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Abstract
RGB-D object tracking has attracted considerable attention
recently, achieving promising performance thanks to the sym-
biosis between visual and depth channels. However, given
a limited amount of annotated RGB-D tracking data, most
state-of-the-art RGB-D trackers are simple extensions of
high-performance RGB-only trackers, without fully exploit-
ing the underlying potential of the depth channel in the of-
fline training stage. To address the dataset deficiency issue,
a new RGB-D dataset named RGBD1K is released in this
paper. The RGBD1K contains 1,050 sequences with about
2.5M frames in total. To demonstrate the benefits of train-
ing on a larger RGB-D data set in general, and RGBD1K in
particular, we develop a transformer-based RGB-D tracker,
named SPT, as a baseline for future visual object tracking
studies using the new dataset. The results, of extensive ex-
periments using the SPT tracker demonstrate the potential of
the RGBD1K dataset to improve the performance of RGB-
D tracking, inspiring future developments of effective tracker
designs. The dataset and codes will be available on the project
homepage: https://github.com/xuefeng-zhu5/RGBD1K.

Introduction
Visual Object Tracking (VOT) aims at detecting the posi-
tion and scale of an object of interest in every frame of a
video. The tracking capability plays a significant role in the
gamut of perceptual functionalities in computer vision and
pattern recognition (Xue et al. 2020; Griffiths et al. 2017;
Smeulders et al. 2013). The development of visual object
tracking techniques has been ongoing for decades. In re-
cent years in particular, with the access to large-scale anno-
tated datasets, such as GOT10K (Huang, Zhao, and Huang
2019), TrackingNet (Muller et al. 2018), LaSOT (Fan et al.
2019), etc., the development of advanced visual object track-
ers has been accelerated by deep learning. Trained offline,
using millions of labelled video frames, tracking networks
are capable to learn robust feature representations, resulting
in remarkable performance improvements, compared with
conventional online learning methods (Kristan et al. 2019,
2020, 2021).

Recently, with the widespread availability of low-cost
RGB-D sensors, the task of visual object tracking has broad-
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ened to include RGB-D videos. An RGB-D data is com-
prised of a three-channel RGB image and a single-channel
depth map. Compared to conventional RGB-only tracking,
the additional depth maps of RGB-D videos provide sup-
plementary spatial information that facilitates object track-
ing in complicated scenarios (Bagautdinov, Fleuret, and
Fua 2015; Meshgi et al. 2016). Nevertheless, the exist-
ing RGB-D tracking methods generally build upon high-
performance RGB-only trackers, adopting the depth infor-
mation in the online tracking stage to support reasoning
about partially occluded targets, and re-detection of disap-
pearing targets (Camplani et al. 2015; Kart, Kamarainen,
and Matas 2018; Hannuna et al. 2019).

However, RGB-D trackers are not evolving as swiftly as
RGB-only trackers (Kristan et al. 2019, 2020, 2021). The
main reason is the lack of training data for RGB-D tracking.
The publicly available annotated RGB-D videos cannot sup-
port offline training of an RGB-D tracking network. More
specifically, while the existing datasets for RGB-only track-
ers contain thousands of video sequences with millions of
annotated frames, the existing RGB-D datasets contain only
416 video sequences in total.

Recently, a new RGB-D tracking dataset named Depth-
Track as well as an offline trained RGB-D tracker DeT have
been made public (Yan et al. 2021b). However, the training
set of DepthTrack contains only 150 videos captured in re-
alistic scenarios. The vast majority of the RGB-D training
data used for the development of tracker DeT was generated
from RGB-only tracking datasets using monocular depth es-
timation techniques. The real training data collected by the
depth camera occupies only a very small proportion. The
performance of a deep RGB-D tracker trained in this way
depends largely on the quality of the monocular depth es-
timation used for reconstructing the depth information. In
summary, the existing RGB-D data is far from sufficient to
promote the rapid development of RGB-D tracking.

