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Abstract

A core step of mining human mobility data is to learn accurate
representations for user-generated check-in sequences. The
learned representations should be able to fully describe the
spatial-temporal mobility patterns of users and the high-level
semantics of traveling. However, existing check-in sequence
representation learning is usually implicitly achieved by end-
to-end models designed for specific downstream tasks, result-
ing in unsatisfactory generalizable abilities and poor perfor-
mance. Besides, although the sequence representation learn-
ing models that follow the contrastive learning pre-training
paradigm have achieved breakthroughs in many fields like
NLP, they fail to simultaneously consider the unique spatial-
temporal characteristics of check-in sequences and need man-
ual adjustments on the data augmentation strategies. So, di-
rectly applying them to check-in sequences cannot yield
a meaningful pretext task. To this end, in this paper we
propose a contrastive pre-training model with adversarial
perturbations for check-in sequence representation learning
(CACSR). Firstly, we design a novel spatial-temporal aug-
mentation block for disturbing the spatial-temporal features
of check-in sequences in the latent space to relieve the stress
of designing manual data augmentation strategies. Secondly,
to construct an effective contrastive pretext task, we gener-
ate “hard” positive and negative pairs for the check-in se-
quence by adversarial training. These two designs encour-
age the model to capture the high-level spatial-temporal pat-
terns and semantics of check-in sequences while ignoring the
noisy and unimportant details. We demonstrate the effective-
ness and versatility of CACSR on two kinds of downstream
tasks using three real-world datasets. The results show that
our model outperforms both the state-of-the-art pre-training
methods and the end-to-end models.

Introduction
Location-based services (LBS) platforms, such as Gowalla,
Foursquare, Alipay, have grown rapidly in recent years.
They provide convenience for people to share and find lo-
cation information as well as surrounding services, mean-
while generating a large amount of human mobility behav-
ior data, i.e., check-in sequences on point of interests (POIs).
This gives us an opportunity to mine and understand human
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mobility behavior to support various downstream practical
tasks, e.g., next check-in location predictions for personal-
ized recommendation, trajectory user link, and abnormal tra-
jectory detection for safety control. A core step of mining
human mobility data is to learn representations for check-in
sequences. In order to help for improving downstream tasks,
the learned representations should be able to fully describe
the spatial-temporal mobility patterns of people and capture
the high-level semantics of check-in sequences. Actually,
representation learning is always one of the hottest topics
in the fields of spatial-temporal data mining (STDM) (Lin
et al. 2021) (Wan et al. 2021), natural language process-
ing (NLP) and computer vision (CV) (Le-Khac, Healy, and
Smeaton 2020). Many successful self-supervised represen-
tation learning algorithms that utilize numerous unlabelled
data to capture the universal patterns of studied data are pro-
posed and are used to improve a wide range of downstream
tasks. Among these algorithms, contrastive pre-training via
self-supervised signals (Jaiswal et al. 2020) is proven to be
the most effective way in many scenarios. It pre-trains en-
coders by contrasting positive pairs and negative pairs gen-
erated from data augmentations. Compared to the generative
self-supervised models for representation learning that aims
to recover all the details (usually including the noise) of orig-
inal, contrastive self-supervised models distill high-level se-
mantics from sparse and noisy inputs by ”learning to com-
pare” (Liu et al. 2021) and usually enjoy satisfactory gen-
eralizable abilities with the help of pre-training paradigm.
Inspired by these success, we want to explore adopting the
contrastive pre-training paradigm for check-in sequence rep-
resentation learning. In this way, we expect that universal
spatial-temporal patterns and high-level semantics could be
captured and the pre-trained representation model could im-
prove the computational efficiency and the overall prediction
performance of downstream tasks.

