
segments of Amazon co-purchase graph, where nodes repre-
sent goods, node features are bag-of-words indicating prod-
uct reviews, there exists an edge if two goods are frequently
bought together, and labels are given by product category.

Baselines. We compare our DGSI with state-of-the-arts
on node classification task, which can be divided into
two types. The supervised approaches include GCN (Kipf
and Welling 2016a), GraphNAS (Gao et al. 2020), Graph-
Bert (Zhang et al. 2020a), g-U-Nets (Gao and Ji 2019),
JKNet (Xu et al. 2018), and GAT (Veličković et al.
2018). The self-supervised approaches include GAE (Kipf
and Welling 2016b), DGI (Veličković et al. 2019),
GraphCL (You et al. 2020), mvgrl (Hassani and Khasahmadi
2020), SUGRL (Mo et al. 2022), GCA (Zhu et al. 2021) and
InfoGCL (Xu et al. 2021).

Implementation Details. A two-layer GCN is adopted as
the basic framework for self-supervised learning on graphs,
and the outputs of the first and second layer are summed
as the learned node representation. Both the number of hid-
den units and the dimension of learned representation are set
as 512. Prelu is leveraged as a nonlinear activation function.
The learning rate is 0.0005 for all datasets. We determine the
weight of each term in the objective by grid search. The node
representation is first obtained by self-supervised learning,
then fed into a fully-connected layer to predict the node tar-
get, which is a two-phase learning process (Veličković et al.
2019; Jing, Park, and Tong 2021; Peng et al. 2020). For
the second phase, we carry out two experimental settings
to evaluate the node representation obtained by DGSI. The

Method Cora Citeseer Pubmed

Supervised Approaches
GCN 81.5 70.3 79.0
GraphNAS 83.7 73.5 80.5
Graph-Bert 84.3 71.2 79.3
g-U-Nets 84.4± 0.6 73.2± 0.5 79.6± 0.2
JKNet 82.7± 0.4 73.0± 0.5 77.9± 0.4
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

Self-supervised Approaches
GAE 71.5± 0.4 65.8± 0.4 72.1± 0.5
DGI 83.8± 0.5 72.0± 0.6 77.9± 0.3
GraphCL 82.5± 0.1 73.1± 0.2 -
mvgrl* 83.5± 0.5 73.3± 0.5 80.1± 0.7
SUGRL 83.4± 0.5 73.0± 0.4 81.9± 0.3
GCA 81.8± 0.2 71.9± 0.4 81.0± 0.3
InfoGCL 83.5± 0.3 73.5± 0.4 79.1± 0.2
DGSI(ours) 84.62± 0.16 74.02± 0.15 81.37± 0.14

Table 1: Comparison with state-of-the-arts on citation
dataset. Accuracy is used as the metric.

first one is to follow DGI, adopting a widely-used train/val-
idation/test set on the Cora, Citeseer, and Pubmed datasets,
where 20 training samples per class. The second one ran-
domly samples [1, 5] labeled data per class to train the net-
work, which is a label scarcity setting, and all six datasets
are evaluated under this setting. Besides, we also set an early
stopping with patience as 20. Classification accuracy is the
metric, and results are reported by the way of “mean accu-
racy ± standard deviation”.

4.2 Experimental Results
We first show the performance of our proposed DGSI and
baseline approaches on three citation datasets in Table 1.
The mvgrl* indicates that we show a reproduce accuracy
on the Cora dataset due to the different dataset setting. We
can observe that our proposed DGSI obtains a remarkable
improvement compared to self-supervised and supervised
methods for all datasets. Specifically, compared to DGI,
the DGSI model achieves superior performance and obtains
0.82%, 2.02% and 3.47% improvements on Cora, Citeseer
and Pubmed datasets respectively. We attribute the gain in
performance to the introduced structural as well as local rep-
resentational mutual information constraints.

Next, we present the classification results of the proposed
DGSI and the baselines under the setting in which a few
labeled data is used. Here, we take 1-5 labeled samples
for each class respectively to evaluate the node representa-
tion obtained by the proposed DGSI. We run the released
code by authors of four existing methods as our baselines,
where GCN and GAT are supervised methods and DGI and
GraphCL are self-supervised. The experimental results are
reported in Table 2. Overall, DGSI renders an impressive
performance. We further observe that our DGSI achieves
substantial performance gains under this setting. On the con-
trary, the supervised GCN and GAT have very low accura-
cies, especially on Cora, Citeseer, Cora-Full, and Amazon
Photo datasets. The reason for this may be that extremely
rare supervision signals are difficult to guide the training of
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Dataset Method 1 2 3 4 5

