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Abstract

Cross-domain graph few-shot learning attempts to address the
prevalent data scarcity issue in graph mining problems. How-
ever, the utilization of cross-domain data induces another in-
tractable domain shift issue which severely degrades the gen-
eralization ability of cross-domain graph few-shot learning
models. The combat with the domain shift issue is hindered
due to the coarse utilization of source domains and the ig-
norance of accessible prompts. To address these challenges,
in this paper, we design a novel Cross-domain Task Coordi-
nator to leverage a small set of labeled target domain data as
prompt tasks, then model the association and discover the rel-
evance between meta-tasks from the source domain and the
prompt tasks. Based on the discovered relevance, our model
achieves adaptive task selection and enables the optimization
of a graph learner using the selected fine-grained meta-tasks.
Extensive experiments conducted on molecular property pre-
diction benchmarks validate the effectiveness of our proposed
method by comparing it with state-of-the-art baselines.

Introduction
Canonical graph learning models have achieved remark-
able progress in modeling and inference on graph-structured
data. These models commonly require abundant annotated
(labeled) data and inevitably suffer from the label scarcity
issue in practice due to the expense and hardship of data an-
notation. This issue leads to the difficulty of inference on
novel classes with scarce annotations and harms the gener-
alization of graph learning models. To alleviate the impact
of label scarcity, graph few-shot learning, mainly empow-
ered by meta-learning (Hospedales et al. 2020), formulates
graph learning into a few-shot framework, which allows for
the fast adaptation to novel tasks with scarce labeled data af-
ter training with a sufficient number of related tasks, as ap-
plied in various node classification (Huang and Zitnik 2020;
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Wang et al. 2020; Yao et al. 2020) and graph classification
(Guo et al. 2021; Chauhan, Nathani, and Kaul 2020) tasks.

Current graph few-shot learning models assume that the
meta-training and meta-testing tasks are sampled from the
same task distribution. Yet, the assumption cannot be well
held in real-world scenarios. Collecting adequate training
data from a single domain is non-trivial in some cases, while
the data from distinct but related data-rich domains might
contain implicitly correlated knowledge, which is transfer-
able to facilitate the few-shot learning on the data-scarce do-
main. Learning from cross-domain data thus is a feasible
solution to mitigate the label scarcity issue and a requisite
for many real-world applications. However, meta-learning
could be outperformed by pre-training and fine-tuning meth-
ods when there is a large shift between source and target
domains (Chen et al. 2019). Hence, addressing domain shift
issue and improving cross-domain generalizability for graph
few-shot learning are of great interest.

The studies of cross-domain few-shot learning mainly fall
in the computer vision field, and tackle the domain shift is-
sue by learning generalizable statistics for feature augmen-
tation (Tseng et al. 2020), feature masking (Das, Yun, and
Porikli 2022), and batch normalization (Du et al. 2020). A
recent attempt (Hassani 2022) on graphs leverages a bunch
of source domains to pre-train a designed graph encoder for
the target domain with scarce labeled data. However, exist-
ing works are far from perfect due to two major challenges.

The coarse utilization of source domains. Recent solu-
tions (Jiang et al. 2019; Zhou et al. 2021; Shen et al. 2020a)
to cross-domain knowledge transfer leverage whole infor-
mation from one or multiple source domains to gain gen-
eralizability. Yet, source domains inevitably include target-
relevant and target-irrelevant information that could cause
the domain shift issue. Roughly fusing all source domains
without distinction into the learning model would introduce
noisy and redundant target-irrelevant knowledge, which
might degrade the generalization on the target domain. A
recent effort (Guo, Pasunuru, and Bansal 2020) on text clas-
sification selects closer domains under certain criteria from
all source domains. However, the strategy is limited to the
coarse choice at the level of domains and unavoidably faces
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a similar problem. Directly adopting the inadequate strate-
gies for cross-domain graph few-shot learning is not an ideal
choice, and it is more desirable to adaptively select benefi-
cial and fine-grained knowledge from source domains.

The ignorance of accessible prompts. A line of research
proposes to ease the domain shift issue by involving a large
quantity of unlabeled target domain data during model train-
ing (Yang et al. 2021; Huang, Xu, and Wang 2020). How-
ever, it is not effortless in many cases to collect the required
unlabeled data, especially for fine-grained categories. Oppo-
sitely, a small amount of labeled target domain data is easy
to obtain, yet has not been well leveraged by existing works
in model training. Specifically, the small set of labeled target
domain data can be regarded as the prompt to evaluate and
steer the selection of beneficial knowledge from abundant
source domain data, such that the learning model can gain
better generalization on the target domain.