The key to learning representations for check-in se-
quences via contrastive pre-training is to design an effec-
tive data augmentation strategy so that it can encourage the
encoder to mine the spatial-temporal patterns from mobil-
ity behavior data and capture the high-level semantics for
human mobility. However, existing augmentation methods
including those specially designed for sequential data and
spatial-temporal data cannot meet the needs. Specifically,
there are two reasons.
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1) Each check-in point in the sequence is simultaneously
decided by the happening time and the POI. Along the spa-
tial dimension, each POI is discrete, highly semantic, and
information-dense; Along the temporal dimension, happen-
ing time is sparse and full of uncertainty. Thus, directly
adopting existing data augmentation methods (Lin et al.
2021; Wan et al. 2021), e.g., replacement, masking, disrup-
tion, and cropping to disturb the POIs in sequences fail to
generate high-level semantically similar positive samples.
For example, as shown in Figure 1(a), replacing the POI of
a check-in, i.e., library with a nearby KTV will change the
semantics and the moving purpose of a trip. On the other
hand, the widely adopted data augmentation methods for
continuous data such as adding random noise cannot bring
much difference to the check-in sequences, as shown in Fig-
ure 1(b). Consequently, the representation learning model
cannot benefit a lot from such data augmentation strategies.

1mt 1
~

mt 2mtmt(a) (b)

Figure 1: (a) spatial augmentation for POI by replacement.
(b) temporal augmentation for time by adding noise.

2) Each check-in sequence has unique characteristics,
(e.g., length, POI sets), making them easily distinguishable.
This will make the corresponding contrastive pretext task
meaningless. Take Figure 2 for example. Two check-in se-
quences in the same training batch are totally different in
lengths, moving areas, and visited POIs. This means that
augmented samples are also easily distinguishable.

Spatial Augmentation
Temporal Augmentation

User #1 Real Sequence
User #2 Real Sequence

9:34 9:53
n = 7 n = 3

Figure 2: Most (augmented) sequences in the same batch are
easily distinguishable.

In order to tackle the above challenges, we propose a
novel Contrastive pre-training method using Adversarial
perturbations for Check-in Sequence Representation Learn-
ing (CACSR). In CACSR, we first propose a spatial-
temporal data augmentation block for perturbing check-in
points in the latent space. This block relieves the stress of
designing manual data augmentation strategies for check-
in data. Secondly, in order to make the contrasting process
more efficient for guiding the training of the model, we de-
velop adversarial training to generate “hard” positive and
negative pairs for check-in sequences. Specifically, we gen-
erate negative examples by implementing a small perturba-
tion while minimizing semantic-level conditional likelihood.
Besides, we generate positive examples by adding large per-
turbations while enforcing them to have high conditional
likelihood. In this way, negative samples are very close to the

corresponding anchors in the latent embedding space while
having a large gap in the semantics (e.g., traveling purposes),
and positive samples are far apart from the corresponding
anchors while preserving similar semantics. As a result, the
model will be encouraged to understand the high-level se-
mantics of each check-in sequence, capture the universal
spatial-temporal patterns of human mobility, and generate
accurate representations for check-in sequences. Overall, the
contributions of this work are summarized as follows.

• we propose a way to perform spatial-temporal data aug-
mentation on the spatial and temporal features of check-
ins in embedding spaces, which avoids tedious manual
adjustment on data augmentation strategies for preserv-
ing semantics.

• To tackle the ineffectiveness of the existing augmentation
approach when applied for check-in sequences, we adopt
an adversarial strategy to automatically generate “hard”
negative and positive pairs. This encourages the model to
capture the high-level spatial-temporal semantics of mo-
bility behavior instead of the meaningless characteristics.

• We evaluate CACSR on three real-world check-in
datasets for two downstream tasks. The experimental re-
sults prove the superiority and versatility of our model.

