
Solving Explainability Queries with Quantification:
The Case of Feature Relevancy

Xuanxiang Huang1, Yacine Izza1, 3, Joao Marques-Silva2

1 IRIT, University of Toulouse, France
2 IRIT, CNRS, Toulouse, France

3 CREATE, National University of Singapore, Singapore
xuanxiang.huang@univ-toulouse.fr, izza@com.nus.edu.sg, joao.marques-silva@irit.fr

Abstract

Trustable explanations of machine learning (ML) models are
vital in high-risk uses of artificial intelligence (AI). Apart
from the computation of trustable explanations, a number of
explainability queries have been identified and studied in re-
cent work. Some of these queries involve solving quantifi-
cation problems, either in propositional or in more expres-
sive logics. This paper investigates one of these quantifica-
tion problems, namely the feature relevancy problem (FRP),
i.e. to decide whether a (possibly sensitive) feature can occur
in some explanation of a prediction. In contrast with earlier
work, that studied FRP for specific classifiers, this paper pro-
poses a novel algorithm for the FRP quantification problem
which is applicable to any ML classifier that meets minor re-
quirements. Furthermore, the paper shows that the novel al-
gorithm is efficient in practice. The experimental results, ob-
tained using random forests (RFs) induced from well-known
publicly available datasets, demonstrate that the proposed so-
lution outperforms existing state-of-the-art solvers for Quan-
tified Boolean Formulas (QBF) by orders of magnitude. Fi-
nally, the paper also identifies a novel family of formulas that
are challenging for currently state-of-the-art QBF solvers.

Introduction
The advances in ML over the years, and the fact that ML
models are most often opaque, sparked the ongoing efforts
on explainable artificial intelligence (XAI). Furthermore, the
existing and expected uses of ML in high-risk applications
of AI (European Commission 2021) motivate the need for
explainability approaches that offer guarantees of rigor, and
so can be trusted. Such need is underscored by the ample
evidence of bias in ML models (Makortoff 2022). Unfortu-
nately, the most visible XAI approaches (Ribeiro, Singh, and
Guestrin 2016; Lundberg and Lee 2017; Ribeiro, Singh, and
Guestrin 2018) offer no guarantees of rigor. For example,
existing results have shown that such informal explanations
can be consistent with points in feature space for which the
prediction differs (Ignatiev, Narodytska, and Marques-Silva
2019c; Narodytska et al. 2019; Ignatiev 2020).

Pioneered by work on explaining boolean classifiers rep-
resented with restricted families of bayesian networks (Shih,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Choi, and Darwiche 2018), there have been a stream of re-
sults on formal explainability, which are summarized in re-
cent overviews include (Marques-Silva and Ignatiev 2022;
Marques-Silva 2022a,b)1 In addition to the problem of com-
puting one explanation, recent work also studied a number
of queries (Audemard, Koriche, and Marquis 2020; Huang
et al. 2021; Audemard et al. 2021; Huang et al. 2022a),
which can be addressed in the context of formal explain-
ability, and which find numerous applications.

One example of an explainability query is feature mem-
bership (Huang et al. 2021), which corresponds to the prob-
lem of relevancy in logic-based abduction (Friedrich, Gott-
lob, and Nejdl 1990; Selman and Levesque 1990; Eiter and
Gottlob 1995). (Aiming for naming consistency, this paper
refers to the problem of feature membership as the feature
relevancy problem.) Given a point v in feature space and its
associated prediction c, the feature relevancy problem (FRP)
is to decide whether a given target feature t can occur in
some explanation of why the prediction is c given v. For ex-
ample, and motivated by existing regulations and guidelines
(e.g. (European Commission 2016; European Commission’s
High-Level Expert Group on AI 2019; European Commis-
sion 2021)), t can be a sensitive feature, e.g. age, gender,
ethnic origin, etc., and the existence of an explanation that
includes t would represent a violation of such regulations.
Earlier work proved ΣP

2-hardness of FRP in the case of a

1Additional references include (Shih, Choi, and Darwiche
2018; Ignatiev, Narodytska, and Marques-Silva 2019a; Shih, Choi,
and Darwiche 2019; Ignatiev, Narodytska, and Marques-Silva
2019b,c; Narodytska et al. 2019; Wolf, Galanti, and Hazan 2019;
Darwiche 2020; Ignatiev 2020; Darwiche and Hirth 2020; Ignatiev
et al. 2020a,b; Audemard, Koriche, and Marquis 2020; Izza, Ig-
natiev, and Marques-Silva 2020; Marques-Silva et al. 2020; Bar-
celó et al. 2020; Marques-Silva et al. 2021; Izza and Marques-Silva
2021; Malfa et al. 2021; Ignatiev and Marques-Silva 2021; Cooper
and Marques-Silva 2021; Huang et al. 2021; Audemard et al. 2021;
Arenas et al. 2021; Blanc, Lange, and Tan 2021; Amgoud 2021;
Wäldchen et al. 2021; Darwiche and Marquis 2021; Izza et al.
2021; Marques-Silva and Ignatiev 2022; Huang et al. 2022b; Ig-
natiev et al. 2022; Gorji and Rubin 2022; Darwiche and Ji 2022;
Audemard et al. 2022b; Amgoud and Ben-Naim 2022; Audemard
et al. 2022a; Ferreira et al. 2022; Liu and Lorini 2022; Izza, Ig-
natiev, and Marques-Silva 2022; Izza et al. 2022; Yu et al. 2022;
Huang and Marques-Silva 2022; Izza and Marques-Silva 2022;
Arenas et al. 2022).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

3996



DNF (disjunctive normal form) classifier.
Whereas earlier work considered specific families of clas-

sifiers (Huang et al. 2021; Huang and Marques-Silva 2022),
e.g. decision trees, classifiers represented by DNF formu-
las or other propositional languages, this paper investi-
gates instead generic FRP algorithms, which are indepen-
dent of specific families of classifiers. Concretely, the paper
shows that, for several families of classifiers, FRP is com-
plete for ΣP

2. Furthermore, the paper investigates solutions
for solving FRP for those and other families of classifiers.
Concretely, the paper develops quantified boolean formula
(QBF) encodings for deciding FRP. Furthermore, the paper
also proposes a novel algorithm for deciding FRP, which
is based on counterexample-guided abstraction refinement
(CEGAR) (Clarke et al. 2003). The proposed algorithm (FR-
PCGR) can be used with any classifier that admits a logic
representation, and so this includes most of the families of
ML classifiers in common use. The paper focuses on random
forests, simply because these can be encoded using QBF for-
mulas, and so enable a direct comparison of the proposed
CEGAR algorithm with QBF reasoners.

The experimental results demonstrate that the novel
CEGAR-based algorithm substantially outperforms state-of-
the-art QBF solvers, enabling to decide FRP for much larger
random forests than what QBF solvers can handle. Thus, an
indirect by-product of this work is a new family of challeng-
ing problem instances for benchmarking QBF solvers.

Preliminaries
Complexity classes, propositional logic & quantification.
The paper assumes basic knowledge of computational com-
plexity, namely the classes NP and ΣP

2. The paper also as-
sumes basic knowledge of propositional logic, including the
Boolean satisfiability (SAT) problem for formulas in con-
junctive normal form (CNF), the decision problem for quan-
tified boolean formulas (QBF), and the use of SAT solvers as
oracles for the complexity class NP. The interested reader is
referred to existing bibliography on these topics (Arora and
Barak 2009; Biere et al. 2021).

Classification problems. Classification problems are de-
fined on a set of features (or attributes) F = {1, . . . ,m}
and a set of classes K = {c1, c2, . . . , cK}. Each feature
i ∈ F takes values from a domain Di. Domains are categor-
ical or ordinal, and each domain can be defined on boolean,
integer/discrete or real values. Feature space is defined as
F = D1 × D2 × . . . × Dm. The notation x = (x1, . . . , xm)
denotes an arbitrary point in feature space, where each xi is
a variable taking values from Di. The set of variables asso-
ciated with features is X = {x1, . . . , xm}. Also the nota-
tion v = (v1, . . . , vm) represents a specific point in feature
space, where each vi is a constant representing one concrete
value from Di. A classifier C is characterized by a (non-
constant) classification function κ that maps feature space F
into the set of classesK, i.e. κ : F→ K. An instance denotes
a pair (v, c), where v ∈ F and c ∈ K, with c = κ(v).