In order to further motivate the investigation of RGB-
D tracking, and its use, we collect a new RGB-D dataset
named RGBD1K. RGBD1K contains 1,050 sequences with
about 2.5M frames in total. Of these, 1,000 videos are re-
served for training and 50 videos for testing. For the training
videos, considering the annotation cost as well as the fact
that the top one-fifth of frames of a long-term video con-
tains representative visual and depth appearance variations
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Dataset Videos number Total frames Average length Annotated frames Scene attributes ST/ LT
PTB 100 21,542 215 21,542 5 ST
STC 36 9,009 250 9,009 12 ST
CDTB 80 101,956 1,274 101,956 13 LT
DepthTrack 200 294,591 1,473 294,591 15 LT
RGBD1K 1,050 2,503,400 2,384 717,900 15 LT

Table 1: An overview of the existing RGB-D datasets. The ST/ LT means Short-Term/ Long-Term.

for the learning of a tracking model, only the first 600 frames
of each video are annotated. Therefore, 600,000 annotated
frames of RGBD1K can be utilized for supervised learning
of deep RGB-D tracking methods. Regarding the test set, all
the frames are annotated, containing 117,900 frames in total.
Additionally, we annotate each frame with 15 challenging
attributes. The per-frame attributes facilitate the analysis of
the trackers. To the best of our knowledge, RGBD1K is the
largest dataset for RGB-D tracking presently in existence.
The Table 1 summarises the existing RGB-D datasets, in-
cluding PTB (Song and Xiao 2013), STC (Xiao et al. 2017),
CDTB (Lukezic et al. 2019), DepthTrack (Yan et al. 2021b)
and our RGBD1K. As evident from the table, the proposed
RGBD1K has the largest number of videos, frames, annota-
tions, and the average length of sequences.

In order to demonstrate the impact of the new dataset on
the accuracy of RGB-D tracking, we propose a new baseline
tracker based on spatial transformer learning, named SPT.
Specifically, we extend the RGB-only tracking network (Yan
et al. 2021a) to an RGB-D version and introduce a novel
fusion module designed to fuse the features from the two
modalities. The SPT is trained offline using the 1,000 train-
ing videos of the RGBD1K dataset. Extensive experiments,
including the ablation experiments for self-analysis, and the
comparative evaluation, are conducted on the RGBD1K,
DepthTrack and CDTB datasets. The corresponding results
demonstrate the effectiveness of our RGBD1K dataset and
the competitiveness of our new baseline tracker SPT.

Related Work
Recently, the advancement of RGB-D tracking has been
stimulated by the emergence of RGB-D tracking datasets.
In this section, we briefly introduce the techniques that are
closely related to this tracking task.

RGB-D Tracking Datasets
There are four RGB-D object tracking datasets pub-
licly available, including Princeton Tracking Benchmark
(PTB) (Song and Xiao 2013), Spatio-Temporal Consistency
dataset (STC) (Xiao et al. 2017), Color and Depth Track-
ing Benchmark (CDTB) (Lukezic et al. 2019) and Depth-
Track (Yan et al. 2021b). The specific properties of these
four datasets are provided in Table 1. PTB (Song and Xiao
2013) is the seminal publicly available RGB-D tracking
dataset. PTB contains 100 challenging videos recorded in-
doors for RGB-D tracking evaluation. According to the tar-
get category, target size, movement, occlusion and motion
type, these video sequences are labelled according to 11

attribute categories. STC (Xiao et al. 2017) is an RGB-D
tracking dataset comprising 36 video sequences with 12 per-
frame annotated attributes. STC contains both indoor and
outdoor scenarios. CDTB (Lukezic et al. 2019) is the ex-
isting largest test dataset for RGB-D tracking, comprising
80 video sequences captured in long-term tracking scenar-
ios. All these sequences are annotated with 13 per-frame
attributes. CDTB dataset has been recently adopted in the
VOT-RGBD 2019 (Kristan et al. 2019), 2020 (Kristan et al.
2020) and 2021 (Kristan et al. 2021) challenges. Depth-
Track (Yan et al. 2021b) is the most recent RGB-D track-
ing dataset and is also the first dataset for offline training the
RGB-D trackers. It contains 200 RGB-D video sequences
captured both indoors and outdoors, in which 150 videos can
be adopted for offline learning. The remaining 50 videos are
used for the tracking performance evaluation.

RGB-D Tracking Methods
Since the advent of the seminal publicly available RGB-D
tracking dataset PTB, the research on RGB-D tracking has
received widespread attention. Given the remarkable perfor-
mance of the existing RGB-only tracking framework, most
of the RGB-D tracking algorithms in the literature are simple
RGB-only tracker extensions, utilizing the supplementary
depth information effectively to improve the performance.