Motivated by the aforementioned challenges, we aim to
promote graph few-shot learning by selectively leveraging
beneficial and fine-grained knowledge from the source do-
main, with the assistance of limited labeled data from the tar-
get domain. In this paper, we propose a novel Cross-Domain
Task Coordinator (a.k.a. CDTC) to achieve the adaptive
knowledge selection and thus mitigate the domain shift is-
sue. Specifically, the goal of CDTC is to select suitable
meta-tasks from the source domain for training a graph base
learner with optimization-based meta-learning. In detail, in
order to leverage the accessible labeled target domain data as
the prompt for selecting beneficial knowledge, CDTC orga-
nizes the target domain data in the form of few-shot tasks as
prompt tasks, then models the association and discovers the
relevance between the meta-tasks from the source domain
and the prompt tasks by a task bipartite graph, and refines the
task representations using Graph Neural Networks. With the
refined task representations, CDTC calculates the task sam-
pling probabilities based on which it achieves adaptive task
selection for choosing appropriate meta-tasks to optimize
the graph base learner in a meta-learning way. Note that the
prompt data only guides knowledge selection rather than be-
ing directly involved in training the graph base learner.

Our contributions in this work are summarized as follows:
(1) We study the cross-domain few-shot graph classification
problem, and propose a novel model called CDTC to tackle
the domain shift issue; (2) We explore an innovative and ef-
fective way to utilize a small set of labeled target domain
data as the prompt to achieve adaptive knowledge selection;
(3) The proposed CDTC can be well integrated with the
optimization-based meta-learning process and trained with
reinforcement learning in an end-to-end manner; (4) Experi-
mental results on molecular property prediction benchmarks
demonstrate the effectiveness of CDTC in comparison to the
state-of-the-art approaches for multiple cross-domain few-
shot graph classification tasks.

Related Work
Graph Few-shot Learning Meta-learning has been the
dominant paradigm for few-shot learning and developed into
two main branches: 1) optimization-based methods, which

solve the few-shot learning problem as an optimization prob-
lem (Finn, Abbeel, and Levine 2017; Li et al. 2017) and
2) metric-based methods, which learn a generalized met-
ric space for distance-based predictions (Snell, Swersky,
and Zemel 2017). Recently, graph few-shot learning tech-
niques have surged by combining few-shot learning with
graph neural networks (GNNs) (Wu et al. 2020), such as
meta-learning a GNN (Kipf and Welling 2017; Wang et al.
2020) with MAML (Finn, Abbeel, and Levine 2017), learn-
ing transferable graph signatures (Bose et al. 2019), collect-
ing meta-gradients from local subgraphs (Huang and Zit-
nik 2020), calculating weighted class prototypes (Liu et al.
2019; Ding et al. 2020), learning with heterogeneity (Zhang
et al. 2022a,b), etc. Particularly, molecular graphs are widely
utilized to evaluate graph few-shot learning approaches, es-
pecially for graph classification tasks. Meta-MGNN (Guo
et al. 2021) utilizes a pre-trained GNN (Hu et al. 2020)
to encode molecular information and incorporates auxiliary
self-supervised tasks to facilitate few-shot molecular prop-
erty prediction tasks. PAR (Wang et al. 2021) leverages con-
textual information within mini-batches to augment graph
embeddings for improving few-shot learning. Apart from
the above works solving few-shot problems in one single
domain, the study in (Abbasi et al. 2019) aims to leverage
knowledge from other domains. However, it requires access
to large amounts of unlabeled data in the target domain at the
training phase. A recent attempt (Hassani 2022) proposes to
pre-train a multi-view graph encoder with molecular data in
multiple domains, while they focus on the design of the en-
coder rather than the crucial domain shift issue. How to ad-
dress the domain shift issue to enable cross-domain graph
few-shot learning remains an open problem.

Domain Adaptation To address the domain shift issue
caused by learning from distinct but relevant domains, a
family of domain adaptation techniques has been proposed,
by generally assuming the availability of a large amount of
unlabeled data from the target domain during training (Wang
and Deng 2018). These approaches are divided into the
multi-source domain adaptation (Zhao et al. 2020; Venkat
et al. 2020) adopting multiple source domains for knowl-
edge transfer and the prevalent single-source domain adap-
tation leveraging only one source domain. Recent studies in-
clude exploring domain-invariant feature spaces (Zhao et al.
2019), domain mapping (Kirchmeyer et al. 2022), classi-
fier ensemble (Venkat et al. 2020), etc. Existing works gen-
erally leverage the whole available data in the source do-
main, thus probably introducing noisy and redundant infor-
mation into the learning model. In light of this, a study in
(Guo, Pasunuru, and Bansal 2020) proposes to select ben-
eficial domains from all the source domains for text clas-
sification, yet they focus on the coarse choice at the level
of domains. Therefore, it is unsuitable to directly adopt in-
adequate strategies to select the beneficial and fine-grained
knowledge within one or more source domains.