The classifier decision problem (CDP) is to decide
whether the logic statement ∃(x ∈ F).(κ(x) = c), for
c ∈ K, is true. Given some target class c ∈ K, the goal of

x1

x2 x3

⊕ ⊗ ⊕	

x3

x1 	

⊗ ⊕

x2

⊗ x3

	 ⊕

∈ {0} ∈ {1}

≤ 20 > 20

∈ {0} ∈ {1, 2}

∈ {0, 1} ∈ {2}

∈ {0} ∈ {1}

≤ 20 > 20

∈ {0, 1} ∈ {2}

Figure 1: Random Forest Running Example.

CDP is to decide whether there exists some point x in fea-
ture space for which the prediction is c. For example, for a
(plain) neural network or a random forest, it is easy to prove
that CDP is NP-complete. However, for a linear classifier or
a decision tree, CDP is in P.

Random Forests (RFs). Random Forests (RFs) (Breiman
2001; Yang et al. 2020; Zhang et al. 2019; Gao and Zhou
2020; Feng and Zhou 2018; Zhou and Feng 2017) are very
popular and widely used tree ensemble ML models. Con-
ceptually, an RF is collection of decision trees (DTs), where
each tree Ti, i ∈ {1, . . . , T} of the ensemble T is trained
on a randomly selected subset of the training data so as the
trees of the RF are not correlated. (In contrast to a single
DT, RFs are less prone to over-fitting and so offer in gen-
eral better accuracy on test data.) The predictions of a RF
classifier are made by majority vote of trees, that is each
tree predicts for a class and the class with largest score is
picked. (Note that other versions of RFs using probabilities
or weights are implemented by different learning tools, e.g.,
scikit-learn (Pedregosa and et al. 2011), XGBoost (Chen
and Guestrin 2016), etc. However, and similarly to related
work (Izza and Marques-Silva 2021), this paper considers
the original proposal for RFs (Breiman 2001).)

Example 1. Figure 1 shows the running example of a ran-
dom forest classifier T containing 3 decision trees T1, T2
and T3. It represents a classification function defined on
the set of features F = {1, 2, 3} and set of classes K =
{c1, c2, c3} = {	,⊕,⊗}. Moreover, the domain of the fea-
tures are, respectively, D1 = {0, 1}, D2 = [0, 50] and
D3 = {0, 1, 2}. We consider the instance v = (1, 10, 1)
which predicted to the class⊕ (i.e. c2), the highlighted edges
indicate the prediction of each tree.

Formal explainability. An abductive explanation (Ig-
natiev, Narodytska, and Marques-Silva 2019a) (AXp, also
referred to as a prime implicant (PI) explanation (Shih, Choi,
and Darwiche 2018)) represents a minimal set of literals (re-
lating a feature value xi and a constant vi ∈ Di) that are
logically sufficient for the prediction. As a result, AXp’s
provide guarantees of rigor that are not offered by other
alternative explanation approaches. More recently, AXp’s
have been studied in terms of their computational complex-
ity (Marques-Silva et al. 2020; Barceló et al. 2020; Marques-
Silva et al. 2021; Izza and Marques-Silva 2021; Ignatiev and
Marques-Silva 2021; Cooper and Marques-Silva 2021; Au-
demard et al. 2021). As highlighted earlier in the paper, there
is a growing body of recent work on formal explanations.

3997



Formally, given v = (v1, . . . , vm) ∈ F, with κ(v) = c,
an AXp is any subset-minimal set X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

If a set X ⊆ F is not minimal but (1) holds, then X is re-
ferred to as a weak AXp. Thus, (1) represents a predicate
WAXp(X ), which holds true for X ⊆ F iff (1) also holds
true. Clearly, the predicate WAXp maps 2F into {⊥,>}.
Given v ∈ F, an AXp X represents an irreducible (or min-
imal) subset of the features which, if assigned the values
dictated by v, are sufficient for the prediction c, i.e. value
changes to the features not in X will not change the pre-
diction. We can use the definition of the predicate WAXp to
formalize the definition of the predicate AXp, also defined
on subsets X of F :

AXp(X ) := WAXp(X ) ∧ ∀(X ′ ( X ).¬WAXp(X ′) (2)

The definition of WAXp(X ) makes this predicate monotone.
Indeed, if X ⊆ X ′ ⊆ F , and if X is a weak AXp, then X ′
is also a weak AXp, as the fixing of more features will not
change the prediction. Hence, it is the case that,
Proposition 1. If WAXp(X ) holds for X ⊆ F , then
WAXp(X ′) also holds for any X ⊆ X ′ ⊆ F .

Using Proposition 1, monotonicity of WAXp allows sim-
plifying the definition of AXp as follows, with X ⊆ F :

AXp(X ) := WAXp(X )∧∀(j ∈ X ).¬WAXp(X \{j}) (3)

This simpler but equivalent definition of AXp has important
practical significance, in that only a linear number of subsets
needs to be checked for, as opposed to exponentially many
subsets in (2). Unsurprisingly, most algorithms that compute
one AXp are based on (3).

Feature relevancy problem. With the goal of deciding
whether sensitive features can be used in minimal explana-
tions of a prediction, recent work introduced the feature rele-
vancy (or membership) problem (Huang et al. 2021, 2022a):
Definition 1 (Feature Relevancy Problem, FRP). Given an
instance (v, c) and a target feature t ∈ F , decide whether
there exists one AXp X ⊆ F that contains t.

Complexity-wise, for a simple disjunctive normal form
(DNF) boolean classifier, FRP is hard for ΣP

2 (Huang et al.
2021). This means that, for well-known families of classi-
fiers, e.g. neural networks, tree ensembles, etc. FRP is at
least as hard as solving a quantified boolean formula with
two levels of quantification; this problem is widely believed
to be harder than solving an NP-complete problem (Arora
and Barak 2009).
Example 2. For the RF in Figure 1, let the target feature
be t = 3. Then, it can be shown that there is an AXp {1, 3}
that contains the target feature. Clearly, if features 1 and 3
are fixed, then the value of feature 2 is irrelevant for the pre-
diction. To prove minimality, it suffices to analyze the conse-
quence of removing either 1 or 3 from the AXp. This can be
concluded by allowing either 1 or 3 to take any value from
their domain, and inferring that the prediction of ⊕ is no
longer guaranteed.

Although RFs are generally regarded as black-box ML
models, and non-interpretable, recent work (Izza and
Marques-Silva 2021) demonstrates that rigorous explana-
tions can be computed efficiently in practice for large RFs2.

Properties of FRP
This section shows that FRP is complete for ΣP

2 when CDP
(i.e. the classification decision problem) is in NP and FRP
is hard for ΣP

2. Furthermore, this section shows that the ΣP
2

membership result can be refined, which enables far more
efficient algorithms in practice.

Proposition 2. Given a classifier for which (1) can be de-
cided with an NP oracle, then FRP is in ΣP

2.

Proof. By Proposition 1 and (3), to prove that a set X is an
AXp, it suffices to prove that:
1. WAXp(X ) = >;
2. ∀i ∈ X .WAXp(X \ {i}) = ⊥, that is, X is subset-

minimal.
Now, since by hypothesis, deciding whether a set of fea-

tures X is a weak AXp is in NP, then we can decide, in
polynomial-time, whether some guessed set X ⊆ F con-
taining feature t is an AXp, as follows. For step 1., check
that X is a weak AXp, with an NP oracle. For step 2., itera-
tively check, for each feature i ∈ X , X \ {i} is not a weak
AXp, again with an NP oracle. Clearly, given X , the overall
procedure runs in non-deterministic polynomial time, given
access to an NP oracle. Thus FRP is in ΣP

2.