Cora

GCN 54.44 57.29 60.31 64.66 69.83
GAT 55.32 60.67 63.18 68.99 71.05
GraphCL 60.51±0.17 71.85±0.13 73.88±0.14 75.51±0.13 76.90±0.08
DGI 66.32± 0.16 73.47± 0.17 74.39± 0.11 75.07± 0.15 77.08± 0.11
DGSI(ours) 73.24± 0.13 75.67± 0.14 77.40± 0.15 78.88± 0.07 78.17± 0.12

Citeseer

GCN 23.03 30.10 47.98 42.02 55.51
GAT 20.12 40.19 39.66 45.21 53.26
GraphCL 36.41±0.20 47.43±0.21 57.13±0.22 61.650.18 65.08±0.12
DGI 38.26± 0.21 45.60± 0.23 59.95± 0.16 61.44± 0.12 64.60± 0.14
DGSI(ours) 52.33± 0.20 54.58± 0.16 62.05± 0.15 66.43± 0.11 68.14± 0.11

Pubmed

GCN 48.94 62.41 65.04 68.02 72.32
GAT 63.13 48.54 54.10 60.51 68.46
GraphCL 61.74±0.16 66.88±0.06 71.21±0.12 74.45±0.09 77.26±0.07
DGI 59.52± 0.12 65.48± 0.06 70.23± 0.15 73.87± 0.10 75.73± 0.10
DGSI(ours) 55.17± 0.31 63.35± 0.12 70.68± 0.18 75.95± 0.08 80.49± 0.05

Cora-Full

GCN 3.11 4.01 5.04 6.07 5.29
GAT 18.28 28.37 27.79 30.07 26.01
GraphCL 27.72±0.15 33.69 ±0.16 38.05±0.37 38.30±0.19 41.58±0.20
DGI 26.15± 0.17 32.46± 0.09 37.27± 0.21 37.96± 0.15 40.88± 0.13
DGSI(ours) 32.93± 0.07 40.28± 0.06 48.11± 0.05 49.24± 0.05 51.14± 0.06

Amazon Photo

GCN 27.06 49.54 42.89 65.53 58.34
GAT 42.00 67.84 53.82 60.23 78.79
GraphCL 46.80±0.23 63.16±0.30 64.28±0.15 67.06±0.23 68.46±0.40
DGI 49.14± 0.18 67.12± 0.21 67.78± 0.16 70.33± 0.30 71.73± 0.45
DGSI(ours) 60.96± 0.10 66.98± 0.06 71.49± 0.04 74.49± 0.05 77.15± 0.07

Amazon Computer

GCN 17.88 23.90 34.38 25.15 28.25
GAT 53.79 70.87 74.88 69.65 76.45
GraphCL 54.89±0.22 56.42±0.23 58.56±0.45 57.96±0.19 57.31±0.15
DGI 51.63± 0.26 56.27± 0.18 58.14± 0.36 57.17± 0.37 56.05± 0.24
DGSI(ours) 55.28± 0.63 66.60± 0.35 68.36± 0.34 69.72± 0.20 72.13± 0.35

Table 2: Classification accuracy under the setting with different numbers of labeled data per class.

neural networks, which is consistent with the fact that con-
volutional neural networks require a large amount of training
data to obtain good results. Contrastively, self-supervised
learning is not vulnerable to the reduction in the number of
labels. And proper designing of structural mutual informa-
tion constraint further can enhance the learning capability
of encoder. Note that the GAT model achieves better results
than others on Amazon Computer dataset, but our proposed
DGSI is still optimal under the self-supervised setting.

4.3 Ablation Study
Inspired by the information bottleneck principle, our pro-
posed DGSI model presents a general framework composed
of both representational and structural mutual information
constraints, where the representational mutual information
maximization (Eqn. (17)) includes global mutual informa-
tion constraint ζg and local mutual information constraint
ζl, the structural mutual information constraint (Eqn. (11))
includes cross entropy constraint ζCE and Kullback-Leibler
divergence ζKL. Compared with DGI which only develops
global mutual information maximization, DGSI additionally
introduces other three terms together to enhance the capa-
bilities of the model and improve node representation. Thus,
we analyze the effect of each component and their combi-
nation. Table 3 shows the classification accuracy on three

citation datasets, and we have the following several insights,

• For rows 1 to 4, the accuracies are overall not desirable
when removing the global mutual information constraint.
Thus ζg always exists as a basic term.

• For row 5, when only ζg is used, the accuracies are still
significantly lower than the best results.

