
Second-Order Quantified Boolean Logic

Jie-Hong R. Jiang
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
jhjiang@ntu.edu.tw

Abstract

Second-order quantified Boolean formulas (SOQBFs) gen-
eralize quantified Boolean formulas (QBFs) by admitting
second-order quantifiers on function variables in addition to
first-order quantifiers on atomic variables. Recent endeavors
establish that the complexity of SOQBF satisfiability corre-
sponds to the exponential-time hierarchy (EXPH), similar to
that of QBF satisfiability corresponding to the polynomial-
time hierarchy (PH). This fact reveals the succinct expres-
sion power of SOQBFs in encoding decision problems not
efficiently doable by QBFs. In this paper, we investigate
the second-order quantified Boolean logic with the following
main results: First, we present a procedure of quantifier elim-
ination converting SOQBFs to QBFs and a game interpreta-
tion of SOQBF semantics. Second, we devise a sound and
complete refutation-proof system for SOQBF. Third, we de-
velop an algorithm for countermodel extraction from a refu-
tation proof. Finally, we show potential applications of SO-
QBFs in system design and multi-agent planning. With these
advances, we anticipate practical tools for development.

1 Introduction
Theoretical and practical advancements in Boolean satis-
fiability (SAT) (Biere et al. 2021) have made it an im-
portant technology enabling various complex computation
tasks in artificial intelligence, hardware design, software en-
gineering, among others. The frontiers of satisfiability re-
search are continuously extended to (non-)Boolean queries
involving different types of quantifiers. Notably, the quan-
tified Boolean formula (QBF) allows existential and uni-
versal quantifiers to appear in an expression. The depen-
dency quantified Boolean formula (DQBF) (Peterson and
Reif 1979) further extends QBF by allowing Henkin quanti-
fiers (Henkin 1961) to explicitly specify the dependencies of
existential variables on universal variables. These extensions
make the underlying computational complexity lifted from
the NP-completeness of SAT (Cook 1971), to the PSPACE-
completeness of QBF (Stockmeyer and Meyer 1973), and
to the NEXP-completeness of DQBF (Peterson and Reif
1979). To date, practical decision procedures for checking
the QBF and DQBF satisfiability are under active research,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and various solvers and preprocessors are available (Biere
et al. 2021; Scholl and Wimmer 2018).

The second-order quantified Boolean formula (SOQBF)
extends QBF in the allowance of function variables and
their quantification. Its satisfiability checking has complex-
ity corresponding to the exponential-time hierarchy (EXPH)
(Dawar, Gottlob, and Hella 1998), as was established in
(Lohrey 2012; Lück 2016). The connection between SO-
QBF and EXPH is similar to that between QBF and the
polynomial-time hierarchy (PH) (Stockmeyer 1976). Essen-
tially, DQBFs are an elementary class of SOQBFs with
only one level of existential quantifiers over function vari-
ables. SOQBFs can be powerful to succinctly encode de-
cision problems that have no succinct QBF encoding. There
are recent efforts studying variants (Hannula et al. 2016) and
special fragments (Hannula et al. 2020) of SOQBFs.

In this work, we study second-order quantified Boolean
logic in the aspects of representation and interpretation,
proof system, and countermodel extraction. The main results
include
• presenting a procedure of quantifier elimination convert-

ing SOQBFs to QBFs and a game interpretation of SO-
QBF semantics (Section 3),

• devising a sound and complete refutation proof system
(Section 4),

• developing an algorithm of extracting a countermodel,
namely, a winning strategy under the game-theoretic in-
terpretation of SOQBF, from a refutation proof (Sec-
tion 5), and

• showing potential applications of SOQBFs in system de-
sign and multi-agent planning (Section 6).

With these advances, we anticipate practical tools whose de-
velopment may open new avenues for tackling computation
problems too challenging to be formulated previously.

2 Preliminaries
In this work, we are concerned with two types of variables,
including atomic variables, represented with lower-case let-
ters, e.g., x, y, and function variables, represented with, e.g.,
f, g. In the sequel, we do not specify a variable type when
it is clear from the context. A variable set is represented
with a upper-case letter, e.g., X = {x1, . . . , xn}, F =
{f1, . . . , fn}. The cardinality of a set X is denoted as |X|.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4007

For notational convention, Boolean connectives are de-
noted with “∧” (sometimes omitted) for conjunction, “∨”
for disjunction, “→” for implication, “↔” for biconditional,
and “¬” for negation. A literal is a variable (positive polar-
ity) or the negation of a variable (negative polarity). A clause
is a disjunction of literals; a cube is a conjunction of literals.
A conjunctive normal form (CNF) formula is a conjunction
of clauses. Alternatively, a clause or cube is denoted with a
set of literals, and a CNF formula is denoted with a set of
clauses. In the sequel, we assume that a CNF formula is free
of tautological clauses, namely, clauses containing literals of
the same variable of opposite polarities are removed.

When an atomic variable x is valuated, denoted [[x]], it
takes on a value from the Boolean domain B = {0, 1}.
A function variable f is associated with a set of atomic
variables, called the support set of f , denoted S(f). When
f is valuated, denoted [[f]], it takes on a Boolean function
[[f]] : B|S(f)| → B over variables S(f). We remark that the
support set of a function variable may, in general, contain
function variables. However, in the context of second or-
der quantified Boolean logic, the dependency imposed by
g ∈ S(f), for some function variable g, can be rewritten by
replacing g in S(f) with a fresh new atomic variable xg and
asserting the equivalence xg ↔ g. Hence, without loss of
generality, we assume the support set of a function variable
consists of only atomic variables.

An assignment α over atomic variables X is a mapping
α : X ′ → B for X ′ ⊆ X that valuates each x ∈ X ′. We al-
ternatively represent an assignment on atomic variables as
a cube. E.g., the assignment α over X = {x1, x2} with
α(x1) 7→ 1, α(x2) 7→ 0 is represented as α = x1¬x2; in
the special case when X ′ = ∅, the cube representation of
the corresponding assignment is α = 1, i.e., a cube without
any literals. An assignment α is called full with respect to
an atomic variable set X if every variable xi ∈ X appears
in the cube representation of α. Otherwise, α is called par-
tial with respect toX . Given an assignment α over variables
X , its projection on variables X ′, denoted α↓X′ , is a sub-
mapping of α on variables X ∩ X ′. E.g., the projection of
assignment α = x1¬x2 on X ′ = {x2, x3} is α↓X′ = ¬x2.
Similarly, an assignment α over function variables F maps
each f ∈ F to a function α(f) : Bk → B for k = |S(f)|.
In the sequel, we do not specify the domain type (atomic or
function variables) of an assignment when it is clear from
the context.