Given the above, we can prove that deciding whether fea-
ture t ∈ F is included in some explanation for (v ∈ F, c ∈
K), with c = κ(v), corresponds to deciding the following
2QBF statement:

∃(X ⊆ F).(t ∈ X ) ∧WAXp(X )∧
[∧j∈X¬WAXp(X \ {j})] (4)

It is plain to expand the previous expression into a logic for-
mula with two levels of quantification.

For a given classifier, e.g. a random forest (RF), we
need to provide propositional encodings for the statements
[κ(x) = c] and [κ(x) 6= c]. These encodings can be based on
those that have been developed for computing explanations
for RFs (Izza and Marques-Silva 2021). Although the proof
of Proposition 2 offers a solution for solving FRP, the prac-
tical solutions derived from the proof reveal key inefficien-
cies, namely testing in the worst case the predicate WAXp a
total of m + 1 times, with m = |F|. Below, we propose a
different proof argument, which involves far fewer tests of
WAXp. As argued later in the paper, this reduction in the
number of runs of WAXp has important practical impact.
The proposed approach hinges on the following result:

Proposition 3. Let X ⊆ F represent a set of features. Let
t ∈ X denote some target feature, such that, WAXp(X )
holds and WAXp(X \{t}) does not hold. Then, for any AXp
Z ⊆ X ⊆ F , it must be the case that t ∈ Z .

2More recent work also demonstrated similar results for other
tree ensembles (Ignatiev et al. 2022).

3998



Proof. Let Z ⊆ F by any AXp such that Z ⊆ X . Clearly,
by definition WAXp(Z) must hold. Moreover, from Propo-
sition 1, it is also the case that WAXp(Z ′) must hold, with
Z ′ = Z ∪ (X \ (Z ∪ {t})), since Z ⊆ Z ′ ⊆ F . But, by hy-
pothesis, WAXp(X \{t}) does not hold; a contradiction.

One consequence of Proposition 3 is that a more compact
2QBF encoding can be devised:

∃(X ⊆ F).(t ∈ X )∧[
∀(x ∈ F).

(∧
i∈X

(xi = vi)
)
→(κ(x) = c)

]
∧ (5)[

∃(x ∈ F).

(∧
i∈X\{t}

(xi = vi)

)
∧ (κ(x) 6= c)

]
where predicate WAXp (defined in (1)) is already expanded.

Proposition 3 reveals a condition for finding a set of fea-
tures X ⊆ F such that any AXp contained in X must also
contain feature t. The next two sections describe two dif-
ferent approaches for computing such set X . Given the key
property of X , it then suffices to extract any AXp to have a
witness of t being included in some explanation.

Encoding FRP into QBF
The results of the previous section confirm the existence of
2QBF encodings for FRP. Clearly, a concrete family of clas-
sifiers needs to be considered, and so we propose a 2QBF en-
coding for RFs. First, we overview an existing propositional
encoding for computing AXp’s of RFs. We then build on this
encoding to devise a 2QBF encoding. (It is important to note
that the general-purpose algorithm for FRP described in the
next section is also built on this propositional encoding.)

Propositional Encoding for RFs
We start by detailing how to encode the classification func-
tion κ of an RF T . This paper exploits the propositional
encoding proposed in recent work for computing AXp’s of
RFs (Izza and Marques-Silva 2021)3. The encoding com-
prises: 1) the structure of an RF T , and 2) the majority votes.

Assumption 1. 1) Each Di has ni distinct values or disjoint
intervals. 2) Values/intervals are ordered (from 1 to ni).

To present the encoding of T , we introduce some auxil-
iary boolean variables and predicates:
1. zi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni. zi,j = 1 if feature i

assigned with the j-th value/interval from its domain Di.
2. pi,j , 1 ≤ i ≤ T, 1 ≤ j ≤ K, pi,j = 1 if tree Ti predicts

the class j.
3. Class(R) denotes the class (i.e. the label of a terminal

node) of a root-to-leaf path R.
4. L(R) denotes the set of literals of a root-to-leaf path R.
5. Votes(c) denotes the number of trees picking the class
c ∈ K.
3One possible alternative was proposed in more recent

work (Boumazouza et al. 2021). However, this encoding is less op-
timized and so it does not scale as well in practice. Other represen-
tations of RFs (Choi et al. 2020; Audemard, Koriche, and Marquis
2020; Parmentier and Vidal 2021) are not applicable in this context.

To encode the structure of an RF T , one needs to encode
each Ti. Thus, encoding a tree is achieved by encoding all
its paths. The set of pathsRi of Ti is encoded as follows:∧

R∈Ri

(∧
l∈L(R)

l→ Class(R)

)
(6)

Besides, each feature i is assigned with exactly one value:∧
1≤i≤m

∑ni

l=1
zi,l = 1 (7)

Each tree Ti predicts exactly one class:∧
1≤i≤T

∑K

l=1
pi,l = 1 (8)

Next, we detail how to use cardinality constraints to en-
code the majority votes. Suppose w.l.o.g.K = {cj1 , cj2 , cj3}
such that j1 < j2 < j3, and the prediction of the given in-
stance is cj2 . If (Votes(cj1) < Votes(cj2)) ∧ (Votes(cj2) ≥
Votes(cj3)) then the prediction of T remain unchanged.
Otherwise, if (Votes(cj1) ≥ Votes(cj2)) ∨ (Votes(cj2) <
Votes(cj3)) then the prediction of T changed.

The case where the prediction of T remains unchanged
can be encoded via the following constraints:∑T

i=1
pi,j2 +

∑T

i=1
¬pi,j1 ≥ 1 + T (9)

∑T

i=1
pi,j2 +

∑T

i=1
¬pi,j3 ≥ T (10)

These require the use of K − 1 cardinality constraints, each
comparing the Votes(cj2) with the votes of some other class.
Likewise, the case where the prediction of T changed can be
encoded via the following constraints:∑T

i=1
pi,j1 +

∑T

i=1
¬pi,j2 ≥ T (11)

∑T

i=1
pi,j3 +

∑T

i=1
¬pi,j2 ≥ 1 + T (12)

However, in this case, only 2 (instead of K − 1) cardinality
constraints are needed (Izza and Marques-Silva 2021).

2QBF Encoding for RFs
Given Proposition 3, we just use two copies (T 0 and T t)
of the same RF T to construct a 2QBF encoding for FRP.
T 0 encodes WAXp(X ) (i.e. the prediction of T remains un-
changed, [κ0(x) = c]), and T t encodes ¬WAXp(X \ {t})
(i.e. the prediction of T changed, [κt(x) 6= c]). It should be
noted that the QBF encoding for (5) uses only two levels of
quantifiers (i.e. ∃∀). However, one must introduce another
level of quantification to account for the auxiliary variables
used for representing the matrix in clausal form. Moreover,
to present the constraints of the proposed 2QBF encoding,
we need to introduce additional auxiliary boolean variables:
1. si, 1 ≤ i ≤ m. si is a selector such that si = 1 iff feature
i is included in X . Moreover, si = 1 also means that
feature i must be fixed to its given value vi, while si = 0
means that feature i can take any value from its domain.

3999



2. yi, 1 ≤ i ≤ m. yi is a set of boolean variables (a bit
vector) for Di such that |yi| = log2 ni. Since values/in-
tervals of Di are ordered, each value/interval has an index
(from 1 to ni) that can be represented by an assignment of
yi. Let g : B|yi| → N be a function mapping binary num-
bers to the indices of values/intervals of Di. The space of
yi is usually larger than Di, but due to constraint (7) that
always pick a value from Di, we leave some g(yi) un-
defined. More importantly, yi is activated if i /∈ X (i.e.
si = 0), and yi is deactivated if i ∈ X (i.e. si = 1).

