Rule Induction in Knowledge Graphs Using Linear Programming

Sanjeeb Dash, João Gonçalves
IBM Research, Yorktown Heights, New York, USA
{sanjeebd, jpgonal}@us.ibm.com

Abstract
We present a simple linear programming (LP) based method to learn compact and interpretable sets of rules encoding the facts in a knowledge graph (KG) and use these rules to solve the KG completion problem. Our LP model chooses a set of rules of bounded complexity from a list of candidate first-order logic rules and assigns weights to them. The complexity bound is enforced via explicit constraints. We combine simple rule generation heuristics with our rule selection LP to obtain predictions with accuracy comparable to state-of-the-art codes, even while generating much more compact rule sets. Furthermore, when we take as input rules generated by other codes, we often improve interpretability by reducing the number of chosen rules, while maintaining accuracy.

Introduction
Knowledge graphs (KG) represent a collection of known facts via labeled directed edges. A fact is a triplet of the form \((a, r, b)\), where \(a\) and \(b\) are nodes representing entities, and \(r\) is a binary relation labeling a directed edge from \(a\) to \(b\) indicating that \(r(a, b)\) is true. Practical knowledge graphs are often incomplete (they do not contain all true representable facts). Knowledge graph completion (KGC) involves using known facts in a KG to infer additional (missing) facts. Other common tasks for extracting implied information from KGs are triple classification, entity recognition, and relation prediction. See the survey by Ji et al. (2021).

One approach for KGC is to learn first-order logic (FOL) rules that approximately encode known facts (in practice, KGs have inconsistencies). Consider a KG where nodes represent individuals and the relations are one of \(\{son_of, father_of, grandson_of\}\). Suppose we learn a “rule” \((X, son_of, Y)\) and \((Y, son_of, Z) \rightarrow (X, grandson_of, Z)\) of length two, where \(X, Y, Z\) are variables. If there are entities \(P, Q, R\) in the KG such that \((P, son_of, R)\) and \((R, son_of, Q)\) are facts in the KG then we infer that \(P\) is a grandfather of \(Q\). KGC deals with finding answers to queries of the form \((P, grandson_of, ?)\). We learn multiple FOL rules of the type above for this task along with rule weights, where weights indicate importance.

Learning logic rules is a well-studied area. In a paper (Lao and Cohen 2010) on path ranking and another (Richardson and Domingos 2006) on Markov logic networks, candidate logic rules are obtained via relational path enumeration. Yang, Yang, and Cohen (2017) use neural logic programming to simultaneously obtain rules and rule weights. In (Qu et al. 2021), rules and rule weights are computed in sequence, but there is a feedback loop from the latter learning problem to the former. Recursive neural networks (RNN) are widely used to learn rules, though rule-mining approaches can be very effective (Mellicke et al. 2019).

Embedding-based methods for KGC consist of representing nodes by vectors, and relations by vector transformations that are consistent with the KG facts. They exhibit better scaling with KG size, and yield more accurate predictions. See the surveys by Ji et al. (2021) and Wang et al. (2017a). However, they are less interpretable than logical rules.

Besides predictive accuracy, Michie (1988) identified comprehensibility as an important property of a machine learning (ML) method and proposed the strong criterion and ultra-strong criterion. The former is satisfied if the ML system generates an explicit symbolic representation of its hypotheses, and the latter is satisfied if humans can understand and effectively apply such symbolic representations. Interpretable ML systems form an important current research area; see (Rudin et al. 2022) and (Kovalerchuk, Ahmad, and Teredesai 2021). In socially sensitive applications of ML, e.g., in the criminal justice system, interpretability is as an essential feature to allow audits for fairness and unbiased-ness (Mehrabi et al. 2022). Experimental results in (Schmid et al. 2017; Muggleton et al. 2018) show that for logic programs inspection time (the time taken by humans to study and understand the program before applying it) is negatively correlated with human predictive performance. Many rule-based methods satisfy Michie’s strong criterion but generate a lot of rules leading to long inspection times and low comprehensibility and interpretability. The tradeoff between accuracy and rule simplicity (or compactness) is well-studied in the setting of classification; it is shown in (Dash, Günlük, and Wei 2018; Wang et al. 2017b) that one can obtain interpretable rule sets without significantly sacrificing accuracy.

Inspired by these classification methods, we focus on learning compact sets of entity independent FOL rules for KGC (as KGC has no negatively labeled examples, one cannot apply classification techniques directly). We combine rule enumeration with linear programming (LP) and avoid solving difficult nonconvex optimization models inher-
ent in training RNNs, though the difficulty is transferred to rule enumeration. We describe an LP formulation with one variable per candidate FOL rule and its associated weight. Nonzero variable values in the solution correspond to the weights of chosen rules. The goal of this LP formulation is to return a scoring function that is a linear combination of rule truth values and gives high scores to known facts and low scores to (a sample of) missing facts. Linear combinations are also used in NeuralLP (Yang, Yang, and Cohen 2017), DRUM (Sadeghian et al. 2019), and RNNLogic (Qu et al. 2021) though we calculate scores differently.