Based on the early colour-only Struck tracker and clas-
sical mean-shift tracker respectively, a local depth pattern
feature (Awwad, Hussein, and Piccardi 2015) and a 3-D
mean-shift (Liu et al. 2018) are proposed for RGB-D track-
ing. Besides, a 3D part-based sparse tracker with occlu-
sion handling is developed from the particle filter frame-
work (Bibi, Zhang, and Ghanem 2016). Considering the
promising performance of Discriminative Correlation Fil-
ter (DCF) based trackers on RGB videos (Danelljan et al.
2017; Xu et al. 2019; Zhu et al. 2021), the RGB-D track-
ers DS-KCF (Camplani et al. 2015), DS-KCF-shape (Han-
nuna et al. 2019), DM-DCF (Kart, Kamarainen, and Matas
2018) and OTR (Kart et al. 2019) are developed. Recently,
deep learning has been shown to exhibit promising perfor-
mance in RGB-only tracking (Bhat et al. 2019; Lukezic,
Matas, and Kristan 2020; Zhao et al. 2021b, 2022). The
existing best performing RGB-D trackers are extensions of
offline trained RGB-only trackers. For example, in VOT-
RGBD challenges (Kristan et al. 2019, 2020, 2021), the
trackers STARK RGBD, TALGD, ATCAIS are developed
from the deep RGB trackers STARK (Yan et al. 2021a),
ATOM (Danelljan et al. 2019) and DiMP (Bhat et al. 2019).
More recently, Yan et al. propose an end-to-end offline
trained RGB-D tracker DeT (Yan et al. 2021b), which is
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Figure 1: RGB-D image samples from the RGBD1K. The targets are marked with red boxes, and the depth maps are converted
to colour maps for more clear visualization. The first column is five samples of human, including child, elder, woman, man and
couple. The second column is five samples of animal, such as bear, tiger, swan, pigeon and red panda. The third column is
samples of vehicle, like car, bus, bicycle, motorbike and cart. The final column is five samples of articles for daily use, including
basketball, balloon, box, doll and book.
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Figure 2: The distribution of frames of different attributes in
the RGBD1K test set.

based on the framework of the RGB-only trackers, ATOM
and DiMP.

The RGBD1K Dataset
Video Sequences
RGBD1K contains 1,000 training sequences and 50 test se-
quences. In total, the training set contains 2,385,500 frames
and the test set contains 117,900 frames. All the 1,050 se-
quences of our RGBD1K dataset are captured indoors and
outdoors using the stereo camera ZED. The ZED cam-
era provides time-synchronized and pixel-aligned RGB and
depth frames. The video sequences share the same frame
rate of 25 frames per second (fps). The RGB images are
stored using 24-bit (8-bit each channel) JEPG format, mean-
while, the depth maps are stored using 16-bit PNG format.

The RGBD1K covers a considerable number of object
categories, including more than 100 different types con-
cerned with humans, animals, vehicles and articles for daily
use. Fig. 1 provides some cases of different object classes.
We also select dozens of different scenes to record these

sequences, such as office buildings, shopping malls, zoos,
sports fields, etc. Besides, some video sequences are cap-
tured from a first-person perspective and an overlooking
perspective to simulate the perspectives of moving robots,
UAVs and surveillance cameras. For more statistical analy-
sis and examples of different scenarios and object classes in
the proposed RGBD1K dataset, please refer to the supple-
mentary material.

Data Annotation
As to each video, we annotate the frames with the target
bounding box. It is universally acknowledged that data an-
notation is critical to research but time-consuming. Consid-
ering that a short clip of a video sequence can contain suf-
ficient visual and depth appearance variations, as well as to
reduce the time cost, for the training set, we only annotate
the frames of one segment of each video. Specifically, we
only annotate the first 600 frames of each sequence for the
training set. Although on average each video is only anno-
tated with 1/4 of its length, we argue that the appearance
variations in the annotated clips are sufficient for the learn-
ing of the spatio-temporal changing targets and scenarios
(Valmadre et al. 2018; Kristan et al. 2018). Besides, the
unlabeled part is tightly related to the labelled part. Such
partially annotated videos can be directly adopted for su-
pervised learning, with the potential also to be utilized ef-
fectively for semi-supervised learning. Meanwhile, it saves
labour costs. For the test set, all the frames of each sequence
are annotated.