Suppose, for the given instance v = (v1, . . . , vm), that each
value vi corresponds to the first literal zi,1 of its domain Di,
so the instance is represented as v = (z1,1, . . . , zm,1). Let
Ω(κ0) (resp. Ω(κt)) denote the set of variables of the en-
coding of T 0 (resp. T t). The QBF encoding (quantifiers and
constraints) is as follows:
1. ∃(s1, . . . , sm)
2. ∀(y1,y2, . . . ,ym)
3. ∃(Ω(κ0) ∪ Ω(κt))
4.
∧

1≤i≤m(si → z0i,1)

5.
∧

1≤i≤m,1≤j≤ni
(¬si ∧ (g(yi) = j − 1)→ z0i,j)

4

6.
[
κ0(z01,1, . . . , z

0
1,n1

, . . . , z0m,1, . . . , z
0
m,nm

) = c
]

7.
∧

1≤i≤m,i 6=t(si → zti,1)

8.
[
κt(zt1,1, . . . , z

t
1,n1

, . . . , ztm,1, . . . , z
t
m,nm

) 6= c
]

9. st
The first existential quantifier picks a weak AXp candidate
X . The universal quantifier considers all possible values of
F. The second existential quantifier assigns values to the re-
maining variables. Line 4 states, for any feature i of T 0, if
i ∈ X , then it is fixed to the given value. Line 5 states, for
any feature i of T 0, if i /∈ X , then if the value represented
by the yi equals to j − 1 then feature i is assigned with j-th
values/intervals. Line 6 is the propositional encoding of T 0

comprising constraints (6) to (10). Line 7 states that, for any
feature i (i 6= t) of T t, if i ∈ X , then it is fixed to the given
value. Line 8 is the propositional encoding of T t compris-
ing constraints (6) to (8), and constraints (11) to (12). Line
9 states that the target feature t is included in X .

Example 3. For the RF in Figure 1, to encode “whether
there is an AXp containing feature 3.” For feature 1, define
variables {z1,1, z1,2} such that z1,1 = 1 iff x1 = 0, z1,2 = 1
iff x1 = 1. For feature 2, define variables {z2,1, z2,2} such
that z2,1 = 1 iff x2 ≤ 20 and z2,2 = 1 iff x2 > 20.
And for feature 3, define variables {z3,1, z3,2, z3,3} such
that z3,1 = 1 iff x3 = 0, z3,2 = 1 iff x3 = 1 and
z3,3 = 1 iff x3 = 2. Moreover, define bit vector y1 = {y1,0}
mapping y1 = 0 to z1,1 and y1 = 1 to z1,2. Bit vector
y2 = {y2,0} mapping y2 = 0 to z2,1 and y2 = 1 to z2,2.
Bit vector y3 = {y3,0, y3,1} mapping y3 = (0, 0) to z3,1,
y3 = (0, 1) to z3,2, and y3 = (1, 0) to z3,3. The given in-
stance v = (1, 10, 1) is (z1,2, z2,1, z3,2) and the QBF for-
mula is as follows:
1. ∃(s1, s2, s3).∀(y1,0, y2,0, y3,0, y3,1).∃(Ω(κ0) ∪ Ω(κt)).
2. (s1 → z01,2) ∧ (s2 → z02,1) ∧ (s3 → z03,2)

4-1 serves as offset since indices range from 1 to ni but binary
numbers range from 0 to ni − 1.

3. (¬s1 ∧ ¬y1,0 → z01,1) ∧ (¬s1 ∧ y1,0 → z01,2) ∧
(¬s2 ∧ ¬y2,0 → z02,1) ∧ (¬s1 ∧ y2,0 → z02,2) ∧
(¬s3 ∧ ¬y3,0 ∧ ¬y3,1 → z03,1) ∧
(¬s3∧¬y3,0∧y3,1 → z03,2)∧(¬s3∧y3,0∧¬y3,1 → z03,3)

4.
[
κ0(z01,1, z

0
1,2, z

0
2,1, z

0
2,2, z

0
3,1, z

0
3,2, z

0
3,3) = c

]
5. (s1 → zt1,2) ∧ (s2 → zt2,1)

6.
[
κt(zt1,1, z

t
1,2, z

t
2,1, z

t
2,2, z

t
3,1, z

t
3,2, z

t
3,3) 6= c

]
7. (s3)

Moreover, it should also be noted that there is indeed a
pure 2QBF encoding for FRP. It suffices to i) negate (5), and
ii) decide whether the resulting formula is false. (In this case,
the existentially quantified auxiliary variables, used for con-
verting the matrix to clausal form, do not change the num-
ber of levels of quantification.) For the modified formula,
we are now checking whether there is no AXp containing
the target feature t. When the answer is No, it confirms the
existence of an AXp X such that t ∈ X . Next, we detail
this alternative QBF encoding (with ∀∃ qualtifier alterna-
tion), where we use T 0 to encode ¬WAXp(X ), and T t to
encode WAXp(X \ {t}):
1. ∀(s1, . . . , sm,y1,y2, . . . ,ym)
2. ∃(Ω(κ0) ∪ Ω(κt))
3.
∧

1≤i≤m(si → z0i,1)

4. σ0↔
[
κ0(z01,1, . . . , z

0
1,n1

, . . . , z0m,1, . . . , z
0
m,nm

) 6= c
]

5.
∧

1≤i≤m,i 6=t(si → zti,1)

6.
∧

1≤i≤m,i 6=t,1≤j≤ni
(¬si ∧ (g(yi) = j − 1)→ zti,j)

7.
∧

1≤j≤nt
((g(yt) = j − 1)→ ztt,j)

8. σt↔
[
κt(zt1,1, . . . , z

t
1,n1

, . . . , ztm,1, . . . , z
t
m,nm

) = c
]

9. ¬st ∨ σ0 ∨ σt

The universal quantifier picks all possible subsets of F as
well as all possible values of F. The existential quantifier as-
signs values to the remaining variables. Line 4 is the propo-
sitional encoding of T 0, and we associate it with a variable
σ0. Line 7 states that, for the target feature t of T t, it is al-
ways not fixed. Line 8 is the propositional encoding of T t,
also associated with a variable σt. Line 9 states that if t ∈ X
andX is a weak AXp thenX \{t} is still a weak AXp, which
means there is no explanation containing the target feature
t. If this is not the case, then there is an AXp containing t.

Abstraction Refinement for FRP
This section details a general-purpose algorithm for FRP,
that solely requires testing whether a set of features X ⊆ F
is (or is not) a weak AXp, i.e. it just requires the ability to
decide (1). The novel FRP algorithm iteratively refines an
over-approximation (or abstraction) of all the subsets S of
F such that: i) S is a weak AXp, and ii) any AXp included
in S also includes the target feature t. Formally, the set of
subsets of F that we are interested in is defined as follows:

H , {S ⊆ F |WAXp(S)∧
∀(X ⊆ S). [AXp(X )→(t ∈ X )]} (13)

Proposition 4. Let X ⊆ F . X ∈ H iff X respects the con-
ditions of Proposition 3.

4000



Algorithm 1 Deciding FRP for an arbitrary classifier
Input: Inst. v, Target feat. t; Feat. set F , Classifier κ

1: function FRPCGR(v, t;F , κ)
2: H ← ∅
3: repeat
4: (outc, s)← SAT(H, st)
5: if outc = true then
6: P ← {i ∈ F | si = 1}
7: D ← {i ∈ F | si = 0}
8: if ¬WAXp(P) then
9: H ← H∪ newPosCl(D; t, κ)

10: else
11: if ¬WAXp(P \ {t}) then
12: reportWeakAXp(P)
13: return true
14: H ← H∪ newNegCl(P; t, κ)

15: until outc = false
16: return false

The proposed algorithm iteratively refines the over-
approximation of set H until one can decide with certainty
whether t is included in some AXp. The refinement step in-
volves exploiting counterexamples as these are identified.5
In practice, it will in general be impractical to manipulate
such over-approximation of set H directly. As a result, we
use a propositional formula (in fact a CNF formula)H, such
that the models of H encode the subsets of features about
which we have yet to decide whether each of those subsets
only contains AXp’s that include t. (Formula H is defined
on a set of Boolean variables {s1, . . . , sm}, where each si is
associated with feature i, and assigning si = 1 denotes that
feature i is included in a given set.) The algorithm then it-
eratively refines the over-approximation by filtering out sets
of sets that have been shown not to be included in H, i.e. the
so-called counterexamples.