Related Work
Mobility Data Mining The development of location-based
services creates a new research topic, i.e., mobility data min-
ing, among which next location prediction (LP) and trajec-
tory user link (TUL), are two important tasks to help im-
proving the quality of services. Around these tasks, recent
studies have proven that deep learning, especially RNNs and
attention mechanisms are effective ways to capture the se-
quential and periodic patterns of human mobility. The most
representative models for LP include DeepMove (Feng et al.
2018), STAN (Luo, Liu, and Liu 2021), LSTPM (Sun et al.
2020), and SERM (Yao et al. 2017). The most represen-
tative models for TUL are TULER (Gao et al. 2017) and
DeepTUL (Miao et al. 2020). However, these end-to-end su-
pervised methods designed for specific tasks are not univer-
sal. More importantly, since the training of these models is
driven by labels, the model’s ability of understanding high-
level semantics in check-in sequences is not spurred.
Pre-training and Contrastive Learning The core of these
mobility mining tasks is to learn the representation of check-
in sequences. Many related works prove the effectiveness of
applying the pre-training paradigm to perform check-in se-
quence representation learning. e.g., TULVAE (Zhou et al.
2018) and MoveSim (Feng et al. 2020) respectively em-
ploy Variational Auto-Encoder and Generative Adversarial
Network to capture the underlying patterns of check-in se-
quences via the pre-training. Recently, pre-training through
contrastive learning is proven to be effective in sequential
data modeling. Contrastive learning enables the model to
capture high-level semantics meanwhile ignoring the noisy
details of sequences. It trains models in a self-supervised
manner by comparing positive and negative pairs from
data augmentation. In NLP, representative contrastive pre-
training models differ in data augmentation strategies. e.g.,
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SimCSE (Gao, Yao, and Chen 2021) augments data with the
help of dropout operations; ConSERT (Yan et al. 2021) aug-
ments data by disrupting, slicing, and deleting the represen-
tation in the hidden space; VaSCL (Zhang et al. 2022) en-
hances the discriminative power of the model by introducing
difficult negative samples; CLAPS (Lee, Lee, and Hwang
2020) introduces adversarial perturbations to generate in-
distinguishable augmented samples, and finally largely en-
hances its robustness and discrimination ability. In the field
of mobility mining, SML (Zhou et al. 2021) is the first to
adopt contrastive learning. It directly applies the widely used
data augmentation strategies, such as cropping or replace-
ment, on check-in sequences while ignoring the unique char-
acteristics of check-in sequences, thus cannot perform well
enough.

Motivated by the studies mentioned above, considering
the characteristics of check-in sequences, we will investi-
gate how to design a robust and universal contrastive pre-
training model for check-in sequence representation learn-
ing with the help of adversarial perturbations.

Preliminaries
Definition. Check-in Sequence. Check-in sequences de-
scribe the moving of users among POIs during a cer-
tain period. A check-in sequence is denoted as T =
(r1, r2, · · · , rn), where r = (t, p) represents a check-in hap-
pening at p ∈ P at timestamp t. P denotes the POI set,
where each POI p refers to a geographical location with
unique latitude, longitude, and semantic functions.
Problem Statement. Pre-training Representation for check-
in Sequence. The goal of this paper is to pre-train a parame-
terized encoder G to generate a contextual representation for
a given check-in sequence T , i.e., G(T ). Specifically, the
encoder G is first trained within an adversarial framework
in a self-supervised manner with no task-specific objectives
and then is applied to various downstream tasks, such as next
Location Prediction (LP), Trajectory User Link (TUL), etc,
so that the downstream tasks could benefit from the univer-
sal encoder.

The CACSR Model
Figure 3 illustrates the architecture of our proposed CACSR
model. Firstly, our CACSR encodes check-in sequences of
POIs into latent representations by mining and exploiting
the spatial-temporal features of check-ins. Then, following
the contrastive learning framework (Lee, Lee, and Hwang
2020), our model generates positive and negative pairs, and
is finally trained by maximizing the similarity between pos-
itive pairs, while minimizing the similarity between the neg-
ative pairs.

Our contributions lie in how to generate effective posi-
tive and negative pairs by considering the unique charac-
teristics of check-in sequences, through which we could
build a meaningful contrastive learning based pretext task.
Firstly, facing the dilemma of proposing a proper augmen-
tation strategy along the spatial and temporal dimensions
in the original input space, we propose to make spatial-
temporal augmentation in the latent space to preserve the

macro spatial-temporal patterns and the high-level seman-
tics of check-in sequences. Secondly, considering that each
check-in sequence has unique characteristics, (e.g., length,
POI sets), making them easily distinguishable and con-
trastive training ineffective,

we propose to adopt adversarial perturbation to gener-
ate difficult negative and positive pairs. Trained with these
“hard” negative and positive pairs, our model could effec-
tively capture the semantics of check-in sequences and enjoy
satisfactory generalization ability and robustness.

Next, we will detail the basic encoder for capturing the
spatial-temporal correlations between check-ins, the data
augmentation algorithms (i.e., positive and negative pairs
generations), and the design of the contrastive training loss.