For further performance analysis of tracking methods, we
annotate each frame of the test set with 15 attributes as pro-
posed by CDTB (Lukezic et al. 2019) and DepthTrack (Yan
et al. 2021b), including Aspect-ratio Change (AC), Back-
ground Clutter (BC), Camera Motion (CM), Depth Change
(DC), Dark Scene (DS), Fast Motion (FM), Full Occlusion
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Figure 3: Illustration of the framework of the proposed SPT tracker. The transformer encoder A and the transformer encoder B
have the same structure, which stacks 6 encoder layers. The transformer encoder C stacks 2 encoder layers.

(FO), Non-rigid Deformation (ND), Out-of-plane Rotation
(OP), Out of Frame (OF), Partial Occlusion (PO), Reflec-
tive Target (RT), Size Change (SC), Similar Objects (SO)
and Unassigned (NaN). The attributes AC, DC, FM, SC and
NaN are calculated from the RGB-D images and the bound-
ing box annotations. The remaining 10 attributes are anno-
tated manually. These scene attributes are beneficial for the
trackers to analyse their merits and demerits in specific chal-
lenges. For a detailed definition of each attribute, please re-
fer to the supplementary material.

The distribution of frames in each attribute category of
the RGBD1K test set is reported in Fig. 2. From the figure,
we can observe that only 1% of the frames are marked with-
out any scene attributes, which indicates that the RGBD1K
test set is challenging. Among the sequences, approximate
64% of the frames are of non-rigid deformable targets. Typi-
cally, a deformable object implies a high probability of dras-
tic appearance variations, which means it is more difficult
for stable tracking. In addition, 70% frames are marked with
the challenge attribute of similar objects. The interference of
similar objects in the background is an important issue worth
studying for robust tracking. Besides, background clutter
and partial occlusion are also essential challenging factors
in the RGBD1K test set. Although some attributes contain
a small number of frames, such as FO and OF only occupy
4% and 3% respectively, they are still very valuable for prac-
tical applications. An RGB-D frame with the attribute of FO
or OF means the target is invisible in the current frame. De-
spite that the targets in only 7% of the frames are invisible
in total, this means that on average each video of the test

set has about 165 frames of the target disappearance. The
frequent long period of target disappearance and reappear-
ance complicates the tracking analysis, requiring perceptual
capability for the RGBD tracker.

Performance Measures
While there are no explicit restrictions on the use of
RGBD1K, when evaluating trackers on the test set we ad-
vocate the use of the long-term tracking evaluation protocol
from (Lukežič et al. 2018), which is applied in the VOT-
RGBD challenges (Kristan et al. 2019, 2020, 2021). The rea-
son is that there are a certain proportion of frames in which
the targets are invisible in the RGBD1K dataset, i.e. the tar-
get may disappear and reappear several times in one video.
For a tracker to be evaluated on RGBD1K, the ability to lo-
calise the target as well as to predict the target absence, and
recapture the re-emerged target, is of significance for a ro-
bust tracking system. Therefore, the long-term VOT evalu-
ation protocol is precisely suited for evaluating trackers on
our dataset.

The tracking Precision and Recall from (Lukežič et al.
2018) are applied as the performance measures. Specifically,
Precision is defined as the average overlap ratio of the pre-
dicted and ground truth targets on the frames where the tar-
get is detected. The Recall represents the average overlap
ratio of the predicted target bounding box and the ground
truth annotation, measured on the frames where the tar-
get is visible. The primary performance measure is F-score
obtained by calculating the tracking F-measure that com-
bines tracking Precision and Recall. Besides, trackers can
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Dataset RGBD1K DepthTrack CDTB
Method Pr Re F-score Pr Re F-score Pr Re F-score
STARK-S 0.480 0.510 0.495 0.490 0.511 0.500 0.630 0.701 0.664
STARK-S-FT 0.509 0.537 0.522 0.497 0.517 0.507 0.638 0.706 0.670
SPT 0.545 0.578 0.561 0.527 0.549 0.538 0.654 0.726 0.688

Table 2: A comparison of the STARK-S, STARK-S-FT and SPT on the RGBD1K, DepthTrack and CDTB datasets.