Algorithm 1 summarizes the proposed approach6. Algo-
rithms 2 and 3 provide supporting functions. We now de-
tail the key aspects of Algorithm 1. The algorithm iteratively
uses an NP oracle (in fact a SAT solver) to pick (or guess) a
subset P of F , such that any previously picked set is not re-
peated. Since we are interested in feature t, we enforce that
t ∈ P . (This step is shown in lines 4 to 7.) Given a set P
of picked features, that includes the target feature t, we can
check the conditions of Proposition 3, namely:
1. P is a weak AXp; and
2. P \ {t} is not a weak AXp.
If the two conditions above hold, then we know that P be-
longs to set H. Furthermore, P represents a witness that
there must exist some AXp that contains t, and we know how
to compute such an AXp by starting fromP . If the picked set

5The approach is referred to as counterexample-guided abstrac-
tion refinement (CEGAR) FRP, since the use of counterexamples
in abstraction refinement can be traced to earlier work (with the
same name) for model checking of software and hardware sys-
tems (Clarke et al. 2003).

6The algorithms are parametrized with the arguments shown
after the semi-colon; their use is flexible.

Algorithm 2 Create new positive clause (example)
Input: Set D; t, κ, . . .

1: function newPosCl(D; t, κ, . . .)
2: for all i ∈ D do
3: if ¬WAXp(F \ (D \ {i})) then
4: D ← D \ {i}
5: ω ← (∨i∈Dsi)
6: return ω

Algorithm 3 Create new negative clause (example)
Input: Set P; t, κ, . . .

1: function newNegCl(P; t, κ, . . .)
2: for all i ∈ P \ {t} do
3: if WAXp(P \ {t, i}) then
4: P ← P \ {i}
5: ω ← (∨i∈P\{t}¬si)
6: return ω

P is not a weak AXp, then we can safely remove it from fur-
ther consideration. This is achieved by enforcing that at least
one of the non-picked elements is picked in the future. Why?
Because we want to find a set that is at least a weak AXp,
and the set we picked is not one. (As can be observed H is
updated with a positive clause that captures this constraint,
as shown in line 9.) After adding the new clause, the algo-
rithm repeats the loop. Otherwise, the picked set P is a weak
AXp (and so the first condition above holds). As a result, we
now need to check whether removing t makes P \ {t} not
to be a weak AXp. If P \ {t} is not a weak AXp, then we
know that any weak AXp included in P must include t, and
this also applies to any (subset-minimal weak) AXp. In this
case, the algorithm reports P as a weak AXp that is guar-
anteed to be included in H. (This is shown in line 12.) It
should be noted that P is not necessarily an AXp. However,
by Proposition 3, P is guaranteed to be a weak AXp such
that any of the AXp’s contained in P must include feature
t. Furthermore, we know that we can extract an AXp from
a weak AXp with a polynomial number of calls to an oracle
that decides (1), and in this case we are guaranteed to always
pick one that includes t. Finally, the last case corresponds
to the situation when allowing t to take any value does not
cause the prediction to change. This means we picked a set
P that is a weak AXp, but not all AXp’s in P include the
target feature t (again due to Proposition 3). As a result, we
must prevent the same weak AXp from being re-picked. This
is achieved by requiring that at least one of the picked fea-
tures not to be picked again in the feature. (This is shown in
line 14. As can be observed, H is updated with a negative
clause that captures this constraint.)

With respect to the clauses that are added to H at each
step, as shown in Algorithms 2 and 3, one can envision op-
timizations (shown in lines 2 to 3 in both algorithms) that
heuristically aim at removing features from the given sets,
and so produce shorter (and so logically stronger) clauses.
The insight is that any feature, which can be deemed ir-
relevant for the condition used for constructing the clause,

4001



can be safely removed from the set. For the experiments,
we opted to use the simplest approach for constructing the
clauses, and so opting to reduce the number of classifica-
tion queries. Nevertheless, simple optimizations are easy to
implement. For example, with respect to the last case (i.e.
adding a negative clause in 14), X \ {t} must be a weak
AXp. From (1), this test requires deciding the satisfiability
of ∧i∈X\{t}(xi = vi) ∧ (κ(x) 6= c), and getting an unsatis-
fiability result. Hence, a simple refinement of P is given by
the unsatisfiable core yielded by the satisfiability test.

Given the above discussion, we can conclude that the pro-
posed algorithm is sound, complete and terminating for de-
ciding FRP for arbitrary classifiers.

Proposition 5. For a classifier C, defined on set of features
F , with κ mapping F to K, and an instance (v, c), v ∈ F,
c ∈ K, and a target feature t ∈ F , Algorithm 1 returns a set
P ⊆ F iff P is a weak AXp for (v, c), with the property that
any AXp X ⊆ P is such that t ∈ X .

Proof. (Sketch) A set P respects set H if S is a weak AXp,
and any of its subsets X that is an AXp is such that t ∈ X .
1. Algorithm 1 is terminating.

At each step, the algorithm adds a clause that guarantees
that a picked assignment is not repeated. In total, 2|F|

assignments can be made to the si variables. Hence, the
main loop of Algorithm 1 executes at most 2|F| times.

2. Algorithm 1 is sound.
Given the conditions used to report a picked P , then
by Proposition 3 we know that this picked set respects
set H, and so any AXp contained in P will include t.

3. Algorithm 1 is complete.
It is plain that each clause added to H blocks only sets
that ought not be included in H. The SAT solver will
enumerate assignments (i.e. and so a picked set) while
that set is not yet blocked by clauses added toH. If there
exists a set P that respects H, then it will eventually be
picked.

Experimental Results
This section presents experimental results on assessing the
practical efficiency of the two methods proposed to solving
FRP in the case study of RF classifiers.

Experimental set up. The evaluation comprises 27
datasets that originate from the Penn ML Benchmarks (Ol-
son et al. 2017). The 27 datasets are split into two sets: the
first one contains 9 small datasets that have at most 16 fea-
tures (the average number of features is 8.4), and which is
used to compare the performances of the two methods; the
second set contains 18 datasets, with an average number of
21.5 features, which mainly serves to assess the scalabil-
ity of the CEGAR-based approach (denoted by FRPCGR).
The RF models are trained with varying the maximum depth
from 4 to 6 and the number of trees from 20 to 100, so that
we obtain the most accurate models. (These numbers are in
line with RFs used in practice.) As a result, small RFs (i.e.
with a number of trees less or equal 30) form the first set and

the large RFs (with 100 trees) constitute the second bench-
mark set. For each dataset, a suite of 200 samples randomly
picked is tested or all input data if there are less than 200
rows in the dataset. Moreover, the candidate feature set in
the query is picked randomly for each test. (Hence, for each
dataset, we generate 200 FRP queries.)

Furthermore, a prototype of FRPCGR was implemented
in Python7. The PySAT toolkit (Ignatiev, Morgado, and
Marques-Silva 2018) was used to implement the FRP en-
codings, and configured to run the Glucose 4 (Audemard and
Simon 2018)8 SAT solver. The QBF solvers we used are De-
pQBF (Lonsing and Egly 2017)9 and CAQE (Rabe and Ten-
trup 2015)10. Moreover, we combined CAQE with prepro-
cessor Bloqqer (Biere, Lonsing, and Seidl 2011)11. We ran
both QBF solvers with their default configurations. Finally,
the experiments were performed on a MacBook Pro with a 6-
Core Intel Core i7 2.6 GHz processor with 16 GByte RAM,
running macOS Monterey. The time limit for deciding one
query was set to 1200 seconds, and we capped the time for
finishing 200 queries by 5 hours.