Encoder Module
In this section, we introduce how to encode the original
check-in sequences. As shown in Figure 3(a), a check-in se-
quence T = (r1, r2, · · · , rn) is encoded into its latent rep-
resentation z through feature embedding layers and Bidirec-
tional Long Short-Term Memory layers (BiLSTMs).

The feature embedding layers transform the original
spatial-temporal features into dense representations. Specif-
ically, the original spatial feature of a check-in, i.e., POI
p is represented by a |P|-dimensional one-hot vector. The
original temporal feature, i.e., happening timestamp t is first
discretized with an hour and then be represented by a T -
dimensional one-hot vector (T=24). Then, we learn embed-
dings for each POI, denoted by Ep ∈ R|P|×dp , to capture the
static characteristics of each POI, and embeddings for each
time slots, denoted by Et ∈ RT×dt , to learn the semantics
of each time slot via an end-to-end manner. Overall, we de-
fine the above embedding process as X = (x1, . . . ,xn) =
f(T ;θst), where θst refers to all the learnable parameters
in the embedding layer.

Then we input the embedded sequence X into a stack of
Bidirectional Long Short-Term Memory layers (BiLSTMs),
which models contextural information by leveraging two in-
dependent hidden layers along opposite directions. Finally,
we use the latest hidden state hn ∈ R2d, which is the com-
bination of the forward hidden state h⃗n ∈ Rd and the back-
ward hidden state ⃗hn ∈ Rd, as the sequence representation
z to summarize the mobility behavior over the sequence. In
addition, to ensure the generalization ability of the model,
dropout layers are further adopted.

ST Adversarial Perturbations Module
To preserve the macro spatial-temporal patterns of augmen-
tation and let the encoder effectively capture the high-level
semantics of check-in sequences, we design two kinds of
data augmentation blocks. Firstly, facing the dilemma in
manual adjustment on data augmentation strategies respec-
tively for the temporal and spatial features of check-ins, we
introduce how to apply disturbances to spatial-temporal fea-
tures in the latent space. Then, in order to improve the dif-
ficulties of the comparisons between samples, we introduce
how to dynamically generate “hard” positive and negative
samples leveraging adversarial perturbation.
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Figure 3: The model architecture of CACSR. (a) shows the process of converting the check-in sequence into a latent repre-
sentation. (b) mainly uses STNPos which are generated by ST augmentation block and anchor sequence to generate “hard”
positive-negative samples by adversarial perturbations. (c) introduces the contrastive loss relationship among different samples.

Figure 4: Data Augmentation Schematic. The yellow area
represents the semantic manifold space of the anchor, and
only the samples within the yellow area have the similar se-
mantics to the anchor.

ST Augmentation Block Spatial-Temporal Augmenta-
tion block is designed to generate the corresponding posi-
tive example for a check-in sequence in the latent embed-
ding space. We use Xan to denote the output of the feature
embedding layers with T as input. Xan is the anchor vector
in our contrastive learning algorithm. Besides, we use Xst to
denote the corresponding positive example, which is gener-
ated by disturbing the parameters of the feature embedding
layers. Formally,

Xan = f(T ;θst), Xst = f
(
T ;θ′

st

)
, (1)

in which θst and θ′
st represent the parameters of feature em-

bedding layers and the ST augmentation block, respectively.
And the θ′

st is defined as:

θ′
st = θst + η∆θst, ∆θst ∼ N

(
0,σ2

)
, (2)

where we achieve θ′
st by adding a perturbation term ∆θst

sampled from a Gaussian distribution with zero mean and
variance σ2. η is the scale factor for the magnitude of the
perturbation. σ and η are two hyperparameters. Then after
BiLSTMs, we use zan and zst to denote the sequence repre-
sentation for the anchor and the spatial temporal noise pos-
itive (STNPos) samples respectively.