Cross-domain Graph Learning Recently, increasing at-
tention has been drawn to leveraging cross-domain in-
formation to promote graph learning in the target do-
main. Research works combine domain adaptation with
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graph-structured data by domain adversarial learning (Shen
et al. 2020a), domain-invariant feature learning (Shen et al.
2020b), etc. For instance, DANE (Zhang et al. 2019) asso-
ciates GNNs with adversarial learning to align graph distri-
butions in different domains. MuSDAC (Yang et al. 2021)
utilizes a multi-channel GCN for channel-wise alignment
between the source and target domain. However, these ap-
proaches may not target few-shot learning problems, which
require fast adaptation ability. Besides, they rely on common
nodes in distinct domains or assume the same label space
across domains. Also, they may require to access unlabeled
target domain data during the model training phase, while
such data can be strenuous to obtain in practice.

Preliminaries
Problem Formulation Let G = (V,E) denote a graph
where V represents a set of nodes and E denotes a set of
edges. Generally, we define a domain D = {X ,Y,PX ,Y}
as a joint distribution PX ,Y over the feature space X
and the label space Y . And we focus, in this paper, on
the cross-domain few-shot graph classification problem
where a source domain DS and a target domain DT ex-
ist. The source domain DS consists of a number of graphs
GS = {GS1 , . . . , GSd } and a set of distinct labels YS =
{Y S1 , . . . , Y Sc }. Similarly, the target domain DT contains
a few graphs GT = {GT1 , . . . , GTm} and a set of different
labels YT = {Y T1 , . . . , Y Tz }. d and m denote the number
of graphs, while c and z show the number of labels in DS

and DT respectively. It is assumed that DS and DT have
different marginal distributions PGS and PGT , and the label
space YS and YT are disjoint. Cross-domain few-shot graph
classification aims to learn a model with good generalization
ability that can predict the label of graphs in the target do-
main DT given few-shot annotated examples from the target
domain and the source domain data DS .

Episodic Training To mimic the few-shot circumstances
at the testing phase, an episodic training paradigm has been
proposed by composing small support and query sets in one
meta-task (Finn, Abbeel, and Levine 2017; Li et al. 2019).
Under N -way K-shot setting, the optimization-based meta-
learning that our work employs, seeks a generalizable initial-
ization for the parameters of a base model by learning with
a series of related N -way K-shot meta-tasks at the training
phase. Specifically, each meta-task τ can be generated by
randomly choosing N different classes Cτ , Cτ ⊂ Y, |Cτ | =
N , where Y is the label space of a domain. Upon that, K
and J labeled examples are sampled to form the support set
Ωs and query set Ωq of meta-task τ . Episodic training is
achieved by minimizing the loss on the query set Ωq (meta-
update in the outer loop), based on the parameters obtained
by minimizing the loss on its support set Ωs (inner-update in
the inner loop).

Graph Base Learner To encode given graphs, we em-
ploy GNNs as the graph base learner for episodic train-
ing. Here, we adopt the optimization-based meta-learning
strategy to meta-train the graph base learner with a batch
of meta-tasks at each iteration. Considering our focus on

adaptive task selection to combat domain shift, we lever-
age the simple yet effective Graph Isomorphism Network
(GIN) (Xu et al. 2019) as the graph base learner. The (l)-th
layer of a GIN updates the node embedding hv of node v as:
h
(l)
v = MLPWl((1 + ϵl) · h(l−1)

v +
∑
u∈Nv

h
(l−1)
u ), where

MLPWl denotes the multilayer perception at layer l, ϵl is
learnable, and Nv represents the neighbors of node v. With
h(0) initialized as the input node features, the graph-level
representation hG is obtained as follows:

hG = READOUT({hLv |v ∈ V }), (1)

where READOUT(·) function produces the embedding of
a graph by aggregating embeddings of all nodes at the last
L-th layer (Mesquita, Souza, and Kaski 2020). We simply
adopt mean pooling to derive the graph-level representa-
tions. Besides, we add a classification head f(·) to predict
graph label y = f(hG) for graph classification.