QBF versus FRPCGR. Table 1 summarizes the compar-
ison results of QBF and FRPCGR. Unsurprisingly, we ob-
serve that the resulting QBF encodings are somewhat larger
that the SAT encodings. Indeed, the QBF formulation en-
codes two copies of the RF, i.e. T 0 and T t, whereas FR-
PCGR encodes only one, i.e. T t. In addition, we note that
encoding T 0 requires (K − 1) cardinality constraints, there-
fore for a multi-class problem the encoding size of QBF can
be larger than the SAT encoding used by FRPCGR. Table 1
also shows the average running times of both approaches
for solving one FRP query. (Note that the reported average
running times are computed on successful tests, and so the
tests that time out are omitted.) Clearly, the results show that
FRPCGR outperforms QBF solving on all datasets. More
importantly, the running times for FRPCGR are most of-
ten negligible and at least one order of magnitude smaller
than running times for QBF. Furthermore, we observe that
in some datasets, QBF solvers were unable to terminate for
some tests (e.g. 2 timeouts (resp. 1) for CAQE (resp. De-
pQBF) with crx dataset (resp. glass2 dataset)) or all tests
(e.g. DepQBF with crx dataset). Additionally, we evaluated
the alternative ∀∃ QBF encoding for the datasets reported
in Table 1. It is still the case that runtime for QBF solvers
solving these ∀∃ instances is at least one order of magnitude
larger than runtime for FRPCGR. Moreover, and in most
cases, solving ∀∃ (clausal) instances is significantly slower
than solving ∃∀ non-clausal (and so ∃∀∃ clausal) instances.

FRPCGR. Since the main goal is to assess the scalabil-
ity of FRPCGR on large RFs (of sizes common in practical
applications), instances obtained from RFs with 100 trees
(as described earlier) were also considered. The number of

7All the materials for replicating the experiments are available
at https://github.com/XuanxiangHuang/frpRF-experiments

8https://github.com/mi-ki/glucose-syrup
9https://github.com/lonsing/depqbf

10https://github.com/ltentrup/caqe
11http://fmv.jku.at/bloqqer/

4002



Dataset m K
RF Y% QBF DepQBF CAQE CNF FRPCGR

#N A% vars clauses Yes No Yes No vars clauses Yes No

crx 15 2 522 81.8 90 2579 5260 — — 12.1* 36.70 1290 2719 0.03 0.05
ecoli 7 5 526 87.8 60 7448 12 376 1.40 29.38 3.91 2.25 2917 5103 0.04 0.02
glass2 9 2 348 84.8 87 2414 4744 18.5* 48.38 1.26 1.73 1202 2440 0.01 0.01
hayes roth 4 3 336 84.2 71 5036 7832 0.07 0.08 2.30 2.94 2555 4017 0.02 0.01
votes 84 16 2 464 91.3 97 1266 2458 66.51 36.46 0.61 0.58 643 1256 0.01 0.05
iris 4 3 224 100 52 5079 8012 0.11 0.09 1.56 1.79 2564 4092 0.02 0.01
mofn 10 2 582 86.3 40 859 1851 0.03 0.04 0.22 0.28 440 931 0.01 0.01
monk3 6 2 472 94.3 22 937 1868 0.02 0.03 0.16 0.20 473 937 0.01 0.00
n thyroid 5 3 284 100 83 5722 9386 4.24 0.97 2.23 2.18 2884 4807 0.02 0.01

Table 1: Comparison of QBF-based and CEGAR-based methods. Columns m, K report the characteristics of the dataset,
namely number of features and classes, respectively. Sub-columns #N, A% in column RF report, resp., the number of nodes
and the test accuracy of the trained models. Column Y% counts the number of FRP queries answered Yes (in percentage).
Column QBF shows the average number of variables and clauses in the QBF encoding. Average runtimes for solving FRP
queries with QBF solvers are reported (in seconds) in columns DepQBF and CAQE, s.t. times of resulting FRP answers Yes
and No are reported separately. (“—” indicates that solver reached the fixed timeout for all tests; “*” indicates that timeouts are
observed for some tests.) Column CNF shows the average number of variables and clauses of the SAT encoding generated by
the FRPCGR. The last column reports the average times (in seconds) of the FRPCGR for solving one FRP query, again times
of answers Yes and No are reported separately.

Dataset m K
RF CNF Y% AXp Time #SAT calls

#N A% vars clauses avg. sz Yes No Yes No

agaricus lepiota 22 2 1866 99.2 3343 6310 89 10 0.2 4.7 52 2538
allbp 29 3 2492 96.5 16 038 26 452 47 4 2.6 4.3 65 261
ann thyroid 21 3 2192 98.9 16 802 27 509 26 6 1.0 1.0 33 75
appendicitis 7 2 1426 90.9 4674 8736 97 4 0.1 0.1 4 20
collins 23 13 2890 86.6 24 772 42 186 95 12 3.4 0.4 38 16
hypothyroid 25 2 2034 95.9 4768 9347 53 4 0.4 1.3 32 324
ionosphere 34 2 1566 87.1 5922 12 594 98 19 6.4 0.6 1272 232
kr vs kp 36 2 2268 94.2 2952 8102 71 11 0.6 20.5 285 11 261
magic 10 2 2990 81.9 10 631 22 403 86 6 0.2 0.1 14 36
mushroom 22 2 2078 99.0 3374 6386 90 11 0.2 2.8 46 1375
pendigits 16 10 3098 85.0 22 656 38 420 99 10 1.6 1.5 18 70
ring 20 2 2458 84.1 9113 18 815 68 15 0.2 0.5 20 130
segmentation 19 7 2288 92.8 20 822 35 114 91 9 1.6 4.5 45 290
shuttle 9 7 2618 99.8 19 543 31 942 78 4 0.9 0.9 14 31
texture 40 11 3040 81.4 27 018 47 325 97 23 6.9 62.0 210 5522
twonorm 20 2 3100 93.5 11 729 24 904 94 12 0.3 10.6 25 2606
vowel 13 11 10 176 90.4 44 530 88 700 98 9 4.1 5.7 19 56
waveform 21 21 3 3100 83.5 22 446 39 732 75 10 1.2 12.6 47 943

Table 2: Assessing FRPCGR on larger datasets and RFs trained with 100 trees. Column AXp reports the average size of
computed AXp’s for queries answered Yes. Column Time reports average runtimes (in seconds) for solving one FRP query.
Column #SAT calls reports the average number of oracle guesses (counterexamples) performed in the CEGAR loop (i.e. number
of iterations) to solve one FRP query. The remaining columns have the same meaning as described in the caption of Table 1.

nodes in these RFs ranges from 1426 to 10176. The results
are shown in Table 2. As can be observed, the average run-
ning times of FRPCGR to decide FRP take from 0.1s to
6.9s (resp. 0.1s to 62s) for outputs “Yes” (resp. “No”). It
should be underscored that FRPCGR computes in general
more counterexamples to solve a negative decision (i.e. an-
swer No), as this can be confirmed from the results, where

the number of calls to the SAT oracle are substantially larger
for decisions answered No on the majority of datasets (e.g.
11 261 calls for No against 285 for Yes, for kr vs kp dataset).
As a result, and with a few exceptions, the running times
of FRP tests of output No are larger than tests answered
Yes. Also, we emphasize that in contrast to the QBF solvers,
no timeouts were observed with FRPCGR, for the results

4003



Datasets DepQBF CAQE

#Test(TO) Yes Time No Time #Test(TO) Yes Time No Time
Total Avg. Total Avg. Total Avg. Total Avg.