Given a formula ϕ, we define the cofactor of ϕ with re-
spect to an assignment α over atomic variables X , denoted
ϕ|α, as the induced formula of ϕ after substituting variables
X with their respective mapped values under α, and replac-
ing every function variable f , for S(f) ∩ X 6= ∅, with a
new function variable fα↓S(f) with support set S(f) \ X ,
which denotes an instantiated version of f under assign-
ment α↓S(f). E.g., for formula ϕ = (¬f1 ∨ f2 ∨ x1 ∨
x3)(f1 ∨ ¬f2 ∨ x2 ∨ ¬x3) with S(f1) = {x1, x3} and
S(f2) = {x2, x3} and assignment α = x1¬x2, we have
ϕ|α = (fx1

1 ∨ ¬f¬x2
2 ∨ ¬x3). Note that the valuation

[[fα↓S(f)]] is a function referring only to variables S(f) \ X
and it equals the function [[f]] induced under assignment α.

That is, [[fα↓S(f)]] is a projected function valuation of f with
respect to assignment α↓S(f).

3 Second-Order Quantified Boolean Formula
Syntax
A second-order quantified Boolean formula (SOQBF) Φ can
be inductively defined in the Backus-Naur form with the fol-
lowing rules.

Φ ::= 0 | 1 | x | f | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | ∃f.Φ (1)

for x and f being atomic and function variables, respec-
tively. A quantifier ∀ or ∃ is called a first-order (resp.
second-order) quantifier if the variable bound by it is an
atomic (resp. a function) variable. I.e., in the above con-
struction rules, the quantifiers for ∃x and ∃f are first-order
and second-order quantifiers, respectively. For brevity, the
construction rules with quantifier ∀ and Boolean connective
∨ are not shown as they are similar to those of quantifier
∃ and Boolean connective ∧, and also can be constructed
by the ¬ and ∃ rules and the ¬ and ∧ rules, respectively.
A function variable in an SOQBF is specified with a fixed
arity. There are two possible choices to describe the argu-
ments of an n-ary function variable. One is to list all its ar-
guments explicitly, and in this case a function variable may
have multiple appearances in a formula with different ar-
guments. E.g., in expression f(f(x, y), z), the 2-ary func-
tion variable f appears twice with different arguments. The
other is to assume that an n-ary function variable always
appear in a formula with fixed arguments. E.g., in expres-
sion (x ∨ f ∨ g)(z ∨ ¬f ∨ ¬g), assume f and g are 2-
ary and 3-ary function variables with fixed arguments (x, y)
and (x, y, z), respectively. We note that the former can al-
ways be converted to the latter through Ackermann’s expan-
sion (Ackermann 1954). E.g., f(f(x, y), z) is converted to
∃w.f1(w, z) ∧ (w ↔ f2(x, y)) along with the constraint
∀x, y, z, w.((x↔ w) ∧ (y ↔ z))→ (f1(w, z)↔ f2(x, y))
for w being a fresh new atomic variable. The formulas be-
fore and after the conversion are equisatisfiable. Therefore,
without loss of generality, we assume a function variable has
fixed arguments.

Any SOQBF can be converted to the following prenex
form

Q1F1,Q2F2, . . . ,QnFn, Q1X1, . . . , QmXm.ϕ, (2)

whereQi, Qj ∈ {∀, ∃}, forQi 6= Qi+1 and Qj 6= Qj+1, Fi
and Xj are nonempty sets of function and atomic variables,
respectively, with S(f) ⊆ X for any f ∈ Fi, and ϕ is a
quantifier-free formula expressed in terms of variables F1 ∪
. . . ∪ Fn ∪ X1 ∪ . . . ∪ Xm. In Eq. (2), the quantifier part
on the left is called the prefix, and ϕ is called the matrix. A
function variable f ∈ Fi bound by quantifierQi is said to be
of (second-order) quantification level i, denoted lev(f) = i.
Similarly, an atomic variable x ∈ Xi bound by quantifierQi
is said to be of first-order quantification level i. Also, we use
the notation qnt(f) to refer to the quantifier type of variable
f . In this work, we assume a formula is totally quantified,
that is, every variable is bound by some quantifier.

4008

(a) Block diagram of matrix circuit.

(b) Detailed circuit for the function-variable block in (a).

Figure 1: Matrix circuit of an SOQBF.

As to be shown, Eq. (2) can always be rewritten into an
SOQBF with a single first-order quantification level, i.e.,
m = 1, of the form

Q1F1,Q2F2, . . . ,QnFn, ∀X.ϕ, or (3)
Q1F1,Q2F2, . . . ,QnFn, ∃X.ϕ. (4)

As Eq. (3) and Eq. (4) are dual to each other, any property
obtained for Eq. (3) can be carried to Eq. (4) by duality.
Hence, in the sequel, we shall primarily consider Eq. (3).

Semantics
Consider the SOQBF Φ of Eq. (2). The matrix ϕ over func-
tion variables f1, f2, . . . and atomic variables X =

⋃m
i=1Xi

can be viewed as a circuit as illustrated in Fig. 1, where each
box fi of the circuit in Fig. 1(a) corresponds to a multiplexer
tree (or a binary decision diagram) controlled by the support
set S(fi) ⊆ X of fi, |S(fi)| = k as shown in Fig. 1(b). An
assignment to function variable fi corresponds to determin-
ing the truth-table values t0, . . . , t2k−1, for k = |S(fi)|, the
red boxes in Fig. 1(b). For an assignment α to the function
variables, the truth or falsity of the SOQBF Φ is determined
by the QBF Q1X1, . . . , QmXm.ϕ

′, where ϕ′ is the circuit
induced by substituting all the truth-table values with con-
stant 0 or 1 according to α. Therefore, the SOQBF Φ can
be evaluated by a series of QBF evaluations with respect
to function variable assignments following the second-order
quantifiers Q1F1,Q2F2, . . . ,QnFn.

Consequently, the SOQBF of Eq. (2) is true if there exists
a model, namely, a set of Skolem functionals for the existen-
tial function variables such that substituting each existential
function variable with its corresponding Skolem functional
makes the induced formula true. The Skolem functional of
variable f ∈ Fi for Qi = ∃ is a higher-order function that
maps every assignment to variables

⋃
j<i,Qj=∀ Fj to an as-

signment to variable f . On the contrary, an SOQBF is false if
there exists a countermodel, namely, a set of Herbrand func-
tionals for the universal function variables such that substi-
tuting each universal function variable with its correspond-
ing Herbrand functional makes the induced formula false.
The Herbrand functional of variable f ∈ Fi for Qi = ∀ is
a higher-order function that maps every assignment to vari-
ables

⋃
j<i,Qj=∃ Fj to an assignment to variable f .