To promote interpretability, we add a constraint limiting the complexity of the chosen rule set. We show that initializing our LP with rules generated via simple heuristics leads to high-quality solutions with a small number of chosen rules for some benchmark KGs; we either obtain better accuracy or more compact rule sets in all cases compared to well-known rule-based methods. Our algorithm has better scaling with KG size than the above rule-based methods and can scale to YAGO3-10, a large dataset that is difficult for many rule-based methods (though AnyBURL (Meilicke et al. 2019) is faster). For YAGO3-10, where setting up the LP becomes expensive, we use column generation ideas from linear optimization and start off with a small initial set of rules, find the best subset of these and associated weights via the partial LP defined on these rules, and then generate new rules which can best augment the existing set of rules.

We explore taking as input rules generated by other rule-based methods and then choosing the best subset using our LP. In some cases, we improve accuracy even while reducing the number of rules. As compact rules do well in an inductive setting, we compare against GraIL (Teru, Denis, and Hamilton 2020) – a method that uses subgraph reasoning for KGC – in such a setting and obtain better performance.

Related Work

A motivation for learning rules for KG reasoning is that they form an explicit symbolic representation of the KG and are amenable to inspection when there are few rules.

Inductive Logic Programming (ILP). In this approach, one takes as input positive and negative examples and learns logic programs that entail all positive examples and none of the negative examples. See (Cropper and Muggleton 2016) and (Cropper and Morel 2021). FOL programs in the form of a collection of chain-like Horn clauses are a popular output format. Negative examples are not available in typical knowledge graphs, and some of the positive examples can be mutually inconsistent. Evans and Grefenstette (2018) developed a differential ILP framework for noisy data.

Statistical Relational Learning (SRL). SRL aims to learn FOL formulas from data and to quantify their uncertainty. Markov logic, which is a probabilistic extension of FOL, is a popular framework for SRL. In this framework, one learns a set of weighted FOL formulas. Kok and Domingos (2005) use beam search to find a set of FOL rules, and learn rule weights via standard numerical methods. In knowledge graph reasoning, chain-like rules which correspond to relational paths (and to chain-like Horn clauses) are widely studied. A recent, bottom-up rule-learning algorithm with excellent predictive performance is AnyBURL. We learn FOL rules corresponding to relational paths and rule weights; our scoring function and learning model/algorithm are different from prior work.

Neuro-symbolic methods. In NeuralLP rules and rule weights are learned simultaneously by training an appropriate RNN. Further improvements can be found in DRUM, NTP (Rochstätl and Riedel 2017) is another neuro-symbolic method. More general rules (than the chain-like rules in NeuralLP) are obtained in (Yang and Song 2020), (Sen et al. 2022b), (Sen et al. 2022a) along with better scaling behavior. Simultaneously solving for rules and rule-weights is difficult, and a natural question is how well the associated optimization problem can be solved. We use an easier-to-solve LP formulation.

Reinforcement Learning (RL). Some recent codes that use RL to search for rules are MINERVA (Das et al. 2018), MultiHopKG (Lin, Socher, and Xiong 2018), M-Walk (Shen et al. 2018) and DeepPath (Xiong, Hoang, and Wang 2017). The first three papers use RL to explore relational paths conditioned on a specific query, and use RNNs to encode and construct a graph-walking agent.

Rule types/Rule combinations. NLIL (Yang and Song 2020) goes beyond simple chain-like rules. Subgraphs are used in (Teru, Denis, and Hamilton 2020) to perform reasoning, and not just paths. We generate weighted, entity-independent, chain-like rules as in NeuralLP. Our scoring function combines rule scores via a linear combination. For a rule 𝑟 and a pair of entities 𝑎, 𝑏, the rule score is just 1 if there exists a relational path from 𝑎 to 𝑏 following the rule 𝑟 and 0 otherwise. We use rule weights as a measure of importance (but not as probabilities). For Neural LP, DRUM, RNNLogic and other comparable codes, the scoring functions depend on the set of paths from 𝑎 to 𝑏 associated with 𝑟. AnyBURL uses maximum confidence scores.

Scalability/Compact Rule sets. As noted above, many recent papers use RNNs in the process of finding chain-like rules and this can lead to expensive computation times. On the other hand, bottom-up rule-learners such as AnyBURL are much faster. The main focus of our work is obtaining compact rule sets for the sake of interpretability while maintaining scalability via LP models and column generation. NeuralLP usually returns compact rule sets while AnyBURL returns a large number of rules (and does not prune discovered rules for interpretability), and RNNLogic is somewhere in between (the number of output rules can be controlled).