Imposter Generator Imposter Generator is designed to
generate a “hard” negative sample zim called Imposter for
the anchor zan. zim is expected to have different semantics

but similar representations to zan. Figure 4 illustrates the re-
lations between them. We use the next location y (termed as
RealTag) to describe the semantics of zan, since the next
location can reflect the traveling purpose of the check-in se-
quences. Notice that y does not need introduce any extra
manual labeling because “the next location” is part of the
information from the check-in sequences itself. Specifically,
so as to remain similar representation vectors, we gener-
ate zim by adding a tiny perturbation δ to the anchor zan

and limit its Euclidean norm within ϵ; Meanwhile, so as to
change the original semantics as much as possible, we mini-
mize the conditional likelihood of zim with regard to y. For-
mally,

zim = zan + δ, (3)

δ = argmin
δ,∥δ∥2≤ϵ

log pθ (y | Xan; zan + δ) , (4)

where δ ∈ R2d has the same size with zan.
Because the exact minimization of the conditional likeli-

hood with regard to δ is intractable for neural networks, we
implement it as follows:

zim =zan − ϵ
g

∥g∥2
, (5)

g =∇zan
log pθ(y | Xan). (6)

Figure 5(a) describes the detailed implementation of the
imposter generator. Overall, zim is an adversarial sample,
since we train the model to push the semantics of zim far
away from that of zan while constraining zim within the ϵ-
ball around zan. The generation of imposter yields a hard
task for the encoder to distinguish the negative sample zim

from positive samples, thus it finally enhances the general-
ization ability and robustness of the encoder.

Distant Target Generator Distant Target Generator is de-
signed to generate an extra hard positive example zdis called
distant target (DisTarget) for the anchor zan. zdis is ex-
pected to have similar semantics with zan, but they should
be far away in the latent space. Figure 4 illustrates the rela-
tions between them. Specifically, we add a significant pertur-
bation ξ ∈ R2d to zan to minimize its cosine similarity with
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Figure 5: Workflow Diagram for the Adversarial Perturbation. (a) and (b) show the forward propagation and back propagation
for generating Imposter and DisTarget. And we use dense layer and softmax to calculate the probability to obtain its logist.

zan, while the conditional likelihood of zdis with regard to
y is mandated to stay at a high level. However, the accurate
calculation of ξ under such restrictions is intractable like-
wise. Thus, we use the following two computation phases to
approximate it.

As shown in Figure 5(b), we first add perturbation to zan

such that it minimizes the contrastive learning loss Lcont(θ)
(refer to Eq.10, in which zan can be regarded as zx and zst

can be regarded as z̄x). Formally,

ž = zan − η
υ

∥υ∥2
, υ = ∇zanLcont(θ). (7)

Afterwards, in the second stage, so as to preserve the se-
mantics, we further pull the conditional likelihood pθ(y | ž)
to pθ(y | zan) via minimizing the KL divergence between
them. Formally,

LKL(θ) =

N∑
i=1

DKL (pθ∗(y | zan)∥pθ(y | ž)) , (8)

zdis = ž − η
ω

∥ω∥2
, ω = ∇žLKL(θ), (9)

where θ∗ denotes the duplication of the encoder parameters
θ, which should be detached from the computation graph so
that it cannot be optimized by back-propagation. Finally, we
get zdis to be an additional hard positive instance for zan.

Contrastive Module
In accordance with the contrastive learning framework, we
maximize the similarity between the anchor and the aug-
mented positive examples, while minimizing the similarity
between the anchor and the negative examples (termed as
Negative) by InfoNCE Loss (Oord, Li, and Vinyals 2018),

Lcont(θ) =
N∑
i=1

log
φ(zx, z̄x)∑

zan,z′
x∈S φ(zx, z′

x)
, (10)

where φ(i, j) = exp (sim(i, j)/τ) measures the correlation
between two representations, where sim(·, ·) denotes the co-
sine similarity function, z̄x represents the augmented posi-
tive sample. S is a set of negative samples selected randomly
from the same batch.

As discussed in the introduction, training the encoder via
the vanilla contrastive learning framework, i.e., leveraging
random non-target check-in sequences as negative examples

is meaningless since many of these vanilla negative exam-
ples are situated far away from the positive examples in the
embedding space. In order to make the contrasting process
more efficient for guiding the training of the model, we ad-
ditionally use the generated “hard” negative and positive ex-
amples to guide the model’s training. Details are as follows.