The truth and falsity of SOQBFs can be interpreted from
a game-theoretic viewpoint. An SOQBF game is played by
the exist-player, who controls the assignments to the exis-
tential function variables, and the forall-player, who con-
trols the universal function variables. They take turns to as-
sign function variables in ascending order of the quantifi-
cation levels in the prefix. The former aims to satisfy the
formula, whereas the latter aims to falsify the formula. The
SOQBF is true if the exist-player has a winning strategy and
false if the forall-player has a winning strategy. The win-
ning strategy of the exist-player is effectively the model of
Skolem functionals, and that of the forall-player is effec-
tively the countermodel of Herbrand functionals. As an SO-
QBF is either true or false, the SOQBF game is determined,
that is, either the exist-player or the forall-player has a win-
ning strategy. This determinacy contrasts with the indeter-
minacy of the DQBF game, where the Henkin quantifier re-
sults in the asymmetric roles between the forall-player and
the (multiple) exist-players (Balabanov, Chiang, and Jiang
2014). Note that when a DQBF is converted to an SOQBF
by Skolemization, the converted SOQBF is of one level of
function-variable quantification, in the form ∃F1, ∀X.ϕ.

Quantifier Elimination and QBF Conversion
Two formulas are called model-equivalent if there is a bi-
jection between the models of the two formulas. That is,
a model of one formula uniquely maps to a model of the
other formula, and vice versa. A formula-rewriting transfor-
mation is model-preserving if the formulas before and after
the transformation are model-equivalent.

An SOQBF can be converted to a model-equivalent QBF
via ground instantiation, where every function variable is in-
stantiated with respect to a full assignment over its support
set. The conversion can be done by iteratively eliminating
the innermost atomic variable through formula expansion
until no more atomic variable is left. Specifically, for the
SOQBF

Q1F1, . . . ,QnFn, QX, ∀y.ϕ, (5)

by eliminating variable y, it can be rewritten into a model-
equivalent SOQBF as

Q1F
y
1 ∪ F

¬y
1 , . . . ,QnF yn ∪ F¬yn , QX.ϕ|y ∧ ϕ|¬y, (6)

4009

where F yi = {fα∧y | fα ∈ Fi, y ∈ S(fα)} ∪ {fα | fα ∈
Fi, y 6∈ S(fα)} and F¬yi = {fα∧¬y | fα ∈ Fi, y ∈
S(fα)} ∪ {fα | fα ∈ Fi, y 6∈ S(fα)}. Note that without
instantiation, a function variable f is considered as fα for
α = 1. Also, for

Q1F1, . . . ,QnFn, QX, ∃y.ϕ, (7)
by eliminating variable y, it can be rewritten as
Q1F

y
1 ∪ F

¬y
1 , . . . ,QnF yn ∪ F¬yn , QX.ϕ|y ∨ ϕ|¬y. (8)

Note that after all atomic variables are eliminated, any in-
stantiated function variable, say fα, is of an empty support
set. That is, its valuation corresponds to a 0-ary function that
represents a truth-table entry under assignment α of function
[[f]]. As a 0-ary function variable can be seen as an effective
atomic variable, the final formula is effectively a QBF.
Example 1. Consider the SOQBF

∀g, ∃f, ∀x1, ∃x2, ∀x3.ϕ,

with the support sets S(g) = {x1, x2} and S(f) = {x1, x3},
and the matrix

ϕ = (g ∨ f ∨ ¬x1 ∨ ¬x2 ∨ x3)(g ∨ ¬f).

Expanding on x3 yields the SOQBF
∀g, ∃F, ∀x1, ∃x2.ϕ

′,

where F = {fx3 , f¬x3} with S(fx3) = S(f¬x3) = {x1},
and
ϕ′ = (g ∨ f¬x3 ∨ ¬x1 ∨ ¬x2)(g ∨ ¬f¬x3)(g ∨ ¬fx3).

Expanding further on x2 yields the SOQBF
∀G, ∃F, ∀x1.ϕ

′′,

where G = {gx2 , g¬x2} with S(gx2) = S(g¬x2) = {x1},
and
ϕ′′ = (gx2 ∨ f¬x3 ∨ ¬x1)(gx2 ∨ ¬f¬x3)(gx2 ∨ ¬fx3)∨

(g¬x2 ∨ ¬f¬x3)(g¬x2 ∨ ¬fx3).

Finally, expanding on x1 yields the SOQBF,
∀G′, ∃F ′.ϕ′′′,

where G′ = {gx1x2 , gx1¬x2 , g¬x1x2 , g¬x1¬x2} with
S(gx1x2) = S(gx1¬x2) = S(g¬x1x2) = S(g¬x1¬x2) = {},
F ′ = {fx1x3 , fx1¬x3 , f¬x1x3 , f¬x1¬x3} with S(fx1x3) =
S(fx1¬x3) = S(f¬x1x3) = S(f¬x1¬x3) = {}, and
ϕ′′′ = ((gx1x2 ∨ fx1¬x3)(gx1x2 ∨ ¬fx1¬x3)

(gx1x2 ∨ ¬fx1x3)∨
(gx1¬x2 ∨ ¬fx1¬x3)(gx1¬x2 ∨ ¬fx1x3))∧
((g¬x1x2 ∨ ¬f¬x1¬x3)(g¬x1x2 ∨ ¬f¬x1x3)∨
(g¬x1¬x2 ∨ ¬f¬x1¬x3)(g¬x1¬x2 ∨ ¬f¬x1x3)).

After x1, x2, x3 are expanded, the final SOQBF is effectively
a QBF as all the function variables are of zero arity.

The model-equivalence between Eq. (5) and Eq. (6) and
that between Eq. (7) and Eq. (8) can be verified by the se-
mantics of SOQBF as defined in Section 3.
Proposition 1. The SOQBFs of Eq. (5) and Eq. (6) are
model-equivalent.
Proposition 2. The SOQBFs of Eq. (7) and Eq. (8) are
model-equivalent.