Model

We propose an LP model inspired by LP boosting methods for classification using classical column generation techniques (Demiriz, Bennett, and Shawe-Taylor 2002; Eckstein and Goldberg 2012; Eckstein, Kagawa, and Goldberg 2019; Dash, Günlük, and Wei 2018). Our goal is to create a weighted linear combination of first-order logic rules to be used as a scoring function for KGC. In principle, our model has exponentially many variables corresponding to the possible rules. In practice, we initialize the LP with few initial
candidate rules. If the solution is satisfactory, we stop, otherwise we use column generation and generate additional rules that can improve the overall solution.

Knowledge graphs: Let V be a set of entities, and let R be a set of n binary relations defined over $V \times V$. A knowledge graph (KG) represents a set of facts $F \subseteq V \times R \times V$ as a labeled, directed multigraph G. Let $F = \{(t^i, r^i, h^i) : i = 1, \ldots, |F|\}$ where $t^i \neq h^i \in V$, and $r^i \in R$. The nodes of G correspond to entities in F and the edges to facts in F: a fact (t, r, h) in F corresponds to the directed edge (t, h) in G labeled by the relation r, depicted as $t \xrightarrow{r} h$. Here t is the tail of the directed edge, and h is the head. Let E stand for the list of directed edges in G. In practical KGs missing facts can be defined over V and R are not assumed to be incorrect. The knowledge graph completion task consists of taking a KG as input and answering a list of queries of the form $(t, r, ?)$ and $(?, r, h)$, constructed from facts (t, r, h) in a test set. The query $(t, r, ?)$ asks for a head entity h such that (t, r, h) is a fact, given a tail entity t and a relation r. A collection of facts F is divided into a training set F_{tr}, a validation set F_{va}, and a test set F_{te}. The KG G corresponding to F_{tr} is constructed and a scoring function is learnt from G and evaluated on the test set.

Goal: For each relation r in G, we wish to learn a scoring function $f : (t, r, h) \rightarrow \mathbb{R}$ that returns high scores for true facts (in F) and low scores for facts not in F. To do this, we find a set of closed, chain-like rules R_1, \ldots, R_p and positive weights w_1, \ldots, w_p where each rule R_i has the form

$$r_1(X, X_1) \land r_2(X_1, X_2) \land \cdots \land r_l(X_{l-1}, Y) \rightarrow r(X, Y). \tag{1}$$

Here r_1, \ldots, r_l are relations in G, and the length of the rule is l. The interpretation of this rule is that if for some entities (or nodes) $X, Y \in G$ there exist entities X_1, \ldots, X_l of G such that $r_1(X, X_1), r_1(X_{l-1}, Y)$ and $r_j(X_{j-1}, X_j)$ are true for $j = 2, \ldots, l-1$, then $r(X, Y)$ is true. We refer to the conjunction of relations in (1) as the clause associated with the rule R_i. Thus each clause C_i is a function from $V \times V$ to $\{0, 1\}$, and we define $|C_i|$ to be the number of relations in C_i. Clearly, $C_i(X, Y) = 1$ for entities $X, Y \in G$ if and only if there is a relational path of the form

$$X \xleftarrow{r_1} X_1 \cdots \xleftarrow{r_{l-1}} X_{l-1} \xrightarrow{r_l} Y.$$

Our learned scoring function for relation r is simply

$$f_r(X, Y) = \sum_{i=1}^{p} w_i C_i(X, Y) \text{ for all } X, Y \in V. \tag{2}$$

We learn weights of the linear scoring function above by solving an LP that rewards high scores (close to 1) to training facts and penalizes positive scores given to missing facts. Given a query $(t, r, ?)$ constructed from a fact (t, r, h) from the test set, we calculate $f_r(t, v)$ for every entity $v \in V$, and the rank of the correct entity h is the position of h in the sorted list of all entities v (sorted by decreasing value of $f_r(t, v)$). We similarly calculate the rank of t for the query $(?, r, h)$. We then compute standard metrics such as MRR (mean reciprocal rank), Hits@1, and Hits@10 (Sun et al. 2020) in the filtering setting (Bordes et al. 2013). An issue in rank computation is that multiple entities (say e' and e'') can get the same score for a query and different treatment of equal scores can lead to very different MRR values. In optimistic ranking, an entity is given a rank equal to one plus the number of entities with strictly larger score. We use random break ranking (an option available in NeuralLP), where ties in scores are broken randomly.