Overall Framework
The overall framework of the proposed model is illustrated
in Figure 1. To conduct graph classification, a graph base
learner is first employed to extract information from graph
examples. Then a cross-domain task coordinator (CDTC) is
proposed to adaptively coordinate and select the beneficial
meta-tasks at each iteration to circumvent the noisy and re-
dundant meta-tasks and mitigate the domain shift issue. The
graph base encoder is thus meta-trained with the selected
meta-tasks to gain cross-domain generalization on the target
domain. Lastly, we reinforce CDTC to improve its selection
based on feedback from the target domain. Next, we elabo-
rate on the model details and the optimization procedure.

Cross-domain Task Coordinator
To combat domain shift, we endeavor to adaptively select
meta-tasks beneficial for generalization to the target domain
in episodic training by the well-designed cross-domain task
coordinator (CDTC). Specifically, CDTC consists of two
components. One is the task association modeling for dis-
covering the relevance between meta-tasks sampled from the
source domain and prompt data from the target domain. An-
other is task selection for choosing appropriate meta-tasks to
optimize the graph base learner in a meta-learning paradigm.
We next elaborate on the components in detail.

Task Association Modeling
With limited labeled data from the target domain as the
prompt and a group of meta-tasks {τi}Ms

i=1 ⊆ τS from the
source domain DS as the candidates at each iteration, we
can explore and model their associations to learn accurate
task representations for later task selection. Note that the
prompt data aims to only assist task selection rather than
being involved in the training of the graph base learner.

Task Representation Learning We base the selection of
beneficial and fine-grained knowledge on the level of tasks,
i.e., to select B beneficial meta-tasks from Ms candidate
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Figure 1: Illustration of cross-domain few-shot graph classification with the proposed CDTC. (1) CDTC models the relation-
ships between candidate meta-tasks from the source domain and prompt tasks from the target domain to generate task sam-
pling probabilities for selecting beneficial meta-tasks (hollow arrow); (2) Graph base learner is meta-updated with the selected
meta-tasks (blue arrow); (3) CDTC receives the reward to update itself with reinforcement learning, where the reward is the
performance improvement evaluated on prompt tasks before and after the update of the graph base learner (orange arrow).

meta-tasks at each iteration. As each meta-task can be char-
acterized by the task examples, we derive the task represen-
tation for each meta-task with its included graph examples.
Specifically, considering aN -wayK-shot meta-task τi sam-
pled from the source domain DS , it can be depicted by N
class prototypes {pn}Nn=1, each of which serves as the cen-
ter of the graph examples belonging to class n. To calculate
the class prototype, we average the graph embeddings in the
support set learned by the graph base learner. Task represen-
tation pτi of meta-task τi can be obtained as follows:

pτi = MLPWa
(p1,p2, . . . ,pN ), (2)

where {pn}Nn=1 can be combined via concatenation or in
an order-invariant manner, e.g., mean-pooling. And Wa

is the trainable parameters. Without loss of generality, we
conduct binary classification in experiments and calculate
task representations by concatenating the prototypes: pτi =
MLPWa

(ppos∥pneg), where ∥ denotes the concatenation
operation, and ppos (resp. pneg) is the positive (resp. neg-
ative) class prototype. When the class number (N ) grows,
the order-invariant manner for combining class prototypes,
e.g., mean-pooling, has reduced computational cost.

Furthermore, we resort to a limited set of labeled tar-
get domain data to select meta-tasks in the source domain.
Hence, we organize them into few-shot tasks, which are ex-
pected to work as the prompt to model the relationship be-
tween the source and target domain. Specifically, a N -way
K-shot prompt task is composed by randomly sampling K
graph examples from N novel classes in the target domain.
We denote the number of prompt tasks {τ̃ j}

Mt
j=1 built from

the target domain asMt, and note that each prompt task only
consists of a support set and remains unchangeable during
meta-training. Likewise, the task representation of a prompt
task τ̃j , denoted as pτ̃j , is obtained by leveraging its class
prototypes as described in Eq. (2).

Task Bipartite Graph To better explore the association
between the candidate meta-tasks and the prompt tasks, we
model them in a task bipartite graph in which each ver-
tice denotes a task. Specifically, the task bipartite graph

GB = (U ,V, E) consists of two disjoint parts. Here, U de-
notes the set of vertices representing the candidate meta-
tasks and V contains vertices referring to the prompt tasks.
The vertices in both sets are featured with the obtained task
representations. We assume that one possible edge eij ∈ E
can exist only between a candidate meta-task τi ∈ U and a
prompt task τ̃j ∈ V . With this constraint, candidate meta-
tasks can directly interact with the prompt tasks. Yet, two
candidate meta-tasks may correspond with each other only
through an intermediate prompt task, such that the task bi-
partite graph could explore the knowledge related to the
prompt tasks from the target domain.