Normal Form Conversion
We note that any totally-quantified SOQBF can be converted
to the normal form of Eq. (3) through a sequence of model-
preserving transformation steps. Specifically, a non-prenex
SOQBF can be converted to a prenex SOQBF by variable
renaming; the second-order quantifiers can be placed on the
left of the first-order quantifiers because the support-set in-
formation is explicitly specified for all function variables;
the first-order quantifiers can be homogenized to all univer-
sal with a modified Skolemization procedure detailed in the
following. Without loss of generality, the SOQBF

Q1F1, . . . ,QnFn, ∀X1, ∃y, ∀X2.ϕ, (9)

with S(f) ⊆ X1 ∪{y}∪X2 for f ∈ Fi, can be converted to

Q1F1, . . . ,QnFn, ∃fy, ∀X1, ∀y, ∀X2.(y ↔ fy)→ ϕ, (10)

where fy is a fresh new function variable with S(fy) = X1.
Proposition 3. The SOQBFs of Eq. (9) and Eq. (10) are
equisatisfiable, and are model-equivalent with respect to the
models of function variables F1 ∪ . . . ∪ Fn.

Proof. Their relation can be shown by QBF conversion.

When the variable y is not in any support set of the func-
tion variables of Eq. (9), then the standard Skolemization
applies, and Eq. (10) reduces to

Q1F1, . . . ,QnFn, ∃fy, ∀X1, ∀X2.ϕ
′, (11)

where ϕ′ is obtained from ϕ by replacing every appearance
of variable y in ϕ with variable fy .

In Eq. (3), when Qn = ∀, it can be simplified to an equi-
satisfiable SOQBF of n−1 levels of second-order quantifiers
as the following proposition states.
Proposition 4. The SOQBF of Eq. (3) withQn = ∀ is equi-
satisfiable to

Q1F1,Q2F2, . . . ,Qn−1Fn−1, ∀X ′, ∀X.ϕ′, (12)

where X ′ is derived from Fn with |X ′| = |Fn| by creating
a fresh atomic variable xf ∈ X ′ for every function variable
f ∈ Fn, and ϕ′ is derived from ϕ by replacing function
variable f with its corresponding atomic variable xf in ϕ.
Furthermore, the SOQBF of Eq. (3) with Qn = ∀ and ϕ in
CNF can be simplified to an equisatisfiable formula with all
appearances of variables Fn being removed from the prefix
and matrix of Eq. (3).

Proof. Expanding variables X in Eq. (3) yields a QBF for-
mula with its matrix being a conjunction of formulas. Be-
cause universal quantification and conjunction commute, we
can reuse the same name for the instantiated variables of
f ∈ Fn in the universal quantification. Further when ϕ is
in CNF, the variables of Fn can be removed by QBF ∀-
reduction.

That is, the SOQBF of Eq. (3) with Qn = ∀ is equisat-
isfiable to the same formula but changing the arity of every
function f ∈ Fn to zero. In this case, the number of effective
second-order quantification levels is reduced by one. Simi-
larly, the SOQBF of Eq. (4) with Qn = ∃ is equisatisfiable

4010

to the same formula but changing the arity of every function
f ∈ Fn to zero, thus reducing one second-order quantifica-
tion level.

We note that an SOQBF with one function variable de-
pending on another function variable can be converted to
the normal form where function variables depend only on
atomic variables. Specifically, let f be a function variable
with support set S(f) containing a function variable g. The
SOQBF

...,Qif, ...,Qjg, ..., ∀X.ϕ
can be re-expressed as

...,Qif, ...,Qjg, ..., ∀X, ∀y.(y ↔ g)→ ϕ

for g ∈ S(f) being replaced with a fresh atomic variable y.
We note that the above rewriting also works if the quantifi-
cation level of g is smaller than f . A similar discussion is
made in (Hannula et al. 2016).

Complexity
The exponential-time hierarchy (EXPH) is to the compu-
tational complexity of checking SOQBF satisfiability (SO-
QSAT) as the polynomial-time hierarchy (PH) is to that of
checking QBF satisfiability. Recall the complexity classes
ΣEXP
k , for ΣEXP

k = NEXPΣP
k−1 . For k = 1, ΣEXP

1 = NEXP,
which is the complexity of satisfiability checking for the S-
form DQBF (Balabanov, Chiang, and Jiang 2014). By dual-
ity, complexity classes ΠEXP

k , for ΠEXP
k = coNEXPΣP

k−1 .
For k = 1, ΠEXP

1 = coNEXP, which is the complexity
of satisfiability checking for the H-form DQBF (Balabanov,
Chiang, and Jiang 2014).

Let SOQSATk be the satisfiability of SOQBFs with k
levels of second-order quantifiers and Q1 = ∃. The follow-
ing statement, also in (Lück 2016), can be established by
directly encoding the execution of an alternating Turing ma-
chine (ATM) (Chandra, Kozen, and Stockmeyer 1981) with
k − 1 alternations in an SOQBF of k levels of second-order
quantification. (We omit the proof due to the page limit.)

Theorem 1. For any k ≥ 1, SOQSATk is ΣEXP
k -complete.

Consider SOQSAT without bounding the quantification
levels of an SOQBF. We note that as long as the number of
alternations of the ATM is polynomial in the input size, the
computation table of an exponential-time execution of the
ATM can be efficiently encoded in an SOQBF of polynomial
size. Let AEXP(poly) be the class of problems that can be
decided by an ATM with k alternations for k polynomial in
the input size. Consequently, the following corollary, also in
(Lück 2016), is immediate.

Corollary 1. SOQSAT is complete in AEXP(poly).

4 Refutation Proof System
In the sequel, we assume that an SOQBF is in the prenex nor-
mal form with all atomic variables being universally quanti-
fied as in Eq. (3), and the matrix is in CNF. As shown previ-
ously, an SOQBF can be converted to a model-equivalent
QBF by ground instantiation. The conversion ensures the
matrix of the resultant QBF remains in CNF as all atomic

variables are universally quantified. Then QBF resolution,
Q-res, a sound and complete refutation proof system for
QBF, can be applied to decide the truth or falsity of a QBF
(Kleine Büning, Karpinski, and Flögel 1995). Essentially,
Q-res consists of two rules: 1) resolution of two clauses
on an existential pivot variable and 2) reduction on uni-
versal variables in a clause whose quantification levels are
greater than those of any other existential variables in the
clause. However, the conversion from an SOQBF to a QBF
by ground instantiation mostly suffers an immediate expo-
nential growth of formula size. To alleviate this problem, we
apply a lazy instantiation strategy similar to the resolution
principle for the first-order logic (FOL) (Robinson 1965), as
we detail below.

For a clause C =
∨
i `(fi) ∨

∨
j `(xj) in the matrix of an

SOQBF, where `(v) denotes the literal appearance of vari-
able v in C, its function-form is derived by the rule:∨

i `(fi) ∨
∨
j `(xj)

Functionize∨
i `(f

{¬`(xj) | xj∈S(fi)}
i)

where literal `(f{¬`(xj) | xj∈S(fi)}
i) inherits the polarity of

literal `(fi). That is, the function variables of C are replaced
with their respective partially instantiated versions with re-
spect to the literal set (i.e., assignment) {¬`(xj)} whereas
all literals of atomic variables are being removed from C.
Thereby, the derived set of clauses is in a function-form,
namely, having no literals of atomic variables.