• For rows 6 and 7, when adding ζl or ζCE to ζg , there is lit-
tle performance improvement. But if only removing ζl or
ζCE , the performance on the Cora and Citeseer datasets
in rows 10 and 11 is not the best either.

• For row 8, ζKL achieves relatively large gains than that in
row 5 on all three datasets. On this basis, adding ζl (row
10) or ζCE (row 11) has a small gain, but for Pubmed,
achieving a new SOTA of 81.78%.

• For row 12, when all four items are adopt, leading to
the best accuracies on Cora and Citeseer datasets. For
no same effect in pubmed, we attribute this to different
dataset properties.

From the above observations, we can conclude that the
proposed DGSI model indeed obtains a remarkable im-
provement compared to DGI, where the term ζKL is more
obvious. Although adding ζl or ζCE alone has a marginal
effect, their combinations with ζKL render better results,
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Row ζg ζl ζCE ζKL Cora Citeseer Pubmed

1 ✓ 76.20± 0.26 58.91± 0.55 68.23± 0.32
2 ✓ 73.02± 0.25 63.43± 0.37 73.93± 0.24
3 ✓ 57.75± 0.46 35.27± 0.51 67.26± 0.82
4 ✓ ✓ ✓ 82.31± 0.21 43.03± 0.42 66.43± 0.67
5 ✓ 81.39± 0.11 73.11± 0.11 80.67± 0.13
6 ✓ ✓ 81.39± 0.21 73.04± 0.16 80.57± 0.13
7 ✓ ✓ 81.93± 0.11 72.89± 0.12 79.94± 0.08
8 ✓ ✓ 83.11± 0.16 73.74± 0.13 81.27± 0.12
9 ✓ ✓ ✓ 82.0± 0.15 72.72± 0.15 79.90± 0.08
10 ✓ ✓ ✓ 84.23± 0.12 73.84± 0.12 81.78± 0.13
11 ✓ ✓ ✓ 83.41± 0.14 73.7± 0.12 81.38± 0.10
12 ✓ ✓ ✓ ✓ 84.62± 0.16 74.02± 0.15 81.37± 0.14

Table 3: The effect of different components.
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Figure 2: Hyperparameter sensitivity of α and γ.
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Figure 3: Visualization of original data and node representa-
tions learned from DGI and DGSI (Ours).

which indicating they are mutually beneficial and can col-
laborate to obtain promising results. At the same time, they
have different effects on different datasets.

For the hyperparameter sensitivity, there are three hyper-
parameters α, β, and γ. In experiments, we usually regard
the structural constraint as a whole and set β = 1. Then we
mainly tune the hyperparameters α and γ for the local rep-
resentational and structural constraints respectively. We vary

the values in the range [0.01, 0.1, 1, 10]. The corresponding
results are shown in Figure 2. We find that the behavior of
the proposed DGSI framework is relatively stable. Besides,
γ plays a significant role in Cora and Citeseer datasets while
α has a greater impact on Pubmed.

The computational complexity of GCN (Kipf and Welling
2016a) is about O(edx + ndxdh), where n, e is the number
of nodes and edges, dx and dh are the dimensions of the in-
put/hidden layer. The computational complexity of the pro-
posed DGSI is O(edx + ndxdh) +O(nd2h). This extra item
is caused by the discriminator function D in Eqns. (13)/(16).

Also, Figure 3 shows the visualization. The left is the orig-
inal unprocessed data projected into 2D space through prin-
cipal component analysis. The medium and right are node
representations obtained by self-supervised learning from
DGI and our proposed DGSI. Compared to DGI, the DGSI
presents relatively clearer boundaries.