New LP model for rule learning for KGs: Let K denote the set of clauses of possible rules of the form (1) with maximum rule length L. Clearly, $|K| = n^2$, where n is the number of relations. Let E_r be the set of edges in G labeled by relation r, and assume that $|E_r| = m$. Let the rth edge in E_r be (X_t, Y_t). We compute a_{ik} as $a_{ik} = C_k(X_t, Y_t)$: $a_{ik} = 1$ if and only if there is a relational path associated with the clause C_k from X_t to Y_t. Furthermore, let neg_k be a number associated with the number of “nonedges” (X', Y') from $(V \times V) \setminus E_r$ for which $C_k(X', Y') = 1$. We calculate neg_k for the kth rule as follows. We consider the tail node t and head node h for each edge in E_r. We compute the set of nodes S that can be reached by a path induced by the kth rule starting at the tail. If there is no edge from t to a node v in S labeled by r, we say that v is an invalid end-point. Let right_k be the set of such invalid points. We similarly calculate the set left_k of invalid start-points based on paths ending at h induced by the kth rule. The total number of invalid start and end points for all tail and head nodes associated with edges in E_r is $\text{neg}_k = |\text{right}_k| + |\text{left}_k|$. For a query of the form $(t, r, ?)$ where t is a tail node of an edge in E_r, the scoring function defined by the kth rule alone gives a positive and equal score to all nodes in right_k.

Our model for rule-learning is given below.

(LPR)

$$z_{\text{min}} = \min_{\eta_i, \tau, w_k} \sum_{i=1}^{m} \eta_i + \tau \sum_{k \in K} \text{neg}_k w_k \tag{3}$$

s.t. \hspace{1cm} \sum_{k \in K} a_{ik} w_k + \eta_i \geq 1 \text{ for all } i \in E_r \tag{4}

$$\sum_{k \in K} (1 + |C_k|) w_k \leq \kappa \tag{5}$$

$$w_k \in [0, 1] \text{ for all } k \in K \tag{6}$$

$$\eta_i \geq 0 \text{ for all } i \in E_r. \tag{7}$$

The variable w_k is restricted to lie in $[0, 1]$ and is positive if and only if clause $k \in K$ is a part of the scoring function (2). The parameter κ is an upper bound on the complexity of the scoring function (defined as the number of clauses plus the number of relations across all clauses). η_i is a penalty variable which is positive if the scoring function defined by positive w_ks gives a value less than 1 to the ith edge in E_r. Therefore, the $\sum_{i=1}^{m} \eta_i$ portion of the objective function attempts to maximize $\sum_{i=1}^{m} \min_{f_r} \{f_r(X_t, Y_t), 1\}$, i.e., it attempts to approximately maximize the number of facts in E_r that are given a “high-score” of 1 by f_r. In addition, we have the parameter $\tau > 0$ which represents a tradeoff between how well our weighted combination of rules performs on the known facts (gives positive scores), and how poorly it performs on some “missing” facts. We make this
precise shortly. Maximizing the MRR is a standard objective for KGC and thus the objective function of LPR is only an approximation; see the next Theorem. We still obtain high-quality prediction rules using LPR.

Theorem 1. Let IPR be the integer programming problem created from LPR by replacing equation (6) by \(w_k \in \{0, 1\} \) for all \(k \in K \), and letting \(\tau = 0 \). Given an optimal solution with objective function value \(\gamma \), one can construct a scoring function such that \(1 - \gamma/m \) is a lower bound on the MRR of the scoring function calculated by the optimistic ranking method, when applied to the training set triples.

The theorem above justifies choosing IPR as an optimization formulation to find good rule sets for a relation, assuming MRR calculation via optimistic ranking. When using random break ranking, it is essential to perform negative sampling and penalize rules that create paths when there are no edges in order to produce good quality results. This is why we use \(\tau > 0 \) in LPR. We will now give an interpretation of \(\sum_k \neg e_k w_k \). To compute the MRR of the scoring function \(f_r \) in Algorithm 2 applied to the training set, for each edge \((t, r, h) \in E_r\) we need to compute the rank of the answer \(h \) to the query \((t, r, ?)\) - by comparing \(f_{r, r'}(t, v) \) with \(f_{r, r}(t, h) \) for all nodes \(v \in G \) - and the rank of answer \(t \) to the query \((?, r, h)\) - by comparing \(f_{r, r'}(v, h) \) with \(f_{r, r}(t, h) \) for all nodes \(v \). But \(\sum_k \neg e_k w_k \) is exactly the sum of scores given by \(f_r \) to all nodes in right\(k \) and left\(k \) and therefore we have the following remark.

Remark 2. Let \((t, r, h)\) be an edge in \(E_r \), and let \(U(?; r, h) \) and \(U(t; ?, r) \) be the set of invalid answers for \((?; r, h)\) and \((t; ?, r)\), respectively. Then

\[
\sum_{(t, r, h) \in E_r} \left(\sum_{v \in U(?; r, h)} f_r(v, h) + \sum_{v \in U(t; ?, r)} f_r(t, v) \right) = \sum_{k \in K} \neg e_k w_k.
\]

In other words, rather than keeping individual scores of the form \(f_{r, r'}(v, h) \) and \(f_{r, r'}(t, v) \) for missing facts \((v, r, h)\) or \((t, r, v)\) small, we minimize the sum of these scores in LPR.