Essentially, a literal fα (resp. ¬fα) asserts the condition
that the function value of f under any full assignment β over
variables S(f) consistent with α, i.e., β ∧ α 6= 0, is true
(resp. false). Let Φ′ be the SOQBF obtained from Φ such
that its matrix consists of clauses functionized from those of
Φ and its prefix quantifies the new variables for the quantifier
type and quantification level of f{¬`(xj) | xj∈S(fi)}

i being the
same as those of fi in Φ. We remark that unlike ground in-
stantiation, the valuations of two partially instantiated func-
tion variables may not be independent. E.g., for a function
variable f with S(f) = {x1, x2}, its two instantiated ver-
sions fx1 and f¬x2 are not independent because their valu-
ations have to agree on fx1¬x2 . For simplicity, we shall as-
sume that all the partially instantiated versions of variable fi
are bundled together in the prefix and referred to as a quanti-
fier bundle. We sometimes writeQfi, forQ ∈ {∃, ∀}, in the
prefix to represent quantification over all instantiated ver-
sions of fi.

Lemma 1. An SOQBF Φ and its functionized version Φ′ are
model-equivalent.

Proof. Let ϕ′ be the matrix of Φ′. Expanding ϕ′ with∧
α ϕ
′|α for assignments α over all atomic variables X of

Φ (recall that X are universally quantified) results in an ef-
fective QBF, which is the same as the QBF obtained through
ground instantiation on Φ.

The following two rules form a refutation proof system
SOQ-res for functionized SOQBFs.

4011

C1 ∨ fα1 C2 ∨ ¬fα2
qnt(f) = ∃,
α1 ∧ α2 6= 0

∃F -Resolve
DInst(C1, α2, α1) ∨DInst(C2, α1, α2)

C ∨ `(fα)
qnt(f) = ∀, lev(f) > lev(g)
for any g in C, qnt(g) = ∃

∀F -Reduce
C

In rule ∃F -resolve, given a clause C and two or-
dered assignments α and β, the differential instantiation
DInst(C,α, β) operation produces a new clause C ′ with∨

`(fγi)∈C

`(f
γ∧{`(xj)∈α\β | xj∈S(fi),xj /∈γ,¬xj /∈γ}
i),

where α \ β is in the set notation of assignments, denot-
ing removing β literals from α. Note that the two differen-
tial instantiations in the resolvent effectively achieve unifi-
cation in the resolution principle of FOL (Robinson 1965).
We remark that the above rule provides a stronger unifi-
cation than that of DQBF calculus D-IR-calc (Beyersdorff
et al. 2016), where the resolvent generated effectively corre-
sponds to DInst(C1, α1 ∧ α2, 1) ∨DInst(C2, α1 ∧ α2, 1)1.

Recall the assumption that a clause is non-tautological.
We note that ∃F -resolve on two non-tautological clauses
may yield a partially tautological clause, e.g., (C∨fα∨¬fβ)
for α∧β 6= 0. In such occasions, we shall remove the tauto-
logical part of the clause. Before presenting the method for
partial-tautology removal, we first generalize the notation
fα of function variable f instantiated with respect to an as-
signmentα over a subset of S(f) to fχ, where χ is a Boolean
expression over variables S(f). A literal fχ (resp. ¬fχ) in-
dicates the condition that f must be true (resp. false) for any
assignment α that satisfies χ. By this definition, the equal-
ity fα1∨α2 = fα1 ∧ fα2 holds. E.g., for S(f) = {x1, x2},
the partial instantiation fx1 is equivalent to fx1x2∨x1¬x2 =
fx1x2 ∧ fx1¬x2 . Also, the literal ¬fx1 , meaning (¬f)x1 , is
equivalent to ¬fx1x2∨x1¬x2 = ¬fx1x2 ∧ ¬fx1¬x2 , but not
¬(fx1x2 ∧ fx1¬x2). Note that, in special cases, literal f1 in-
dicates f being a constant-1 function, and literal f0 equals 1
(a tautology), imposing no constraint on f .

Now the partially tautological clause (C ∨ fα ∨ ¬fβ)
with α ∧ β 6= 0 can be rewritten as (C ∨ fα∧(β∨¬β) ∨
¬f (α∨¬α)∧β), which in turn can be factored into four
clauses (C ∨ fα∧β ∨ ¬fα∧β) (C ∨ fα∧β ∨ ¬f¬α∧β)
(C ∨ fα∧¬β ∨ ¬fα∧β) (C ∨ fα∧¬β ∨ ¬f¬α∧β). By re-
moving the first tautological clause, we obtain the non-
tautological part of (C∨fα∨¬fβ) as (C∨fα∧β∨¬f¬α∧β)
(C∨fα∧¬β∨¬fα∧β) (C∨fα∧¬β∨¬f¬α∧β). In the sequel,
we assume that a partially tautological clause is rewritten
with non-tautological ones by the following rule.

(C ∨ fα ∨ ¬fβ) α ∧ β 6= 0
Detautologize

(C ∨ fα∧β ∨¬f¬α∧β)∧
(C ∨ fα∧¬β ∨¬fα∧β)∧
(C ∨ fα∧¬β ∨ ¬f¬α∧β)

1Note that Boolean constant 1 here corresponds to an assign-
ment whose literal set is empty.

Note that the expression deduced by detautologization is not
in CNF and has to be further factored into |α|+ |β|+ |α||β|
clauses.

Note that without removing tautological clauses may re-
sult in unsound ∀F -reduce operation. To see the problem,
consider the SOQBF ∀f.(f ∨ ¬f), which equals ∀f.1 and
is true. However, without removing the tautological clause
(f ∨ ¬f), by ∀F -reduction, the matrix reduces to an empty
clause, making the SOQBF equal ∀f.0, which is false.
Therefore, it is crucial to make clauses non-tautological.

For rule ∀F -reduce, in the sequel we shall assume that a
clauseC is maximally reduced by iterative application of the
rule until no more literals can be removed from C.

Lemma 2. The resolvent produced by the ∃F -resolve rule
is logically implied by the conjunction of the two parent
clauses.