Method DDiMP ATCAIS DRefine SLMD DAL DeT TSDM TALGD Siam LTD SPT
Pr 0.557 0.511 0.532 0.554 0.562 0.438 0.455 0.485 0.543 0.545
Re 0.534 0.451 0.462 0.526 0.407 0.419 0.361 0.415 0.318 0.578
F-score 0.545 0.479 0.494 0.540 0.472 0.428 0.403 0.447 0.398 0.561
ST/LT ST LT LT LT LT ST LT LT LT ST

Table 3: The tracking results on the RGBD1K test set.

be conveniently evaluated on the RGBD1K by using the
VOT challenge toolkit (Kristan et al. 2021). For more de-
tails on the evaluation metrics, readers can refer to the liter-
ature (Lukežič et al. 2018) or our supplementary material.

A New Baseline RGB-D Tracker
To demonstrate the significance of the RGBD1K dataset
as well as to inspire new designs for RGB-D tracking,
we propose a new RGB-D tracking baseline coined as
SPT. The SPT is developed from the recent state-of-the-
art transformer-based tracker STARK (Yan et al. 2021a).
STARK is a distinguished RGB-only tracker, achieving re-
markable performance on RGB-only tracking datasets.

The SPT is formed by extending the STARK-S (STARK
without the temporal structure) to an RGB-D version with a
dedicated feature fusion module. The architecture of SPT is
presented in Fig. 3. Firstly, the search regions and the initial
templates of the two modalities are input to the backbone to
extract deep CNN features respectively. The backbone used
here is the ResNet-50 network (He et al. 2016). The fea-
tures of search regions and templates are of H × W × C
and h × w × C, respectively. Then, the features of each
modality are flattened and concatenated, following a 6-layer
stacked transformer encoder to fuse the template-search ap-
pearance for the specific modality. Finally, the outputs of
two modality-specific encoders are fused by our feature fu-
sion module.

Here we introduce the proposed feature fusion module in
detail. Firstly, the depth encoder output and the RGB en-
coder output are concatenated across channels. Then a 1d
convolutional layer is adopted to reduce the channel num-
ber of the concatenated features from 2C to C. Finally, we
introduce a transformer encoder stacking 2 encoder layers
to further fuse and enhance the features of the two modal-
ities. Each encoder layer is composed of a multi-head self-
attention module and a feed-forward network.

The rest parts of the framework include the target query,
the transformer decoder and the target bounding box predic-
tion head (Yan et al. 2021a). The transformer decoder, stack-
ing 6 decoder layers, takes a learnable target query and the
fused features as input. Each decoder layer contains a self-
attention, encoder-decoder attention, and a feed-forward net-

work. Later, the output of the transformer decoder and the
fused features are fed into the bounding box prediction head
to predict the target box coordinates.

In the bounding box prediction module, firstly, the de-
coder output is used to calculate the similarities with fused
features, and the similarities are used to enhance the fused
features. Then the enhanced features are reshaped and
passed through fully-convolutional networks to generate a
top-left corner heat map and a bottom-right corner heat map.
With the top-left and bottom-right corner points, the object
bounding box can be determined. The loss function of SPT is
the combination between l1 loss and the IoU loss. For more
details on each component of SPT, please refer to the sup-
plementary material.

Evaluation
We perform extensive experiments on RGBD1K, Depth-
Track and CDTB datasets. In this section, we describe the
implementation details of our tracker SPT, including the pa-
rameters setup and the experimental platform. Then, the re-
sults of ablation studies are presented, to demonstrate the
effectiveness of our dataset as well as the proposed feature
fusion module of the SPT tracker. Finally, we provide the
results and corresponding analysis of comparative experi-
ments.

Implementation Details
The proposed SPT tracker is trained and evaluated with an
Intel i9-CPU and one NVIDIA GeForce RTX 3090 GPU.
The training and test parameters are set the same as Stark,
except for the learning rate and training epoch number. The
learning rate is set as 10−5 and the total epoch number is
250. As to the backbone, transformer encoder A, B, trans-
former decoder and box prediction head of SPT, we initialize
their weights by using the weights of corresponding compo-
nents of the officially published STARK-S model. Then the
SPT is trained on the training set of RGBD1K. The tracking
speed of SPT is about 25 fps.

Ablation Study
In order to demonstrate the effectiveness of the pro-
posed RGBD1K dataset for RGB-D tracking, firstly, we
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Method DDiMP ATCAIS CLGS D SiamDW D LTDSEd Siam LTD SiamM Ds DAL DeT SPT
Pr 0.503 0.500 0.584 0.429 0.430 0.418 0.463 0.512 0.560 0.527
Re 0.469 0.455 0.369 0.436 0.382 0.342 0.264 0.369 0.506 0.549
F-score 0.485 0.476 0.453 0.432 0.405 0.376 0.336 0.429 0.532 0.538
ST/LT ST LT LT LT LT LT LT LT ST ST

Table 4: The tracking results on the DepthTrack dataset.