It is impractical to solve LPR given the exponentially many variables \(w_k \), except when \(n \) and \(L \) are both small. An effective way to solve such large LPs is to use column generation where only a small subset of all possible \(w_k \) variables is generated explicitly and the optimality of the LP is guaranteed by iteratively solving a *pricing* problem. We do not attempt to solve LPR to optimality. We start with an initial set of candidate rules \(K_0 \subset K \) (and implicitly set all rule variables from \(K \setminus K_0 \) to 0). Let LPR\(_0 \) be the associated LP. If the solution of LPR\(_0 \) is not satisfactory, we dynamically augment the set of candidate rules to create sets \(K_i \) such that \(K_0 \subset K_1 \subset \cdots \subset K \). If LPR\(_i \) is the LP associated with \(K_i \) with optimal solution value \(z_{\text{min}} \), then it is clear that a solution of LPR\(_i \) yields a solution of LPR\(_{i+1} \) by setting the extra variables in LPR\(_{i+1} \) to zero, and therefore \(z_{\text{min}} \leq z_{\text{min}} \). We attempt to have \(z_{\text{min}} < z_{\text{min}} \) by taking the dual solution associated with an optimal solution of LPR\(_i \), and then trying to find a *negative reduced cost* rule, which we discuss shortly.

Setting up the initial LP
To set up \(K_0 \) and LPR\(_0 \), we develop two heuristics. In Rule Heuristic 1, we generate rules of lengths one and two for a relation \(r \). We create a one-relation rule from \(r' \in R \setminus \{r\} \) if it labels a large number of edges from tail nodes to head nodes of edges in \(E_r \). We essentially enumerate the length-two rules \(r_1(X, Y) \land r_2(Y, Z) \) and keep those that frequently create paths from the tail nodes to head nodes of edges in \(E_r \). In Rule Heuristic 2, we take each edge \((X, Y) \in E_r \) and find a shortest path from \(X \) to \(Y \) contained in the edge set \(E \setminus \{(X, Y)\} \) where the path length is bounded by a pre-determined maximum length. We then use the sequence of relations associated with the shortest path to generate a rule. We also use a path of length at least one more than the shortest path.

Adding new rules
Each \(K_i \) for \(i > 0 \) is constructed by adding new rules to \(K_{i-1} \). We use a modified version of Heuristic 2 to generate the additional rules. Let \(\delta_i \geq 0 \) for all \(i \in E_r \) be dual variables corresponding to constraints (4). Let \(\lambda \leq 0 \) be the dual variable associated with the constraint (5). Given a variable \(w_k \) which is zero in a solution of LPR\(_i \), dual solution values \(\delta \) and \(\lambda \) associated with the optimal solution of LPR\(_{i-1} \), the reduced cost \(r_{\text{red}} \) for \(w_k \) is

\[
\text{red}_k = \tau \neg e_k - \sum_{i \in E_r} a_{ik} \delta_i - (1 + |C_k|) \lambda.
\]

If \(\text{red}_k < 0 \), then increasing \(w_k \) from zero may reduce the LP solution value. In our heuristic, we sort the dual values \(\delta_i \) in decreasing order, then go through the associated indices \(j \) and create rules \(k \) such that \(a_{ijk} = 1 \) via a shortest path calculation. That is, we take the corresponding edge \((X, Y) \in E_r \), find the shortest path between \(X \) and \(Y \) and generate a new rule with the sequence of relations in that path. We limit the number of rules generated so that \(|K_i| - |K_{i-1}| \leq 10 \). We do not add new rules to \(K_{i-1} \) if their reduced cost is nonnegative. We describe our overall method in Algorithm 1 and give more details in (Dash and Gonçalves 2023).

Experiments
We conduct KGC experiments with 5 datasets: Kinship (Denham 1973), UMLS (McCray 2003), FB15k-237 (Toutanova and Chen 2015), WN18RR (Dettmers et al. 2018), and YAGO3-10 (Mahdisoltani, Bielia, and Suchanek 2015). The partition of FB15k-237, WN18RR, and YAGO3-10 into training, testing, and validation data sets is standard. We use the partition for UMLS and Kinship in Dettmers et al. (2018). In Table 1, we give the number of entities and relations in each dataset, and facts in each partition.

<table>
<thead>
<tr>
<th>Datasets</th>
<th># Rel.</th>
<th># Entities</th>
<th># Train</th>
<th># Test</th>
<th># Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinship</td>
<td>25</td>
<td>104</td>
<td>8544</td>
<td>1074</td>
<td>1068</td>
</tr>
<tr>
<td>UMLS</td>
<td>46</td>
<td>135</td>
<td>5216</td>
<td>661</td>
<td>652</td>
</tr>
<tr>
<td>WN18RR</td>
<td>11</td>
<td>40943</td>
<td>86835</td>
<td>3134</td>
<td>3034</td>
</tr>
<tr>
<td>FB15k-237</td>
<td>237</td>
<td>14541</td>
<td>272115</td>
<td>20466</td>
<td>17535</td>
</tr>
<tr>
<td>YAGO3-10</td>
<td>37</td>
<td>123182</td>
<td>1079040</td>
<td>5000</td>
<td>5000</td>
</tr>
</tbody>
</table>

Table 1: Sizes of datasets.
Experimental Setup

We denote the reverse relation for \(r \in R \) by \(r^{-1} \). For each fact \((t, r, h)\) in the training set, we implicitly introduce the fact \((h, r^{-1}, t)\). For each original relation \(r \) in the training set, we create a scoring function \(f_r(X, Y) \) of the form in (2) and calculate performance metrics as described right after equation (2).