Proof. Note that DInst(C1 ∨ fα1 , α2, α1) can be rewrit-
ten as DInst(C1, α2, α1) ∨ fα1∧α2 and thus is implied
by C1 ∨ fα1 . Similarly, DInst(C2 ∨ ¬fα2 , α1, α2)
equals DInst(C2, α1, α2) ∨ ¬fα1∧α2 and is implied by
C2 ∨¬fα2 . In addition, we know that (DInst(C1, α2, α1)∨
fα1∧α2) ∧ (DInst(C2, α1, α2) ∨ ¬fα1∧α2) implies
DInst(C1, α2, α1) ∨ DInst(C2, α1, α2). Hence the lemma
follows.

Lemma 3. A functionized SOQBF with one existential
quantification level is false if and only if an empty clause
can be derived by a sequence of ∃F -resolve operations.

Proof. A functionized SOQBF with one existential quantifi-
cation level can be seen as a special case of Skolem normal
form of an FOL formula. As the ∃F -resolve rule is an anal-
ogy of the resolution principle of FOL (Robinson 1965), the
lemma follows from the completeness of the FOL resolution
principle using the semantic-tree argument (Chang and Lee
1973).

The soundness of ∀F -reduction is stated in the following
lemma.

Lemma 4. An SOQBF Φ with prefix π and matrix ϕ ∧ C
(for C non-tautological) is true if and only if the SOQBF
Φ′ = π.ϕ ∧ C ′ is true, where C ′ is a clause ∀F -reduced
from C.

Proof. (⇒) If Φ is true, then we can find a model M of
Skolem functionals for the existential function variables.
The model M makes all the clauses of the matrix ϕ ∧ C
be satisfied under all possible function assignments to the
universal function variables. As C ′ is ∀F -reduced from C,
the reduced universal function variable does not affect the
Skolem functionals to satisfy C ′ besides ϕ. Therefore,M is
also a model for Φ′.

(⇐) Observe that removing literals from C to get C ′
makes Φ′ no easier to satisfy than Φ. Any model for Φ′ is
also a model for Φ.

Theorem 2. An SOQBF Φ is false if and only if an empty
clause can be derived by SOQ-res.

4012

Proof. The proof can be done in a way similar to that of Q-
res for QBF (Kleine Büning, Karpinski, and Flögel 1995).
(⇒) We show by induction on k, the number of quantifier
bundles. For the base case, when k = 1 and Φ = ∃F1.ϕ
with F1 = {fα1,1

1 , . . . , f
α1,n1
1 }, the empty clause is deriv-

able according to Lemma 3.
When k = 1 and Φ = ∀F1.ϕ with F1 =

{fα1,1

1 , . . . , f
α1,n1
1 }, the empty clause is clearly derivable

by ∀F -reduce. As the induction hypothesis, assume that the
empty clause can be derived for any Φ with k < m.

For the induction case, when k = m and Φ = ∃F1,Q2F2,
. . . , QmFm.ϕ with Fi = {fαi,1i , . . . , f

αi,ni
i }, consider all

possible valuations on the function variable f1, that is, all
possible assignments to the 2|S(f1)| ground instantiated func-
tion variables of f1. The formula of Φ induced under a
valuation [[f1]], i.e., an assignment to the 2|S(f1)| ground-
instantiated function variables of f1, denoted Φ|[[f1]], is the
formula Q2F2, . . . ,QmFm.ϕ|f1=[[f1]], where the cofactor
ϕ|
f1=[[f1]] denotes the formula of ϕ with every appearance

of F1-literals being valuated (to either 0 or 1) with respect to
[[f1]].2 By the induction hypothesis, an empty clause is deriv-
able via SOQ-res for the formula induced under every func-
tion valuation [[f1]]. Let Φ′ = ∃F1,Q2F2, . . . ,QmFm.ϕ′
for ϕ′ = {C ∈ ϕ | C not satisfied by [[f1]]}. Then, either
an empty clause or a CNF formula of f1-instantiated literals
falsified by [[f1]] can be deduced for Φ′ via SOQ-res. Note
that because ϕ→ ϕ′ holds, the formulas deducible from Φ′

can also be deduced from Φ. Let ψ be the conjunction of
these deduced CNF formulas (possibly including an empty
clause) for all valuations of f1. It is effectively a formula af-
ter quantifier elimination of variables F2, . . . , Fm from Φ.
Because Φ is false, so is ψ. An empty clause is derivable
from ψ by ∃F -resolve due to its correspondence to the base
case.

When k = m and Φ = ∀F1,Q2F2, . . . ,QmFm.ϕ, fol-
lowing the above reasoning, as ψ is a CNF formula and all
its variables are universally quantified, an empty clause can
be derived by ∀F -reduce.

Therefore, for a false SOQBF Φ with an arbitrary num-
ber of quantifier bundles, an empty clause can be derived by
SOQ-res.

(⇐) By the soundness of ∃F -resolution and ∀F -reduction
as stated in Lemmas 2 and 4, the derivation of an empty
clause via SOQ-res ensures the falsity of the SOQBF.

5 Countermodel Extraction
Similar to the countermodel extraction of Herbrand func-
tions from a Q-res-proof of a QBF (Balabanov and Jiang
2012), it is possible to extract a countermodel of Her-
brand functionals from a SOQ-res-proof of an SOQBF.
Let ite(a, b, c) be the if-then-else operation on Boolean ex-
pressions a, b, and c, denoting “if a, then b, else c,” which
equals the expression ab ∨ ¬ac. We represent a decision list

2Note that literal fα
1 (resp. ¬fα

1) valuates to 1 under [[f1]] if
and only if all ground instantiated variables {fβ

1 | α ∧ β 6= 0} are
assigned 1 (resp. 0) in [[f1]].

Algorithm 1: Countermodel Extraction
Input: A false SOQBF Φ and an SOQ-res proof DAG
GΠ(VΠ, EΠ)
Output: A countermodel represented with decision
lists

1: for all vertex v of GΠ in topological order do
2: if v.clause is ∀F -reduced from u.clause , i.e.,

(u, v) ∈ EΠ then
3: for all universal `(fα) in u.clause but not in

v.clause do
4: γ := α;
5: for all non-empty DLfβ of variable f do
6: if α ∧ β 6= 0 then
7: if `(fα) = fα then
8: let DLfα∧β be DLfβ added by

(¬v.clause, 0);
9: else if `(fα) = ¬fα then

10: let DLfα∧β be DLfβ added by
(¬v.clause, 1);

11: rename DLfβ to DLf¬α∧β ;
12: γ := ¬β ∧ γ;
13: if γ 6= 0 then
14: if `(fα) = fα then
15: create DLfγ with entry (¬v.clause, 0);
16: else if `(fα) = ¬fα then
17: create DLfγ with entry (¬v.clause, 1);
18: if v.clause is an empty clause then
19: return DLs;

(Rivest 1987) as a sequence (e1, c1), (e2, c2), . . . , (ek, ck) of
expression-constant pairs to mean function

ite(e1, c1, ite(e2, c2, ite(. . . , ite(ek, ck,¬ck) . . .))).