Imposter Contrastive Loss We design the imposter con-
trastive loss by introducing the imposter representation zim

as an extra negative instance to Eq. 10. Formally,

Lcont−neg(θ) =

N∑
i=1

log
φ(zan, zst)∑

z′
x∈S′ φ(zan, z′

x)
, (11)

where zst is the positive instance got through the spatial-
temporal augmentation block. S′ denotes S ∪ {zim}.

Distant Target Contrastive Loss We further enhance the
training process by adding the hard positive sample zdis as
follow,

Lcont−pos(θ) =

N∑
i=1

log
φ(zan, zdis)∑

z′
x∈S′ φ(zan, z′

x)
, (12)

Finally, the total contrastive loss is expressed as:
Lcont−tol(θ) = αLcont−neg(θ) + βLcont−pos(θ). (13)

Experiments
In order to evaluate the quality of representation vectors of
check-in sequences generated by our model. We incorpo-
rate these vectors into two types of downstream tasks and
compare the results with other methods. The code has been
released at: https://github.com/LetianGong/CACSR

Dataset
To demonstrate the superiority of our proposed model, our
experiments are carried out on three real-world datasets de-
rived from the raw Gowalla, and Foursquare of New York
City (NYC) and Jakarta (JKT) check-in data.

In order to facilitate the training of our model, we screen
out relatively high-quality trajectory sequences through
some conditions. For all datasets, we take the historical time
as long as no more than 120 days. We filter out users with
at least 10 records, and places visited at least 10 times. We
split all datasets at ratio 6 : 2 : 2 into training sets, validation
sets, and test sets by the samples. Table 1 shows the statistics
of three datasets after the pre-processing.
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Gowalla NYC JKT
#users 5,016 1,596 3,943

#locations 4,873 5,529 9,563
#check-ins 154,253 39,975 119,317

Table 1: Statistics of datasets

Fine-tuning for Downstream Applications
We employ the training set to pre-train the CACSR and use
a projection head to fine-tune on both next location pre-
diction (LP) and trajectory user link (TUL) tasks, respec-
tively. Then we consider these downstream tasks as multi-
classification problems, as formulated below. Given a check-
in sequence T u from a specific user u ∈ |U|, we feed it
to the pre-trained encoder to obtain the check-in sequence
representation G(T u). Then we use a projection head fθ to
predict the classification y such as the next location where
user will soon arrive or the user who generated this check-in
sequence, i.e., fθ (G(T u),θ) 7→ y. We maximize the con-
ditional log likelihood log fθ(y | G(T u)) for a given N ob-
servations {(G(T u), y)}Ni=1 as follows:

LMLE(θ) =
N∑
i=1

log fθ (y | G(T u)),

fθ (y | G(T u)) = softmax (WG(T u) + b) .

(14)

In addition, we combine the location embedding with the
timestamp embedding as the global embedding during the
pre-training stage. In the LP task, we combine the user em-
bedding with the global embedding for fine-tuning in the
downstream stage.

Location Prediction Methods
We cover two classic check-in prediction models and two
state-of-the-art LP models to demonstrate the superiority of
our model.
• LSTM (Hochreiter and Schmidhuber 1997) use LSTM

as an encoder to infer where the user will arrive next.
• SERM (Yao et al. 2017) simultaneously considerably en-

riches the semantics to successfully capture the spatial-
temporal transformation rule.

• DeepMove (Feng et al. 2018) is a classical check-in se-
quence position prediction model to capture the period-
icity of trajectory motion.

• LSTPM (Sun et al. 2020) simulates the long-term histor-
ical with the attention mechanism and a geo-dilated RNN
to enhance the short-term prediction capability.

Trajectory User Link Methods
We select two end-to-end and two pre-trained TUL task
models for comparison.
• TULER (Gao et al. 2017) is the first study to propose the

trajectory user link and simulate it using RNN.
• TULVAE (Zhou et al. 2018) follows the work of TULER

and pre-trains the encoder by adding VAE on the prior
basis.

• MoveSim (Feng et al. 2020) captures the temporal
changes in human motion employing a generative adver-
sarial network for trajectory pre-training.

• DeepTUL (Miao et al. 2020) integrates numerous as-
pects of user mobility to simulate complicated mobility
patterns.