Therefore, we build the task bipartite graph by con-
sidering the relevance between candidate meta-tasks and
the prompt tasks under the aforementioned constraint,
and correspondingly initialize the adjacency matrix A ∈
R(Ms+Mt)×(Ms+Mt) of the task bipartite graph GB. Its ele-
ment A(τi, τ̃j), w.r.t. task τi and τ̃j , is calculated as follows:

A(τi, τ̃j) =

{
1 if ||pτi − pτ̃j ||2 ≥ δ;
0 otherwise,

(3)

where ||pτi − pτ̃j ||2 measures the similarity between a can-
didate meta-task τi and a prompt task τ̃j computed by Eu-
clidean distance. Here δ is a pre-defined threshold for con-
necting task pairs with high relevance.

Task Representation Refinement Since the adoption of
separately calculated task representations and predefined
similarity measurement (i.e., Euclidean distance) in the ini-
tialization of GB may not accurately depict the relevance
between tasks. We aim to refine task representations by in-
formation propagation over the task bipartite graph. Though
several research works (Ma et al. 2020; Wang et al. 2021)
in few-shot learning incorporate the relationships among ex-
amples in meta-tasks for improving model performance, we
conduct task-level interaction to better explore their associ-
ations for task selection rather than the example-level rela-
tionship. It is expected that similar or related tasks would
be close in the embedding space, and the task embedding
space could well reflect the relevance between the candidate
meta-tasks and prompt tasks.
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With this objective, we employ a two-layer GCN on the
task bipartite graph. Specifically, let P ∈ R(Ms+Mt)×d de-
note the feature matrix for vertexes in GB, where d is feature
dimension. Task representations at the (l)-th layer are up-
dated as follows:

P(l) = σ(D̃− 1
2 ÃD̃− 1

2P(l−1)W(l)
g ), (4)

where Ã = A + I, D̃ =
∑
i Ãi,j . W

(l)
g denotes the train-

able weight at the l-th layer, and σ is the activation function.
Here, P(0) is initialized with {pτi}

Ms
i=1 and {pτ̃j}

Mt
j=1. With a

slight abuse of notation, we denote the refined task represen-
tations as {pτi}

Ms
i=1 and {pτ̃j}

Mt
j=1 respectively. The refined

task representations are expected to preserve more accurate
information regarding the target domain.

Task Selection
Next, we measure task relevance and conduct task selection
with the refined task representations. Different from the ex-
isting domain adaption work that mainly leverages prede-
fined measurement of closeness (Kirchmeyer et al. 2022),
we propose to employ the prompt data in the target do-
main via reinforcement learning for adaptive task selection.
Specifically, to reflect the characteristics of the target do-
main, we average task representations of prompt tasks as:

pT =
1

Mt

∑Mt

j=1pτ̃j , (5)

where pT denotes the representation for the target domain.
Accordingly, the relevance score ri between each candidate
meta-task τi and target domain representation pT is calcu-
lated as follows:

ri = MLPWc
(pτi ⊙ pT ), (6)

where ⊙ denotes the element-wise multiplication, MLPWc

is a multilayer perceptron parameterized with Wc and acti-
vated by the Sigmoid function.

Besides the relevance score, we assign an additional
score, oi = ρ(wi) where wi is the trainable parameter and
ρ denotes the Sigmoid activation, to each candidate meta-
task τi as its task signature. The goal is to directly depict
the task’s importance for generalization to the target domain.
Therefore, the overall score ti for candidate meta-task τi is
derived by combining the relevance score and task signature
as ti = ri + oi. The probability t̃i of selecting meta-task τi
is thus computed as follows:

t̃i = ti/
∑Ms

m=1tm. (7)

With the obtained sampling probabilities, we could se-
lect B meta-tasks from the candidate meta-tasks and con-
duct meta-optimization of graph base learner at iteration k
as follows:

θ(k+1) = θ(k) − α∇θ(k)

1

B

B∑
i=1

L(Ωqi ; θ
(k)
i ). (8)

Here, θ(k)i is the task-specific parameters obtained with the
support set Ωsi of meta-task τi, computed as θ(k)i = θ(k) −
β∇θ(k)L(Ωsi ; θ(k)) where β is the inner-update rate. Be-
sides, α denotes the meta-update rate, and L is the cross-
entropy loss for graph classification.