We compare our results with the rule-based methods AnyBURL, NeuralLP, DRUM, and RNNLogic. We use default settings for NeuralLP and DRUM and the settings proposed by the authors of RNNLogic. We modify RNNLogic to implement the random break method to break ties. AnyBURL uses a lexicographic method to break ties; we run it for 100 seconds with the light settings which cause AnyBURL to only generate entity-independent rules. We give results for the embedding-based methods ConvE (Dettmers et al. 2018), ComplEx-N3 (Lacroix, Usunier, and Obozinski 2018), and TuckER (Balažević, Allen, and Hospedales 2018), mainly to show the maximum achievable MRR on our datasets. We ran ComplEx-N3 and TuckER on our machines with the best published hyperparameters (if available). ConvE results are taken from Dettmers et al. (2018).

We ran two variants of our code which we call “LPRules” (see Algorithm 1). In the first variant, we create \(LPR_0 \) by generating rules using Rule Heuristics 1 and 2, and then solve \(LPR_0 \) to obtain rules (thus MaxIter = 0). In the second variant (used only for YAGO3-10) we create \(LPR_0 \) with an empty set of rules and then perform 15 iterations consisting of generating up to 10 rules using the modified version of Rule Heuristic 2 followed by solving the new LP.

In other words, we create and solve \(LPR_i \) for \(i = 0, \ldots, 15 \). To compute \(neg \), we sample 2\% of the edges from \(E_r \), and compute the number of invalid paths that start at tails or end at heads of these edges. We search for the best \(\tau \) (from an input list) and \(\kappa \) for each relation. We dynamically let \(\bar{\kappa} \) equal the length of the longest rule generated plus one. We then perform 20 iterations where, at the \(i \)-th iteration, we set \(\kappa \) to \(i \bar{\kappa} \). We use the validation data set to select those \(\tau \) and \(\kappa \) that yield the best MRR. We set the maximum rule length to 6 for WN18RR, and 3 for YAGO3-10, and 4 for the other datasets. Thus \(\kappa \leq 100 \) except for WN18RR.

Results

We run the rule-based codes on a 60 core machine with 128 GBytes of RAM, and four 2.8 Intel Xeon E7-4890 v2 processors, each with 15 cores. In our code, we execute rule generation for each relation on a different thread, and solve LPs with CPLEX (IBM 2019). If one relation has many more facts than the others, as in YAGO3-10, then our code essentially uses one thread.

In Table 2, we give values for different metrics obtained with the listed codes, first for embedding methods, then for rule-based methods (if available), and then for our code. We could not run RNNLogic on FB15k-237, and report numbers from Qu et al. (2021). We run the light version of AnyBURL which yields entity-independent rules only. The best and second best values in any row for rule-based methods are given in bold and italics, respectively.