Baseline Representation Methods
We select two state-of-art contrastive sentence representa-
tion models using contrastive learning in the NLP field. We
apply them to learn the representation of check-in sequence
and serve downstream tasks.

• SimCSE (Gao, Yao, and Chen 2021) using a very sim-
ple dropout operation to generate positive samples for
contrastive learning, and effectively enhance the model’s
ability to represent sentences.

• VaSCL (Zhang et al. 2022) is suggested to add hard neg-
ative samples into the NLP field. It uses smaller batches
to get better performance.

Settings
We pre-train the encoder parameters on the training set and
determine the best hyperparameter combination base on the
results of downstream tasks on the validation set. The down-
stream task models are trained using cross-entropy loss and
evaluated using Acc@k and Mean reciprocal rank (MRR).
We employ PyTorch to implement the baseline models and
our CACSR model. As for the parameter settings, we set
all embedding sizes of all models to 256. The number layer
of Bi-LSTM in CACSR model is set to 3, the hidden state
size is set to 512, σ = 0.1, the scale factor η = 1, ϵ = 1,
α = 0.8, β = 0.5, and τ = 4. The CACSR is pre-trained
for 100 epochs on the training sets with the early-stopping
mechanism of 5 patience. All trials have been conducted on
Intel Xeon E5-2620 CPUs and NVIDIA RTX A5000 GPUs.

Experimental Results
Table 2 shows the comparison results of our model with
other baseline models on two downstream tasks. In the LP
task, we evaluate the accuracy of the next location predic-
tion and the accuracy of the user-sequence association in
TUL task. The best is shown in bold, and the second-best
is shown as underlined.

First, our CACSR-LP and CACSR-TUL consistently and
significantly outperform the current end-to-end and pre-
trained models in LP and TUL tasks among all datasets.
In particular, our approach improves Acc@5, Acc@20, and
mean reciprocal rank (MRR) metrics in the LP task by 4.3%,
3.1%, 3.7%, and in the TUL task by 6.3%, 5.1%, 5.7% on
average over the three datasets compared to the best base-
line approach. These results demonstrate that our model per-
forms very well on these downstream tasks. The strength of
our model benefits from our contrastive adversarial frame-
work that is able to encourage the encoder to mine the
spatial-temporal patterns from mobility behavior data and
capture the high-level semantics for human mobility. And
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Datasets Gowalla FourSquare-NYC FourSquare-JKT
Metric Acc@5 (%) Acc@20 (%) MRR (%) Acc@5 (%) Acc@20 (%) MRR (%) Acc@5 (%) Acc@20 (%) MRR (%)

Task Method
LSTM 25.21±0.36 35.5±0.62 17.94±0.32 26.53±0.69 39.54±0.71 18.68±0.46 34.79±0.72 46.02±0.31 26.54±0.36
SERM 29.32±0.54 45.25±0.34 20.51±0.44 28.49±0.37 43.11±0.43 20.54±0.56 37.68±0.32 54.64±0.33 29.42±0.64

DeepMove 30.88±0.52 46.89±0.68 23.06±0.66 31.84±0.68 48.29±0.68 22.29±0.33 41.35±0.45 56.55±0.39 31.96±0.49
LP LSTPM 30.04±0.47 45.22±0.48 22.80±0.66 32.80±0.59 50.27±0.32 23.87±0.49 43.53±0.58 57.51±0.49 32.39±0.41

SimCSE-LP 26.69±0.67 42.54±0.57 20.95±0.69 30.54±0.68 46.32±0.51 20.66±0.61 39.92±0.68 53.26±0.37 30.54±0.32
VaSCL-LP 28.95±0.38 44.52±0.57 22.93±0.65 32.68±0.45 48.99±0.63 22.83±0.39 41.03±0.63 54.27±0.62 31.36±0.54

CACSR-LP 33.32±0.47 47.78±0.50 24.50±0.59 33.46±0.69 50.35±0.62 23.67±0.62 44.72±0.61 58.47±0.42 33.88±0.63
TULER 54.04±0.31 62.07±0.53 48.29±0.68 51.34±0.37 60.92±0.65 45.59±0.35 61.26±0.34 70.54±0.38 57.07±0.31