Optimization and Training Procedure
To motivate CDTC towards the selection of suitable meta-
tasks, we provide CDTC with feedback signals that reflect
the appropriateness of selected meta-tasks. Specifically, we
leverage graph classification performance on the target do-
main for evaluation. Let {τi}Bi=1 denote B meta-tasks se-
lected by the current CDTC. The graph base learner (pa-
rameterized with θOLD) receives the selected meta-tasks and
conducts a temporary update following Eq. (8) to obtain the
parameters θNEW. Then, the reward R is defined as follows:

R = tanh(
1

Mt

Mt∑
j=1

Lc(τ̃j , θNEW)− Lc(τ̃j ; θOLD)), (9)

where Lc is the cross-entropy loss measured on the prompt
tasks. Performance improvement with θNEW against θOLD
provides positive feedback to CDTC and reinforces CDTC
to choose corresponding meta-tasks. Denote all the param-
eters of CDTC as ψ = {Wa,Wg,Wc,w}, including task
representation learning, task representation refinement, and
task selection modules. Due to the non-differentiability of
the task sampling process, we employ the policy gradient
algorithm REINFORCE (Williams 1992) to train CDTC as:

ψ(k+1) = ψ(k) − γ∇ψ(k) logπ(ψ(k))(R− b), (10)

where γ denotes the learning rate of CDTC and b is the base-
line function, e.g., the moving average of the rewards, to re-
duce computational variance. And π refers to CDTC whose
parameters ψ will be updated towards the direction of ob-
taining more rewards.

To jointly learn graph base learner (represented by θ) and
CDTC (parameterized by ψ) at the meta-training phase, we
adopt an alternative optimization strategy. At each iteration,
a group of candidate meta-tasks is randomly sampled from
the source domain. Then CDTC assigns the sampling proba-
bilities to the candidate meta-tasks, in order to select a batch
of meta-tasks. Thus the selected meta-tasks are utilized to
execute a temporary update of graph base learner, and the
reward is calculated to optimize CDTC. In practice, the tem-
porary update can be conducted with a larger learning rate γ,
such that CDTC collects feedback signals from an extensive
range. Besides, CDTC is warmed up in the first iterations,
after that the graph base learner will be updated along with
the optimization of CDTC.

Experimental Evaluation
Experiment Setup
Datasets We conduct few-shot graph classification exper-
iments with three datasets including Tox21, SIDER, and
MUV from the molecular property prediction benchmarks.
Each dataset is associated with a number of binary classi-
fication tasks. We explore cross-domain knowledge transfer
between two molecular property prediction datasets, specif-
ically including the transfer: (i) from Tox21 to SIDER,
and vice versa; (ii) from MUV to Tox21; (iii) from MUV
to SIDER. Domain shift exists in the above transfer pro-
cess due to the distinct property prediction tasks and the
diversely-structured molecular graphs in different datasets.
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Methods Tox21 → SIDER SIDER → Tox21 MUV → Tox21 MUV → SIDER

1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot

GCN 54.46 ± 0.23 55.01 ± 1.89 61.61 ± 1.32 62.37 ± 1.52 63.82 ± 0.43 65.76 ± 0.95 55.19 ± 0.43 55.38 ± 0.73
GIN 54.73 ± 0.76 55.42 ± 2.32 62.41 ± 4.08 64.22 ± 2.19 62.17 ± 0.62 63.84 ± 0.83 54.79 ± 0.52 55.52 ± 0.89
Pre-GNN 54.82 ± 0.89 55.21 ± 1.01 63.61 ± 0.57 63.97 ± 1.23 66.57 ± 0.38 68.32 ± 0.43 53.77 ± 0.45 55.44 ± 0.56

MAML-GCN 54.65 ± 0.53 55.71 ± 0.26 59.37 ± 0.86 62.07 ± 1.23 63.18 ± 0.72 65.28 ± 1.53 54.25 ± 0.52 55.93 ± 0.75
Proto-GCN 54.12 ± 0.25 54.51 ± 0.53 59.24 ± 0.78 61.40 ± 0.62 61.32 ± 0.24 63.24 ± 0.43 53.36 ± 0.26 54.17 ± 0.42
MAML-GIN 54.93 ± 0.23 56.29 ± 0.72 61.63 ± 0.64 64.12 ± 1.15 58.29 ± 0.94 61.94 ± 1.43 55.53 ± 0.46 56.16 ± 0.47
Proto-GIN 54.01 ± 0.64 55.23 ± 0.56 60.92 ± 0.83 61.29 ± 0.45 58.36 ± 0.51 63.27 ± 0.21 54.19 ± 0.34 54.64 ± 0.26
PAR 54.96 ± 0.79 54.82 ± 0.11 63.72 ± 0.89 65.40 ± 1.60 66.49 ± 0.16 69.13 ± 0.13 54.47 ± 0.25 55.13 ± 0.12