The Herbrand functionals are to be built with decision lists
(DLs) in Algorithm 1 for countermodel extraction.

The SOQ-res refutation proof of a false SOQBF can be
represented as a directed acyclic graph (DAG)GΠ(VΠ, EΠ),
where a vertex v ∈ VΠ represents a clause v.clause and
an edge (u, v) ∈ EΠ signifies u.clause is derived from
v.clause by either ∃F -resove or ∀F -reduce. Given a false
SOQBF and its SOQ-res refutation DAG, Algorithm 1
computes a countermodel consisting of Herbrand function-
als for the universally quantified function variables. It tra-
verses GΠ in a topological order until a vertex of empty
clause is reached (Line 1). For a vertex v with v.clause
being ∀F -reduced from u.clause (Line 2), it examines the
∀F -reduced literals from u.clause (Line 3). For each such
literal, say `(fα), it updates all DLs of instantiated function
variables fβ of f for α ∧ β 6= 0 (Lines 5–11). Specifically,
the DL of fα∧β is created to be the same as fβ but appended
with the pair (¬v.clause, 0) if `(fα) is of positive polar-
ity (Lines 7, 8) and (¬v.clause, 1) otherwise (Lines 9, 10).
Also, the DL of fβ becomes that of f¬α∧β (Line 11). If α
is not completely covered by the β assignments (Line 13),
a new DL is created for the remaining assignments of α
with entry (¬v.clause, 0) if `(fα) is of positive polarity
(Lines 14, 15) and (¬v.clause, 1) otherwise (Lines 16, 17).

4013

The DLs are returned when a vertex of empty clause is
reached (Lines 18, 19).

Note that any two distinct DLs, say, DLfα1 and DLfα2 ,
computed by Algorithm 1 satisfy the orthogonality that the
instantiated assignments are mutually independent, i.e., α1∧
α2 = 0. To maintain this orthogonality, the number of DLs
may grow exponentially in the number of atomic variables.

Note also that a Herbrand functional returned by the al-
gorithm may refer not only to existential function variables
but also to universal function variables. To eliminate the de-
pendencies on universal function variables, unwanted uni-
versal function variables can be substituted with their corre-
sponding Herbrand functionals. By repeated substitutions in
ascending order of quantification levels, all Herbrand func-
tionals can be made to depend only on existential function
variables. In the substitutions, an instantiated universal func-
tion variable may not have its corresponding DL returned by
Algorithm 1. However, the Herbrand functional of an arbi-
trary instantiated function variable fα can be obtained by
forming the conjunction of the Herbrand functionals of vari-
ables fβ , for β ∧ α 6= 0, which are derivable from the DLs
returned from Algorithm 1.

The correctness of Algorithm 1 is stated as follows.

Theorem 3. Given a false SOQBF Φ = π.ϕ and a refuta-
tion proof, let the instantiated universal functional variables
in ϕ be substituted with the Herbrand functionals extracted
by Algorithm 1. Then ϕ after the substitution is unsatisfiable.

Proof. Observe that when the instantiated assignments of
every universal function variable appearing in the resolution
proof are all orthogonal, the constructed DLs form a coun-
termodel, as can be shown in the same way as that of the
QBF case (Balabanov and Jiang 2012). Furthermore, it can
be verified that Algorithm 1 maintains the orthogonality of
the partially instantiated universal function variables in con-
structing the DLs.

Example 2. Consider the SOQBF

∀g1, ∃f1, ∀g2, ∃f2, ∀x1, ∀x2, ∀x3.C1C2C3,

where the support sets S(g1) = {x1}, S(f1) = {x2, x3},
S(g2) = {x2, x3}, S(f2) = {x1, x3}, and

C1 = (gx1
1 ∨ f

x2¬x3
1 ∨ fx1¬x3

2),

C2 = (g2 ∨ ¬f2),

C3 = (¬g¬x1
1 ∨ ¬fx2

1 ∨ ¬g
x2
2 ∨ f

¬x1
2).

Its falsity can be shown by the following refutation steps.

C4 = (gx1
1 ∨ f

x2¬x3
1 ∨ g¬x3

2) by ∃F -resolve(C1, C2);

C5 = (gx1
1 ∨ f

x2¬x3
1) by ∀F -reduce(C4);

C6 = (g2 ∨ ¬g
¬x1
1 ∨ ¬fx2

1 ∨ ¬g
x2
2) by ∃F -resolve(C2, C3);

C ′6 = (g¬x2
2 ∨ ¬g¬x1

1 ∨ ¬fx2
1 ∨ ¬g

x2
2) by tautology removal;

C7 = (¬g¬x1
1 ∨ ¬fx2

1) by ∀F -reduce(C ′6);

C8 = (gx1
1 ∨ ¬g

¬x1
1) by ∃F -resolve(C5, C7);

C9 = () by ∀F -reduce(C8).

Given the proof, Algorithm 1 derives the DLs:

DLg¬x2¬x32
= ite(¬gx1

1 ¬f
x2¬x3
1 , 0, ite(g¬x1

1 fx2
1 , 0, 1)),

DLg¬x2x32
= ite(g¬x1

1 fx2
1 , 0, 1),

DLgx2¬x32
= ite(¬gx1

1 ¬f
x2¬x3
1 , 0, ite(g¬x1

1 fx2
1 , 1, 0)),

DLgx2x32
= ite(g¬x1

1 fx2
1 , 1, 0),

DLgx11
= ite(1, 0, 1)

DLg¬x11
= ite(1, 1, 0).

They yield the following Herbrand functionals:

H[gx1
1] = 0,

H[g¬x1
1] = 1,

H[gx2x3
2] = fx2

1 ,

H[gx2¬x3
2] = fx2¬x3

1 fx2
1 = fx2

1 ,

H[g¬x2x3
2] = ¬fx2

1 ,

H[g¬x2¬x3
2] = fx2¬x3

1 ¬fx2
1 = 0.

By combining and substituting the Herbrand functionals to
their corresponding function variables in the matrix, we get

(fx2¬x3
1 ∨ fx1¬x3

2)(¬f2)(¬fx2
1 ∨ f

¬x1
2),

which can deduce an empty clause via ∃F -resolve.

6 Applications
We briefly mention two potential applications of SOQBF,
one in system synthesis and the other in AI planning.