TULVAE 55.65±0.64 63.92±0.50 52.73±0.35 53.02±0.31 61.08±0.68 46.12±0.63 65.42±0.57 73.12±0.64 61.50±0.66
MoveSim 50.16±0.50 58.83±0.51 43.17±0.67 39.07±0.42 43.99±0.35 36.31±0.62 51.72±0.57 61.66±0.54 45.38±0.63

TUL DeepTUL 55.15±0.52 62.44±0.63 49.93±0.64 43.32±0.55 52.39±0.74 39.24±0.39 60.63±0.31 68.19±0.55 55.67±0.67
SimCSE-TUL 53.02±0.31 61.08±0.32 48.12±0.37 50.29±0.34 60.05±0.47 45.23±0.36 59.07±0.72 66.01±0.63 54.43±0.32
VaSCL-TUL 54.44±0.49 63.85±0.61 53.03±0.44 51.11±0.62 59.66±0.63 44.12±0.52 66.79±0.57 73.28±0.38 62.53±0.51

CACSR-TUL 59.82±0.51 66.46±0.72 55.08±0.33 54.62±0.54 63.03±0.39 48.32±0.49 69.32±0.39 76.47±0.58 65.03±0.68

Table 2: Next location prediction (LP) and trajectory user link (TUL) performance comparison between different approaches.

the self-supervised signals can effectively mitigate the spar-
sity of check-in data and can spur the encoder to learn accu-
rate representations for check-in sequences. Overall, the su-
periority and versatility of our method show that the adver-
sarial contrastive framework proposed in this work is well
suited for modeling check-in sequences.

Second, RNN end-to-end based approaches (e.g., LSTM,
SERM, TULER, etc.) can take advantage of recurrent neural
networks to capture human movement patterns and predict
the next location. From the experimental results, it can be
seen that the performance of these methods is not satisfac-
tory. DeepMove and LSTPM enhance the performance of re-
current neural networks by introducing the attention mecha-
nism and to some extent mitigating chance bias caused by
the sparsity of user mobile data. MoveSim trains the en-
coder by a generative adversarial network, but the boost is
extremely restricted for check-in data. While the additional
benefit of incorporating VAE into TULVAE for pre-training
is evident. The performance of SimCSE and VaSCL on the
check-in dataset conclusively proves that data augmentation
techniques in NLP are not directly transferable to human
movement trajectory data.

Ablation Study
To better verify the role of each component, we designed
four variants of CACSR.
• Basic: We use the encoder to directly generate two repre-

sentations of the sequence without spatial-temporal aug-
mentation. Pre-training according to the traditional con-
trastive learning method.

• +ST Augmentation: Base on the basic model, we added
the spatial-temporal Augmentation block, using zan and
zst to pre-train the encoder.

• w/o Imposter: We remove the zim from CACSR. The
rest of the settings are the same as CACSR.

• w/o DisTarget: We remove the zdis from CACSR. The
rest of the settings are the same as CACSR.

We compare these four variants with the CACSR model on
the LP and TUL downstream model. Figure 6 shows the

Figure 6: Component analysis of CACSR

results. In LP downstream tasks, our basic model already
has high advantages. It shows that our basic model has a
strong advantage in capturing the check-in sequence itself.
The robustness of the model may be successfully increased
by including suitable spatial-temporal augmentation pertur-
bations in the latent space.

Clearly, it boosts the model’s discriminative performance
by dynamically adding impostors and distant targets. With
the update of training, the difficulty of the augmented sample
continues to ramp up, and the discriminative ability of the
model continues to be stronger. Finally, these modules are
combined in our final model to produce the best outcomes.

Conclusion
In this paper, we propose a novel adversarial contrastive
model CACSR for extracting the representations of the
check-in sequences. Specifically, we first propose a way to
perform spatial-temporal data augmentation on the spatial
and temporal features of check-ins in the latent space. Then
we propose an adversarial strategy to automatically gener-
ate “hard” negative and positive pairs. These encourage the
model to capture the high-level spatial-temporal semantics
of mobility behavior instead of the meaningless characteris-
tics. Experiments are conducted on the next location predic-
tion and trajectory user link tasks with three real-world mo-
bile user check-in datasets. The experimental results demon-
strate the superiority and versatility of our model.
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