Method DDiMP ATCAIS CLGS D SiamDW D LTDSEd Siam LTD SiamM Ds OTR DeT SPT
Pr 0.703 0.709 0.725 0.677 0.674 0.626 0.685 0.364 0.674 0.654
Re 0.689 0.696 0.664 0.685 0.643 0.489 0.677 0.312 0.642 0.726
F-score 0.696 0.702 0.693 0.681 0.658 0.549 0.681 0.336 0.657 0.688
Speed (fps) 4.7 1.3 7.3 3.8 5.7 13.0 19.4 1.8 36.8 25.3
ST/LT ST LT LT LT LT LT LT LT ST ST

Table 5: The tracking results on the CDTB dataset.

construct three trackers, including STARK-S (Yan et al.
2021a), STARK-S-FT, and our SPT. STARK-S, the STARK
tracker with ResNet-50 as the backbone (without a temporal
branch), is the baseline tracker of SPT. We use the officially
released trained model for STARK-S. The STARK-S-FT is
the STARK-S tracker fine-tuned on the RGBD1K using only
all the RGB images of the training set. The SPT is trained
with the RGB-D images of RGBD1K. The results of the test
set of RGBD1K are provided in Table 2. Fine-tuned with the
RGB images of the training set of RGBD1K, the STARK-S-
FT improves the performance from 0.480, 0.510, and 0.495
to 0.509, 0.537 and 0.522 in terms of Precision, Recall and
F-score, respectively. Trained with RGB-D images of the
training set of RGBD1K, SPT further improves the results to
0.545 for Precision, 0.578 for Recall and 0.561 for F-score.
This improvement enables us to draw the conclusion that
the challenging RGB images, as well as the depth images
of RGBD1K, are beneficial for improving RGB-D tracking
performance.

To further confirm the merit of RGBD1K, we conduct
the same experiments on two other datasets DepthTrack
and CDTB, to explore the performance among STARK-S,
STARK-S-FT and SPT. It is worth noting that the track-
ers are trained only using the RGBD1K without sequences
from DepthTrack or CDTB to fine-tune the tracking net-
works or corresponding hyper-parameters. The results on
DepthTrack and CDTB are exhibited in Table 2. After train-
ing on the RGBD1K dataset, the trackers STARK-S-FT and
SPT achieve significant performance improvement on the
DepthTrack and CDTB datasets. Especially, the SPT trained
with RGB-D data from the RGBD1K, improves the results
of STARK-S from 0.490, 0.511 and 0.500 to 0.527, 0.549
and 0.538 and from 0.630, 0.701 and 0.664 to 0.654, 0.726
and 0.688 in terms of Precision, Recall and F-score on the
DepthTrack and CDTB datasets, respectively. Concerning
the F-score measure, the SPT improves the STARK-S by
7.6% and 3.6% on DepthTrack and CDTB, respectively. Ap-
parently, the results shown in Table 2 demonstrate the gener-
alised advantages of the proposed RGBD1K dataset in train-
ing end-to-end RGB-D trackers. Furthermore, extensive ab-
lation experiments and analyses about the fusion module are
provided in the supplementary material.

Comparison with SOTA Methods
To demonstrate the superiority of the tracker SPT, we
conduct quantitative, qualitative and attribute-based exper-
iments with state-of-the-art trackers. The attribute-based ex-
periments can be found in the supplementary material.
Quantitative Comparison: We compare the proposed SPT
with a considerable number of recent state-of-the-art RGB-
D trackers on the RGBD1K test set. In Table. 3, we re-
port the results of RGB-D trackers, including DDiMP, AT-
CAIS and Siam LTD submitted to the VOT-RGBD 2020
challenge (Kristan et al. 2020), TALGD, DRefine and
SLMD from the VOT-RGBD 2021 challenge (Kristan et al.
2021), DAL (Qian et al. 2021), DeT (Yan et al. 2021b),
TSDM (Zhao et al. 2021a) and SPT. Detailed results of some
other RGB-only trackers on the RGBD1K test set are pro-
vided in the supplementary material. Generally, the F-score
is the most important performance measure in the VOT pro-
tocol and the trackers are ranked according to F-score val-
ues. As can be seen, on the RGBD1K test set, the SPT
achieves the best F-score, and the short-term RGB-D tracker
DDiMP is the second-best tracker. Compared to the tracker
DDiMP, our SPT tracker obtains 2.9% improvement in terms
of F-score. Besides, compared with the long-term RGB-D
trackers, such as ATCAIS, DRefine, SLMD and DAL, the
proposed SPT tracker is also predominant, with gains of
17.1%, 13.5%, 3.9%, and 18.8% on F-score, respectively.
The tracking performance gain of the SPT indicates that
training with the proposed RGBD1K facilitates more robust
RGB-D tracking.