<table>
<thead>
<tr>
<th>Problem</th>
<th>metric</th>
<th>ComplEx-N3</th>
<th>TuckER</th>
<th>ConvE</th>
<th>AnyBURL</th>
<th>NeuralLP</th>
<th>DRUM</th>
<th>RNNLogic</th>
<th>LPRules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinship</td>
<td>MRR</td>
<td>0.889</td>
<td>0.891</td>
<td>0.83</td>
<td>0.626</td>
<td>0.652</td>
<td>0.566</td>
<td>0.687</td>
<td>0.746</td>
</tr>
<tr>
<td></td>
<td>H@1</td>
<td>0.824</td>
<td>0.826</td>
<td>0.74</td>
<td>0.503</td>
<td>0.52</td>
<td>0.404</td>
<td>0.566</td>
<td>0.639</td>
</tr>
<tr>
<td></td>
<td>H@10</td>
<td>0.986</td>
<td>0.987</td>
<td>0.98</td>
<td>0.901</td>
<td>0.925</td>
<td>0.91</td>
<td>0.929</td>
<td>0.959</td>
</tr>
<tr>
<td>UMLS</td>
<td>MRR</td>
<td>0.962</td>
<td>0.914</td>
<td>0.94</td>
<td>0.940</td>
<td>0.75</td>
<td>0.845</td>
<td>0.748</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td>H@1</td>
<td>0.934</td>
<td>0.837</td>
<td>0.92</td>
<td>0.916</td>
<td>0.601</td>
<td>0.722</td>
<td>0.618</td>
<td>0.812</td>
</tr>
<tr>
<td></td>
<td>H@10</td>
<td>0.996</td>
<td>0.997</td>
<td>0.99</td>
<td>0.985</td>
<td>0.958</td>
<td>0.991</td>
<td>0.928</td>
<td>0.97</td>
</tr>
<tr>
<td>FB15K-237</td>
<td>MRR</td>
<td>0.362</td>
<td>0.353</td>
<td>0.325</td>
<td>0.226</td>
<td>0.222</td>
<td>0.225</td>
<td>0.288</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>H@1</td>
<td>0.259</td>
<td>0.259</td>
<td>0.237</td>
<td>0.166</td>
<td>0.16</td>
<td>0.16</td>
<td>0.208</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>H@10</td>
<td>0.555</td>
<td>0.538</td>
<td>0.501</td>
<td>0.387</td>
<td>0.34</td>
<td>0.355</td>
<td>0.445</td>
<td>0.402</td>
</tr>
<tr>
<td>WN18RR</td>
<td>MRR</td>
<td>0.469</td>
<td>0.464</td>
<td>0.43</td>
<td>0.454</td>
<td>0.381</td>
<td>0.381</td>
<td>0.451</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>H@1</td>
<td>0.434</td>
<td>0.436</td>
<td>0.4</td>
<td>0.423</td>
<td>0.367</td>
<td>0.367</td>
<td>0.415</td>
<td>0.422</td>
</tr>
<tr>
<td></td>
<td>H@10</td>
<td>0.545</td>
<td>0.517</td>
<td>0.52</td>
<td>0.527</td>
<td>0.409</td>
<td>0.41</td>
<td>0.524</td>
<td>0.532</td>
</tr>
<tr>
<td>YAGO3-10</td>
<td>MRR</td>
<td>0.574</td>
<td>0.265</td>
<td>0.44</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>H@1</td>
<td>0.499</td>
<td>0.184</td>
<td>0.35</td>
<td>0.381</td>
<td></td>
<td></td>
<td></td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>H@10</td>
<td>0.705</td>
<td>0.426</td>
<td>0.62</td>
<td>0.598</td>
<td></td>
<td></td>
<td></td>
<td>0.684</td>
</tr>
</tbody>
</table>

Table 2: Comparison of results on standard datasets. The results for NeuralLP, DRUM, RNNLogic, LPRules use the random break metric. †ConvE results are from Dettmers et al. (2018). ‡We could not run RNNLogic on FB15k-237, and report numbers from Qu et al. (2021). We run the light version of AnyBURL which yields entity-independent rules only.
Algorithm 1: LPRules

Input: Train, test, & validation datasets.
Parameters: Sets of \(\tau \) values & complexity bounds \(\kappa \).
Output: Rules & evaluation metrics.

1: for each relation \(r \) in train do
2: Call Rule Heur. 1 & 2 to generate initial rule set \(K_0 \).
3: Set up LPR\(_i\) from \(K_0 \) using \(\min \tau \) & \(\min \kappa \) & solve.
4: Set \(\text{bestMRR} = 0 \), \(\text{best}\kappa = \text{best}\tau = -\infty \).
5: for \(i \leftarrow 1 \) to MaxIter do
6: Generate new rules with modified Rule Heur. 2.
7: Add new rules with reduced cost \(< 0\) to \(K_{i-1} \) to form \(K_i \), set up LPR\(_i\) from \(K_i \) & solve.
8: end for
9: for each \(\tau \) do
10: for each \(\kappa \) do
11: Set up LPR\(_i\) from \(K_i \) using current value of \(\tau \) & \(\kappa \) & solve.
12: Use soln & compute MRR on validation facts.
13: if MRR > bestMRR then
14: \(\text{bestMRR} = \text{MRR} \).
15: \(\text{best}\tau = \text{current}\tau, \text{best}\kappa = \text{current}\kappa. \)
16: end if
17: end for
18: end for
19: Set up LPR\(_i\) from \(K_i \) using \(\text{best}\tau, \text{best}\kappa \) & solve.
20: Output rules with corresponding weights in LPR\(_i\).
21: end for
22: Compute evaluation metrics on test set.

rule-based code across all metrics on Kinship, obtains better MRR and Hits@10 values on WN18RR and YAGO3-10, and second best values for FB15k-237 (and MRR and Hits@1 for UMLS). This is notable as we use very simple rule generation heuristics, generate relatively compact rules, and use significantly less computing time than DRUM, NeuralLP, and RNNLogic (see Table 3). These three codes are unable to produce results for RNNLogic-3 within a reasonable time frame. For YAGO3-10, our column generation approach, where we generate a small number of rules, and then use the dual values to focus on “uncovered” facts (not implied by previous rules) is essential.

In Table 3, we compare the average number of rules per relation (we could not extract rules from DRUM) in the final solution and the running time (DRUM has comparable running time to NeuralLP). Our code always obtains Pareto optimal solutions (when measured on MRR and average number of rules). For WN18RR and YAGO3-10, we obtain the best MRR values with few rules: we get excellent results for YAGO3-10 with just 7.8 rules on average.