crx 21(14) 614.33 122.87 68.43 68.43 200(2) 2134.4 12.1 770.6 36.7

agaricus lepiota 17(15) 0.1 0.1 0.0 0.0 68(13) 2138.7 42.8 36.4 9.1
allbp 17(15) * * 0.0 0.0 17(15) * * 0.0 0.0
ann thyroid 23(14) 1.9 0.6 731.5 146.3 49(13) 1083.6 180.6 909.1 31.3
appendicitis 19(14) 1095.0 273.7 * * 27(13) 1516.3 126.4 643.5 643.5
collins 16(15) * * 0.0 0.0 16(14) 1199.4 1199.4 0.0 0.0
hypothyroid 15(15) * * * * 18(13) 973.1 486.6 698.4 349.2
ionosphere 16(15) 0.2 0.2 * * 15(15) * * * *
kr vs kp 21(14) 814.9 163.0 0.0 0.0 29(13) 1430.6 102.2 0.0 0.0
magic 22(14) 638.2 91.2 * * 20(13) 1692.7 423.2 52.2 26.1
mushroom 18(14) 1018.1 1018.1 0.0 0.0 37(12) 3238.7 161.9 0.0 0.0
pendigits 16(15) 1.8 1.8 * * 17(14) 647.9 323.9 * *
ring 20(14) 1103.3 220.7 * * 72(14) 707.6 14.7 573.6 57.4
segmentation 16(15) 1.2 1.2 * * 17(14) 307.1 153.5 * *
shuttle 16(15) 1.2 1.2 * * 24(12) 2148.2 268.5 425.8 141.9
texture 15(15) * * * * 15(15) * * * *
twonorm 18(14) 15.9 8.0 383.2 383.2 16(14) * * 23.5 23.5
vowel 21(14) 715.6 119.3 * * 17(12) 3500.2 875.1 * *
waveform 21 17(15) 1.6 0.8 * * 15(15) * * * *

Table 3: QBF method solves queries for dataset crx and datasets in Table 2. The first row shows the timeout information for
dataset crx. The rest show the timeout information for datasets in Table 2. #Test(TO) shows the number of FRP queries tested
in 5 hours, inside the parentheses is the number of timeout queries. If the query is solved, then its total and average time (in
seconds) are reported in Column Yes Time and No Time. A ‘*’ indicates out of time.

shown in both tables. Table 3 shows the timeout information
when solving the queries for datasets of Table 2 with the
QBF encoding. For example, when using DepQBF to solve
queries of dataset crx, only 21 queries were tested, and only
14 queries were solved, 7 queries out of 21 cannot be solved
in 1200 seconds time limit, and the rest queries were not
tested due to the 5 hours time limit. Note that, for datasets
agaricus lepiota, allbp, collins, kr vs kp and mushroom, the
total No time is 0.0, this is because the target feature t is not
tested in the RF, which means no AXp containing feature t
exists. One observation is that CAQE + Bloqqer can solve
more queries (compared with DepQBF). But for dataset tex-
ture, both solvers fail to answer any query. Another obser-
vation is that FRPCGR is effective in practice and usable
on large size RFs induced from realistic datasets. Further-
more, the results also indicate that FRPCGR substantially
outperforms the encoding to QBF, being able to solve a vast
number of FRP queries that QBF solvers are unable to.

Conclusions & Research Directions
This paper investigates the solution of quantification prob-
lems when answering explainability queries, focusing on the
feature relevancy problem, FRP. The paper proves that for
several families of classifiers, FRP is complete for ΣP

2. Fur-
thermore, the paper proposes two solutions for solving FRP.
The first one builds on the proof of ΣP

2 completeness, and
is based on encoding the problem into QBF, and then solv-
ing the QBF formulas with a state-of-the-art QBF solver.

The second approach proposes a dedicated abstraction re-
finement algorithm for FRP. Random forest classifiers were
considered for comparing the two approaches. The experi-
ments show a clear performance edge of the dedicated al-
gorithm when compared with the proposed QBF encodings,
since the dedicated algorithm is the only capable of deciding
FRP for large RFs, resulting from datasets with a realistic
number of features. Research directions include fine-tuning
all of the main steps of FRP, e.g. selecting the set to pick,
but also the derivation of clauses when refining H.

Acknowledgments
This work was supported by the AI Interdisciplinary Insti-
tute ANITI, funded by the French program “Investing for the
Future – PIA3” under Grant agreement no. ANR-19-PI3A-
0004, by the H2020-ICT38 project COALA “Cognitive As-
sisted agile manufacturing for a Labor force supported by
trustworthy Artificial intelligence”, and by the National Re-
search Foundation, Prime Minister’s Office, Singapore un-
der its Campus for Research Excellence and Technological
Enterprise (CREATE) programme. This work received com-
ments and suggestions from several colleagues, including N.
Asher, M. Cooper, A. Ignatiev, J. Planes, A. Morgado, and
N. Narodytska. JMS also acknowledges the incentive pro-
vided by the ERC who, by not funding this research nor a
handful of other grant applications between 2012 and 2022,
has had a lasting impact in framing the research presented in
this paper.

4004



References
Amgoud, L. 2021. Non-monotonic Explanation Functions.
In ECSQARU, 19–31.
Amgoud, L.; and Ben-Naim, J. 2022. Axiomatic Founda-
tions of Explainability. In IJCAI, 636–642.
Arenas, M.; Baez, D.; Barceló, P.; Pérez, J.; and Suber-
caseaux, B. 2021. Foundations of Symbolic Languages for
Model Interpretability. In NeurIPS, 11690–11701.
Arenas, M.; Barceló, P.; Romero, M.; and Subercaseaux, B.
2022. On Computing Probabilistic Explanations for Deci-
sion Trees. In NeurIPS.
Arora, S.; and Barak, B. 2009. Computational Complexity
- A Modern Approach. Cambridge University Press. ISBN
978-0-521-42426-4.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.; and Marquis, P. 2021. On the Computational Intelligibil-
ity of Boolean Classifiers. In KR, 74–86.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.; and Marquis, P. 2022a. On Preferred Abductive Expla-
nations for Decision Trees and Random Forests. In IJCAI,
643–650.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.; and Marquis, P. 2022b. Trading Complexity for Sparsity
in Random Forest Explanations. In AAAI, 5461–5469.
Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
Tractable XAI Queries based on Compiled Representations.
In KR, 838–849.
Audemard, G.; and Simon, L. 2018. On the Glucose
SAT Solver. Int. J. Artif. Intell. Tools, 27(1): 1840001:1–
1840001:25.
Barceló, P.; Monet, M.; Pérez, J.; and Subercaseaux, B.
2020. Model Interpretability through the lens of Compu-
tational Complexity. In NeurIPS.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition. IOS
Press.
Biere, A.; Lonsing, F.; and Seidl, M. 2011. Blocked Clause
Elimination for QBF. In CADE, 101–115.
Blanc, G.; Lange, J.; and Tan, L. 2021. Provably efficient,
succinct, and precise explanations. In NeurIPS.
Boumazouza, R.; Alili, F. C.; Mazure, B.; and Tabia, K.
2021. ASTERYX: A model-Agnostic SaT-basEd appRoach
for sYmbolic and score-based eXplanations. In CIKM, 120–
129.
Breiman, L. 2001. Random Forests. Mach. Learn., 45(1):
5–32.
Chen, T.; and Guestrin, C. 2016. XGBoost: A Scalable Tree
Boosting System. In KDD, 785–794.
Choi, A.; Shih, A.; Goyanka, A.; and Darwiche, A. 2020.
On Symbolically Encoding the Behavior of Random Forests.
CoRR, abs/2007.01493.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith,
H. 2003. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5): 752–794.