CDTC 55.87 ± 0.23 57.59 ± 1.26 67.48 ± 0.74 68.18 ± 0.80 70.16 ± 0.17 70.87 ± 0.29 56.18 ± 0.09 58.25 ± 0.48

Table 1: Overall performance (ROC-AUC scores) of cross-domain few-shot graph classification.

Evaluation Metrics The performance of graph classifica-
tion is evaluated by calculating the ROC-AUC score on the
query set of each meta-testing task (Hu et al. 2020; Wang
et al. 2021). Under the cross-domain settings, all the prop-
erty prediction tasks in the target domain are employed for
meta-testing. As the employed datasets basically contain bi-
nary classification tasks, we execute experiments under the
2-way K-shot settings.

Baselines We compare CDTC with baseline methods in
two groups. First, we evaluate GNNs including GCN (Kipf
and Welling 2017) and GIN (Xu et al. 2019), which are
trained with source domain data and fine-tuned with few-
shot annotations from the target domain for evaluation. We
also compare to Pre-GNN (Hu et al. 2020) which pre-trains
molecular graph encoder leveraging abundant molecules by
various node-level and graph-level pre-training strategies.
Second, we associate GNNs as the graph base learner with
prevailing few-shot learning techniques including MAML
(Finn, Abbeel, and Levine 2017) and ProtoNet (Snell, Swer-
sky, and Zemel 2017) as the baselines. Specifically, we cre-
ate MAML-GCN, Proto-GCN, MAML-GIN, Proto-GIN
for comparison. Besides, we evaluate PAR (Wang et al.
2021) which uses target-related contextual information and
pre-trained parameters (Hu et al. 2020) for few-shot graph
classification.

Experimental Settings We follow the general workflow
of few-shot learning under the cross-domain setting and uti-
lize the average performance of all meta-testing tasks in the
target domain for evaluation. We conduct 5 random runs for
each 2-way K-shot problem and present the average score
over the repeated runs. Also, the standard deviation of ROC-
AUC scores is reported. Regarding the randomness due to
the small number of the support set, i.e., K=1 or K=10,
model performance for each run is averaged based on 200
repeated meta-testing tasks. More experimental settings can
be found in the reproducibility supplement of the Appendix.

Experimental Results
Overal Results The performance of CDTC and baseline
models are reported in Table ??, where the best results
are highlighted in bold and the best baseline scores are
underlined. It is observed that CDTC achieves the best per-
formance under all the settings. Other observations are as

follows. First, for the GNNs baselines, Pre-GNN shows bet-
ter performance than GCN and GIN in most cases since
GCN and GIN are trained from scratch. Yet in a few cases,
Pre-GNN does not achieve significant improvements. We in-
fer the cause to be that molecular graph datasets leveraged in
Pre-GNN may preserve a large domain shift with the target
domain, which thus limits the model generalization to the
target domain. Second, GNNs perform competitively with a
number of graph few-shot learning approaches, e.g. MAML-
GCN. It implies that few-shot approaches with no special de-
sign for addressing domain shift issue might suffer from per-
formance degradation, as domain shift violates the assump-
tion of few-shot learning (Chen et al. 2019). Third, PAR out-
performs other baselines in most cases probably due to the
utilization of contextual information and pre-trained param-
eters. Lastly, our proposed CDTC achieves the best perfor-
mance in all the cases. Compared to graph few-shot learn-
ing baselines without solving the domain shift issue, CDTC
selects beneficial tasks during the meta-training phase to re-
duce the impact of domain shift.

Ablation Study To gain deeper insights into the effective-
ness of different components in CDTC, we conduct ablation
studies aiming for the following analysis: (RQ1) Whether
the pre-trained parameters improve cross-domain knowl-
edge transfer? (RQ2) Does CDTC provide beneficial meta-
tasks to assist meta-training? (RQ3) Does task association
modeling enhance task selection? Accordingly, we create
three variants of CDTC, including: (a) M-NoPre, which
initializes the GIN layers without pre-trained parameters;
(b) M-Random, which conducts optimization-based meta-
training with randomly sampled meta-tasks from the source
domain; (c) M-Naive, which utilizes initial task representa-
tions for task selection bypassing task representation refine-
ment. Performances of the variants are shown in Fig. 2, from
which we find answers for:
• RQ1: M-NoPre shows inferior performances than CDTC,

which demonstrates the advantage of using pre-trained pa-
rameters for knowledge transfer to the target domain.