In Figure 1, we show how MRR varies with average number of rules in the solution. RNNLogic chooses top-\(K \) rules for testing (\(K \) is an input parameter), and we run it with different values of \(K \). For AnyBURL, we take the rules generated at 10, 50, and 100 seconds. We are unable to control the output number of rules in NeuralLP. Figure 1 (b) is especially striking and demonstrates a much better MRR to number of rules tradeoff than RNNLogic on WN18RR.

Our LP formulation can be initiated with any input candidate set of rules. In Figure 2 (a) and (b), we show the effect of combining rules generated by AnyBURL and RNNLogic with our rules. MRR values are shown on the y-axis and the letters A,B,C,D on the x-axis stand for four scenarios. In Scenario A, we run another rule-based code. In Scenario B, we take as input the rules and rule-weights from Scenario A to build our scoring function. In Scenario C, we give these rules to our LP formulation, and recalculate weights, while limiting solution complexity. Finally, in Scenario D, we give the rules in Scenario C along with our heuristically generated rules to our LP formulation. Our scoring function is neither better nor worse than those of AnyBURL and RNNLogic (or NeuralLP). Using the same rules and rule weights generated by AnyBURL (in Scenario A), our scoring function produces (in Scenario B) better MRR in two cases and worse in three cases. Just using our scoring function instead of AnyBURL’s, we get an MRR of 0.267 (instead of 0.226) for FB15K-237, and an MRR of 0.480 (instead of 0.449) for YAGO3-10; these values are better than those obtained by either AnyBURL or LPRules. We get better MRR values in Scenario C than AnyBURL for Kinship and FB15K-237 with much more compact solutions. That is we choose a subset of the AnyBURL rules, give different weights, and yet get a better solution. It is hard to see a trend going from Scenario B to C. We conclude that our LP approach can combine rules generated by other methods with our rules, and get similar or larger MRR values while choosing few rules.

Entity-independent rules have a strong inductive bias, especially when very few rules are generated per relation. We compare our code on an inductive benchmark dataset with GraIL (Teru, Denis, and Hamilton 2020), which learns the entity-independent subgraph structure around the edges associated with each relation. The relational paths we use are special cases of the subgraphs learnt by GraIL. A low-quality solution of the much harder learning problem in GRAIL could lead to worse predictions than a high-quality solution of our simpler learning problem. We indeed obtain
better results than GraIL on its inductive benchmarks, see Table 4. Each dataset is split into a KG for training and a KG for testing that has a subset of the training KG relations, but no common entities. All GraIL results were obtained with the parameter “Negative Sampling Mode” set to “all”.

Conclusion
Most rule-based methods do not focus on compact rule sets. Our relatively simple LP based method for selecting weighted logical rules returns state-of-the-art results for a number of standard KG datasets even with compact (and more interpretable) rule sets. It scales better than many neuro-symbolic methods. Our method also yields better results in an inductive setting than a recent solver that performs subgraph reasoning. Our work can be improved further in several areas such as accuracy and scaling with KG size. To improve scaling, one can sample facts when dealing with large KGs in order to obtain LPs of manageable size and also process different groups of facts on different machines. As demonstrated in Figure 2, accuracy can be improved by generating more rules using different algorithms. Handling ontologies, more complex queries, and more general rules would be other natural extensions of our work.

<table>
<thead>
<tr>
<th>Ver.</th>
<th>GraIL MRR</th>
<th>GraIL H@1</th>
<th>GraIL H@10</th>
<th>LPRules MRR</th>
<th>LPRules H@1</th>
<th>LPRules H@10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>0.556</td>
<td>0.434</td>
<td>0.769</td>
<td>0.682</td>
<td>0.636</td>
<td>0.745</td>
</tr>
<tr>
<td>v2</td>
<td>0.587</td>
<td>0.497</td>
<td>0.734</td>
<td>0.646</td>
<td>0.609</td>
<td>0.700</td>
</tr>
<tr>
<td>v3</td>
<td>0.303</td>
<td>0.254</td>
<td>0.391</td>
<td>0.398</td>
<td>0.359</td>
<td>0.460</td>
</tr>
<tr>
<td>v4</td>
<td>0.533</td>
<td>0.456</td>
<td>0.671</td>
<td>0.609</td>
<td>0.577</td>
<td>0.668</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>0.238</td>
<td>0.173</td>
<td>0.339</td>
<td>0.313</td>
<td>0.271</td>
<td>0.380</td>
</tr>
<tr>
<td>v2</td>
<td>0.203</td>
<td>0.129</td>
<td>0.328</td>
<td>0.396</td>
<td>0.315</td>
<td>0.539</td>
</tr>
</tbody>
</table>

Table 4: Results on inductive datasets. We were not able to obtain results for GraIL on FB15k-237, v3/v4.

References