5 Conclusion
In this paper, we present an effective self-supervised model
called Deep Graph Structural Infomax (DGSI) for learn-
ing node representation. We derive the structural mutual
information constraints from the Information Bottleneck
theory and impose restrictions on both edge-wise and
neighborhood-wise structural topology. We formulate the
graphical mutual information constraint by fusing the struc-
tural and representational constraints as a general frame-
work. Extensive experimental results on different types of
datasets demonstrate the superiority of the proposed DGSI.
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S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868.
Somnath, V. R.; Bunne, C.; and Krause, A. 2021. Multi-
scale representation learning on proteins. In Advances in
Neural Information Processing Systems, volume 34, 25244–
25255.
Sun, F.-Y.; Hoffmann, J.; Verma, V.; and Tang, J. 2020. Info-
graph: Unsupervised and semi-supervised graph-level rep-
resentation learning via mutual information maximization.
In Proceedings of the International Conference on Learning
Representations.
Sun, Q.; Li, J.; Peng, H.; Wu, J.; Fu, X.; Ji, C.; and Yu, P. S.
2022. Graph Structure Learning with Variational Informa-
tion Bottleneck.
Sun, Q.; Li, J.; Peng, H.; Wu, J.; Ning, Y.; Yu, P. S.; and
He, L. 2021. Sugar: Subgraph neural network with rein-
forcement pooling and self-supervised mutual information
mechanism. In Proceedings of the Web Conference 2021,
2081–2091.
Suresh, S.; Li, P.; Hao, C.; and Neville, J. 2021. Adversarial
graph augmentation to improve graph contrastive learning.
In Advances in Neural Information Processing Systems, vol-
ume 34, 15920–15933.
Thomas, M.; Thomas; and Joy, A. 1991. Elements of in-
formation theory. Publications of the American Statistical
Association, 103(481): 429–429.
Tishby, N.; Pereira, F. C.; and Bialek, W. 1999. The infor-
mation bottleneck method. Proceedings of the 37-th Annual
Allerton Conference on Communication Control and Com-
puting, 368–377.

4927



Tishby, N.; and Zaslavsky, N. 2015. Deep learning and the
information bottleneck principle. In 2015 IEEE Information
Theory Workshop, 1–5.
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Y.; and Hjelm, R. D. 2019. Deep Graph Infomax. In Pro-
ceedings of the International Conference on Learning Rep-
resentations, volume 2, 4.
Wang, S.; Hu, L.; Wang, Y.; He, X.; Sheng, Q. Z.; Orgun,
M. A.; Cao, L.; Ricci, F.; and Yu, P. S. 2021. Graph Learning
based Recommender Systems: A Review. In Proceedings of
the International Joint Conference on Artificial Intelligence,
4644–4652.
Wu, T.; Ren, H.; Li, P.; and Leskovec, J. 2020. Graph in-
formation bottleneck. In Advances in Neural Information
Processing Systems, volume 33, 20437–20448.
Xu, D.; Cheng, W.; Luo, D.; Chen, H.; and Zhang, X. 2021.
Infogcl: Information-aware graph contrastive learning. In
Advances in Neural Information Processing Systems, vol-
ume 34.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs
with jumping knowledge networks. In Proceedings of the In-
ternational Conference on Machine Learning, 5453–5462.
Yang, L.; Gu, J.; Wang, C.; Cao, X.; Zhai, L.; Jin, D.; and
Guo, Y. 2020. Toward unsupervised graph neural network:
Interactive clustering and embedding via optimal transport.
In 2020 IEEE International Conference on Data Mining,
1358–1363.
Yang, L.; Wu, F.; Zheng, Z.; Niu, B.; Gu, J.; Wang, C.; Cao,
X.; and Guo, Y. 2021. Heterogeneous Graph Information
Bottleneck. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 1638–1645.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph contrastive learning with augmentations. In
Advances in Neural Information Processing Systems, vol-
ume 33, 5812–5823.
Yu, J.; Xu, T.; Rong, Y.; Bian, Y.; Huang, J.; and He, R.
2020. Graph information bottleneck for subgraph recog-
nition. In Proceedings of the International Conference on
Learning Representations.
Yu, J.; Xu, T.; Rong, Y.; Bian, Y.; Huang, J.; and He, R.
2021. Recognizing predictive substructures with subgraph
information bottleneck. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.
Zhang, J.; Zhang, H.; Xia, C.; and Sun, L. 2020a. Graph-
Bert: Only Attention is Needed for Learning Graph Repre-
sentations. arXiv preprint arXiv:2001.05140.
Zhang, T.; Cui, B.; Cui, Z.; Huang, H.; Yang, J.; Deng, H.;
and Zheng, B. 2020b. Cross-graph convolution learning
for large-scale text-picture shopping guide in e-commerce
search. In 2020 IEEE 36th International Conference on
Data Engineering, 1657–1666. IEEE.

Zhang, T.; Wang, Y.; Cui, Z.; Zhou, C.; Cui, B.; Huang, H.;
and Yang, J. 2021. Deep Wasserstein Graph Discriminant
Learning for Graph Classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, 10914–10922.
Zhao, W.; Fang, Y.; Cui, Z.; Zhang, T.; and Yang, J. 2021.
Graph Deformer Network. In Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence,
1646–1652.
Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; and Wang, L. 2021.
Graph contrastive learning with adaptive augmentation. In
Proceedings of the Web Conference 2021, 2069–2080.

4928