• RQ2: M-Random is outperformed by CDTC, indicating
the effectiveness of the proposed model on selecting ben-
eficial meta-tasks and mitigating domain shift.

• RQ3: M-Naive has worse performances compared to
CDTC, implying task association modeling could refine
task representations for better task selection.
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(a) SIDER → Tox21 (b) MUV → Tox21

Figure 2: Results of ablation study on few-shot graph classi-
fication tasks for variants of CDTC under cross-domain set-
tings: (a) SIDER → Tox21 and (b) MUV → Tox21.

Methods Tox21 → SIDER MUV → Tox21

1-shot 10-shot 1-shot 10-shot

MEAN 55.36 ± 0.15 56.44 ± 0.64 70.89 ± 0.12 71.29 ± 0.52
CONCAT 55.87 ± 0.23 57.59 ± 1.26 70.16 ± 0.17 70.87 ± 0.29

Table 2: Few-shot graph classification performance (ROC-
AUC) with different methods of task representation learning

Impact of Task Representation Learning Strategies In
this work, we obtain task representations for 2-way K-shot
tasks based on class prototype concatenation. When it comes
to a larger N , the permutation-invariant function can be ap-
plied to reduce computational cost. We compare the perfor-
mance of model variants adopting the mean-pooling opera-
tion (MEAN) and concatenation operation (CONCAT). As
shown in Table 2, the variants of CDTC associated with the
two different methods achieve competitive results.

Impact of Different Numbers of Prompt Tasks Here, we
analyze the impact of the number of prompt tasks (Mt) em-
ployed in CDTC. We evaluate model performance with ex-
periments on MUV → Tox21 by varying the numbers of
prompt tasks. Considering that Tox21 contains 12 molec-
ular property prediction problems, we sample one prompt
task for each property prediction problem and thus deter-
mine the largest number of prompt tasks to be 12. We reduce
the values ofMt by sampling one prompt task from a part of
randomly chosen properties. The performance with differ-
ent Mt is reported, averaged over 3 random runs. As shown
in Fig. 3, CDTC obtains improved performance when the
value ofMt increases. The reason can be two folds: 1) More
prompt tasks facilitate task association modeling for more
accurate task representations; 2) The reward received from
more prompt tasks can better reflect the suitableness of the
candidate meta-tasks over the target domain.

Analysis of Task Relevance Learning task relevance is
one of the key features of CDTC. Therefore, we verify the
relationship between task correlation and task selection with
experiments on MUV → Tox21 under a 2-way 10-shot
setting. Specifically, we randomly select a set of candidate
meta-tasks and prompt tasks during meta-training after suf-
ficient iterations and calculate their correlation by Pearson
correlation coefficient with the task representations (in Fig.
4 (a)). It is expected that meta-tasks having higher correla-
tion scores with the prompt tasks would be more beneficial

Figure 3: Few-shot graph classification performance (ROC-
AUC) leveraging varied Mt values on MUV → Tox21.

Figure 4: Analysis of task correlation and task sampling
probabilities on MUV → Tox21.

for the generalization to the target domain. Meanwhile, we
present the task sampling probabilities that CDTC produces
for the set of candidate meta-tasks (in Fig. 4 (b)). It is ob-
served that candidate meta-tasks having higher correlation
scores regarding the prompt tasks in Fig. 4 (a) are assigned
with higher sampling probabilities in Fig. 4 (b), demonstrat-
ing that CDTC is capable of selecting beneficial meta-tasks
to improve model generalizability.

Conclusion
In this work, we target the problem of cross-domain few-
shot graph classification and propose a novel model named
CDTC to address the problem. CDTC adaptively selects ap-
propriate meta-tasks for training the graph base learner with
optimization-based meta-learning. To explore the relevance
between tasks, CDTC develops task association modeling
to obtain refined task representations from the task bipartite
graph and task selection to choose beneficial meta-tasks. To
better make use of small clues in the target domain, CDTC
leverages the rewards evaluated on the target domain to re-
inforce its selection. The proposed CDTC can be integrated
well with optimization-based meta-learning and trained in
an end-to-end manner. Extensive experimental results on
three molecular property prediction datasets verify the ef-
fectiveness of CDTC for few-shot graph classification for
various cross-domain settings.
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