Cooper, M. C.; and Marques-Silva, J. 2021. On the
Tractability of Explaining Decisions of Classifiers. In
Michel, L. D., ed., CP, 21:1–21:18.
Darwiche, A. 2020. Three Modern Roles for Logic in AI. In
PODS, 229–243.
Darwiche, A.; and Hirth, A. 2020. On the Reasons Behind
Decisions. In ECAI, 712–720.
Darwiche, A.; and Ji, C. 2022. On the Computation of Nec-
essary and Sufficient Explanations. In AAAI, 5582–5591.
Darwiche, A.; and Marquis, P. 2021. On Quantifying Liter-
als in Boolean Logic and Its Applications to Explainable AI.
J. Artif. Intell. Res.
Eiter, T.; and Gottlob, G. 1995. The Complexity of Logic-
Based Abduction. J. ACM, 42(1): 3–42.
European Commission. 2016. General Data Protec-
tion Regulation. http://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679&from=en. Accessed:
2023-03-23.
European Commission. 2021. Artificial Intelligence
Act. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=
1623335154975&uri=CELEX%3A52021PC0206. Ac-
cessed: 2023-03-23.
European Commission’s High-Level Expert Group
on AI. 2019. Ethics guidelines for trustworthy AI.
https://ec.europa.eu/digital-single-market/en/news/ethics-
guidelines-trustworthy-ai. Accessed: 2023-03-23.
Feng, J.; and Zhou, Z. 2018. AutoEncoder by Forest. In
AAAI, 2967–2973.
Ferreira, J.; de Sousa Ribeiro, M.; Gonçalves, R.; and Leite,
J. 2022. Looking Inside the Black-Box: Logic-based Expla-
nations for Neural Networks. In KR, 432–442.
Friedrich, G.; Gottlob, G.; and Nejdl, W. 1990. Hypothesis
Classification, Abductive Diagnosis and Therapy. In ESE,
69–78.
Gao, W.; and Zhou, Z. 2020. Towards Convergence Rate
Analysis of Random Forests for Classification. In NeurIPS.
Gorji, N.; and Rubin, S. 2022. Sufficient Reasons for Clas-
sifier Decisions in the Presence of Domain Constraints. In
AAAI, 5660–5667.
Huang, X.; Cooper, M. C.; Morgado, A.; Planes, J.; and
Marques-Silva, J. 2022a. Feature Necessity & Relevancy
in ML Classifier Explanations. CoRR, abs/2210.15675.
Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M. C.; Asher, N.;
and Marques-Silva, J. 2022b. Tractable Explanations for d-
DNNF Classifiers. In AAAI.
Huang, X.; Izza, Y.; Ignatiev, A.; and Marques-Silva, J.
2021. On Efficiently Explaining Graph-Based Classifiers.
In KR, 356–367.
Huang, X.; and Marques-Silva, J. 2022. On Deciding Fea-
ture Membership in Explanations of SDD & Related Classi-
fiers. CoRR, abs/2202.07553.
Ignatiev, A. 2020. Towards Trustable Explainable AI. In
IJCAI, 5154–5158.
Ignatiev, A.; Cooper, M. C.; Siala, M.; Hebrard, E.; and
Marques-Silva, J. 2020a. Towards Formal Fairness in Ma-
chine Learning. In CP, 846–867.

4005



Ignatiev, A.; Izza, Y.; Stuckey, P.; and Marques-Silva, J.
2022. Using MaxSAT for Efficient Explanations of Tree En-
sembles. In AAAI.
Ignatiev, A.; and Marques-Silva, J. 2021. SAT-Based Rigor-
ous Explanations for Decision Lists. In SAT, 251–269.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Ignatiev, A.; Narodytska, N.; Asher, N.; and Marques-Silva,
J. 2020b. From Contrastive to Abductive Explanations and
Back Again. In AIxIA, 335–355.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-Based Explanations for Machine Learning Mod-
els. In AAAI, 1511–1519.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On Relating Explanations and Adversarial Examples. In
NeurIPS, 15857–15867.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019c.
On Validating, Repairing and Refining Heuristic ML Expla-
nations. CoRR, abs/1907.02509.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On Ex-
plaining Decision Trees. CoRR, abs/2010.11034.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2022. On Tack-
ling Explanation Redundancy in Decision Trees. J. Artif.
Intell. Res., 75: 261–321.
Izza, Y.; Ignatiev, A.; Narodytska, N.; Cooper, M. C.; and
Marques-Silva, J. 2021. Efficient Explanations With Rele-
vant Sets. CoRR, abs/2106.00546.
Izza, Y.; Ignatiev, A.; Narodytska, N.; Cooper, M. C.;
and Marques-Silva, J. 2022. Provably Precise, Succinct
and Efficient Explanations for Decision Trees. CoRR,
abs/2205.09569.
Izza, Y.; and Marques-Silva, J. 2021. On Explaining Ran-
dom Forests with SAT. In IJCAI, 2584–2591.
Izza, Y.; and Marques-Silva, J. 2022. On Computing Rele-
vant Features for Explaining NBCs. CoRR, abs/2207.04748.
Liu, X.; and Lorini, E. 2022. A Logic of ”Black Box” Clas-
sifier Systems. In WoLLIC, 158–174.
Lonsing, F.; and Egly, U. 2017. DepQBF 6.0: A Search-
Based QBF Solver Beyond Traditional QCDCL. In CADE,
371–384.
Lundberg, S. M.; and Lee, S. 2017. A Unified Approach to
Interpreting Model Predictions. In NeurIPS, 4765–4774.
Makortoff, K. 2022. ’Risks posed by AI are real’:
EU moves to beat the algorithms that ruin lives.
https://www.theguardian.com/technology/2022/aug/07/ai-
eu-moves-to-beat-the-algorithms-that-ruin-lives. Ac-
cessed: 2023-03-23.
Malfa, E. L.; Michelmore, R.; Zbrzezny, A. M.; Paoletti, N.;
and Kwiatkowska, M. 2021. On Guaranteed Optimal Robust
Explanations for NLP Models. In IJCAI, 2658–2665.
Marques-Silva, J. 2022a. Logic-Based Explainability in Ma-
chine Learning. CoRR, abs/2211.00541.
Marques-Silva, J. 2022b. Logic-Based Explainability in Ma-
chine Learning. In Reasoning Web. In Press.

Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2020. Explaining Naive Bayes and
Other Linear Classifiers with Polynomial Time and Delay.
In NeurIPS.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2021. Explanations for Monotonic
Classifiers. In ICML, 7469–7479.
Marques-Silva, J.; and Ignatiev, A. 2022. Delivering Trust-
worthy AI through Formal XAI. In AAAI, 12342–12350.
Narodytska, N.; Shrotri, A. A.; Meel, K. S.; Ignatiev, A.;
and Marques-Silva, J. 2019. Assessing Heuristic Machine
Learning Explanations with Model Counting. In SAT, 267–
278.
Olson, R. S.; La Cava, W.; Orzechowski, P.; Urbanowicz,
R. J.; and Moore, J. H. 2017. PMLB: a large benchmark
suite for machine learning evaluation and comparison. Bio-
Data Mining, 10(1): 36.
Parmentier, A.; and Vidal, T. 2021. Optimal Counterfactual
Explanations in Tree Ensembles. In ICML, 8422–8431.
Pedregosa, F.; and et al. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research, 12:
2825–2830.
Rabe, M. N.; and Tentrup, L. 2015. CAQE: A Certifying
QBF Solver. In FMCAD, 136–143.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In KDD, 1135–1144.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. In AAAI,
1527–1535.
Selman, B.; and Levesque, H. J. 1990. Abductive and De-
fault Reasoning: A Computational Core. In AAAI, 343–348.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A Symbolic
Approach to Explaining Bayesian Network Classifiers. In
IJCAI, 5103–5111.
Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
Bayesian Network Classifiers into Decision Graphs. In
AAAI, 7966–7974.
Wäldchen, S.; MacDonald, J.; Hauch, S.; and Kutyniok, G.
2021. The Computational Complexity of Understanding Bi-
nary Classifier Decisions. J. Artif. Intell. Res., 70: 351–387.
Wolf, L.; Galanti, T.; and Hazan, T. 2019. A Formal Ap-
proach to Explainability. In AIES, 255–261.
Yang, L.; Wu, X.; Jiang, Y.; and Zhou, Z. 2020. Multi-Label
Learning with Deep Forest. In ECAI, volume 325, 1634–
1641.
Yu, J.; Ignatiev, A.; Stuckey, P. J.; Narodytska, N.; and
Marques-Silva, J. 2022. Eliminating The Impossible, What-
ever Remains Must Be True. CoRR, abs/2206.09551.
Zhang, Y.; Zhou, J.; Zheng, W.; Feng, J.; Li, L.; Liu, Z.; Li,
M.; Zhang, Z.; Chen, C.; Li, X.; Qi, Y. A.; and Zhou, Z.
2019. Distributed Deep Forest and its Application to Auto-
matic Detection of Cash-Out Fraud. ACM Trans. Intell. Syst.
Technol., 10(5): 55:1–55:19.
Zhou, Z.; and Feng, J. 2017. Deep Forest: Towards An Al-
ternative to Deep Neural Networks. In IJCAI, 3553–3559.

4006