For the first application, consider the system block di-
agram shown in Fig. 2, where an unknown component F
(with inputs Y) is to be synthesized within a known context
circuit C (with inputs X), which is to be composed with
some third-party design G (with inputs Z). We are asked
to design F such that the entire composite system satisfies
some desired safety property P regardless of any function
G for composition. For simplicity, assume the systems are
combinational, i.e., memoryless. Then the synthesis prob-
lem can be expressed in an SOQBF of the form

∃F, ∀G, ∃H, ∀X,Y, Z,W.ϕ,

where function variables F,G,H are with support sets
S(F) = Y, S(G) = Z, S(H) = X ∪ Y ∪ Z ∪W , for W
being extra atomic variables for CNF encoding of the matrix
constraint ϕ andH being extra function variables for normal
form conversion.

For the second application, consider a planning prob-
lem of two opposing agents A1 and A2. Assume the two
agents take actions by turns sequentially. We are interested
in knowing whether, under a bounded planning horizon, for
any action strategy of A1, agent A2 has a strategy to en-
force the environment transition from the initial state to a
goal state. Assume for simplicity that the planning horizon
is one. Then the planning problem can be expressed in an
SOQBF of the form

∀F1, ∃F2, ∃E, ∀S, S′, S′′, X.
(I(S) ∧ T1(S, S′, F1) ∧ T2(S′, S′′, F2)→ G(S′′)) ∧ ψ,

4014

F

G

PX Y

Z

C

Figure 2: Circuit synthesis for compositional safety.

where function variables F1 with S(F1) = S and F2 with
S(F2) = S′ correspond to the state updates due to the action
choices ofA1 andA2, respectively; function variables E are
extra ones for normal form conversion; atomic variables S,
S′, and S′′ are the state variables of the environment in the
beginning, afterA1 taking action, and afterA2 taking action,
respectively; atomic variables X are extra ones for CNF en-
coding; predicates I , T1, T2, and G correspond to formu-
las that constrain the initial states, state-action relation of
A1, state-action relation of A2, and goal states, respectively;
quantifier-free formula ψ is induced from normal form con-
version.

7 Conclusions and Future Work
This paper studied the second-order quantified Boolean
logic from the aspects of representation and interpretation,
complexity, refutation proof system, and countermodel ex-
traction. Specifically, we established the connection between
SOQBF and QBF. We extended the FOL resolution principle
and QBF resolution calculus to a sound and complete refu-
tation proof system for SOQBF, and extended the counter-
model extraction algorithm of QBF to SOQBF. Potential ap-
plications of SOQBF were also discussed. For future work,
we plan to identify more applications. In particular, checking
memory consistency models (Cooksey et al. 2019) could be
an interesting direction. Also, we intend to develop SOQBF
solvers for potential practical applications.

Acknowledgements
The author is grateful to Christoph Scholl and Tony Tan for
their valuable comments on the manuscript. This work was
partly supported by the National Science and Technology
Council of Taiwan under Grant 111-2221-E-002-182 and
Grant 111-2923-E-002-013-MY3.

References
Ackermann, W. 1954. Solvable cases of the decision prob-
lem. North-Holland Publishing Company.
Balabanov, V.; Chiang, H.-J. K.; and Jiang, J.-H. R. 2014.
Henkin quantifiers and Boolean formulae: A certification
perspective of DQBF. Theoretical Computer Science, 523:
86–100.
Balabanov, V.; and Jiang, J.-H. R. 2012. Unified QBF Cer-
tification and Its Applications. Formal Methods in System
Design, 41: 45–65.

Beyersdorff, O.; Chew, L.; Schmidt, R. A.; and Suda, M.
2016. Lifting QBF Resolution Calculi to DQBF. In Pro-
ceedings of International Conference on Theory and Appli-
cations of Satisfiability Testing, 490–499.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability, volume 336 of Frontiers
in Artificial Intelligence and Applications. IOS Press.
Chandra, A. K.; Kozen, D. C.; and Stockmeyer, L. J. 1981.
Alternation. J. ACM, 28(1): 114–133.
Chang, C.-L.; and Lee, R. C.-T. 1973. Symbolic Logic and
Mechanical Theorem Proving. Academic Press.
Cook, S. A. 1971. The Complexity of Theorem-Proving Pro-
cedures. In Proceedings of ACM Symposium on Theory of
Computing, 151–158.
Cooksey, S.; Harris, S.; Batty, M.; Grigore, R.; and Janota,
M. 2019. PrideMM: Second Order Model Checking for
Memory Consistency Models. In Formal Methods. FM 2019
International Workshops, 507–525.
Dawar, A.; Gottlob, G.; and Hella, L. 1998. Capturing Rel-
ativized Complexity Classes without Order. Mathematical
Logic Quarterly, 44(1): 109–122.
Hannula, M.; Kontinen, J.; Lück, M.; and Virtema, J. 2016.
On quantified propositional logics and the exponential time
hierarchy. In Proceedings of International Symposium on
Games, Automata, Logics and Formal Verification, 198–
212.
Hannula, M.; Kontinen, J.; Lück, M.; and Virtema, J. 2020.
On the Complexity of Horn and Krom Fragments of Second-
Order Boolean Logic. CoRR, abs/2007.03867.
Henkin, L. 1961. Some Remarks on Infinitely Long Formu-
las. In Journal of Symbolic Logic, 167–183.
Kleine Büning, H.; Karpinski, M.; and Flögel, A. 1995. Res-
olution for Quantified Boolean Formulas. Information and
Computation, 117(1): 12–18.
Lohrey, M. 2012. Model-checking hierarchical structures.
Journal of Computer and System Sciences, 78(2): 461–490.
Lück, M. 2016. Complete Problems of Propositional Logic
for the Exponential Hierarchy. CoRR, abs/1602.03050.
Peterson, G. L.; and Reif, J. H. 1979. Multiple-person alter-
nation. In Proceedings of IEEE Symposium on Foundations
of Computer Science, 348–363.
Rivest, R. L. 1987. Learning decision lists. Machine Learn-
ing, 2(3): 229–246.
Robinson, J. A. 1965. A Machine-Oriented Logic Based on
the Resolution Principle. J. ACM, 12(1): 23–41.
Scholl, C.; and Wimmer, R. 2018. Dependency Quantified
Boolean Formulas: An Overview of Solution Methods and
Applications - Extended Abstract. In Proceedings of Inter-
national Conference on Theory and Applications of Satisfi-
ability Testing, 3–16.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theoretical Computer Science, 3(1): 1–22.
Stockmeyer, L. J.; and Meyer, A. R. 1973. Word Problems
Requiring Exponential Time(Preliminary Report). In Pro-
ceedings of the ACM Symposium on Theory of Computing,
1–9.

4015