To further reflect the transferability and domain advantage
of our RGBD1K, we compare the SPT tracker with state-
of-the-art trackers on the DepthTrack and CDTB datasets.
It is still worth noting that our SPT tracker trained using
RGBD1K is directly used to test on the DepthTrack and
CDTB datasets without fine-tuning any parameters. The re-
sults on DepthTrack and CDTB are provided in Table. 4 and
5, respectively.

In Table. 4, the SPT tracker is compared with DDiMP,
ATCAIS, CLGS D and Siam LTD from the VOT-RGBD
2020 challenge (Kristan et al. 2020), SiamDW D, LTDSEd
and SiamM Ds from the VOT-RGBD 2019 challenge (Kris-
tan et al. 2019), DAL (Qian et al. 2021) and DeT (Yan
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SPT DDiMP ATCAIS SLAM DRefine

DAL Siam_LTD TALGD DeT TSDM

Figure 4: An illustration of the qualitative experimental results on several challenging sequences of the RGBD1K test set. Each
RGB-D image is a sample from one particular sequence. The colour bounding boxes distinguish the ground-truth annotation
and the results obtained by SPT, DDiMP, ATCAIS, SLAM, DRefine, DAL, Siam LTD, TALGD, DeT, and TSDM, respectively.

et al. 2021b). From the results, the SPT achieves the best
F-score of 0.538 and Recall of 0.549 on the DepthTrack
dataset. In Table. 5, the proposed SPT tracker is compared
with DDiMP, ATCAIS, CLGS D SiamDW D, LTDSEd,
Siam LTD, SiamM Ds, OTR (Kart et al. 2019) and DeT.
As can be seen, the SPT achieves significant superiority
against the state-of-the-art trackers in terms of Recall. Al-
though the SPT achieves inferior Precision and F-score com-
pared to DDiMP, ATCAIS and CLGS D, our SPT tracker
has an obvious advantage in tracking speed. The results pro-
vided above authenticate that the method offline trained with
a large amount of real RGB-D data, such as the proposed
baseline SPT tracker, can provide superior performance for
RGB-D tracking. On the other hand, the results also con-
firm the significance of the proposed RGBD1K dataset for
advanced RGB-D object tracking, although each video of
RGBD1K is only annotated with the first 600 frames.
Qualitative Comparison: To intuitively display the ad-
vantages of our method, in Fig. 4, we provide a qualita-
tive comparison of the tested RGB-D trackers, including
SPT, DDiMP, ATCAIS, SLAM, DRefine, DAL, Siam LTD,
TALGD, DeT, and TSDM, on several challenging videos
from the RGBD1K dataset. As can be seen in the figure, al-
though suffering from different challenging factors, such as
similar objects, partial occlusion, reappearing from full oc-
clusion, camera motion, etc, our SPT can perform precise
and steady tracking on these challenging videos. Trained
with additional depth images offline, the SPT can effec-
tively alleviate the problem of similar objects, since two ob-

jects may vary in depth appearances when they are simi-
lar in visual appearance. Besides, the proposed fusion mod-
ule in SPT enables to effectively fuse and enhance the fea-
tures of RGB and depth modalities, making the depth infor-
mation and the visual information complement each other,
which helps the SPT to mitigate various complicated issues
in RGB-D videos. Therefore, undoubtedly, our SPT tracker
can achieve promising RGB-D tracking performance.

Conclusion
In this work, we proposed a large-scale dataset for RGB-D
tracking as well as a baseline tracker based on an end-to-
end deep network. This work is motivated by the scarcity
of available annotated RGB-D videos that has hindered the
development of RGB-D tracking. The proposed RGBD1K
dataset contains more than twice as many videos as all the
existing publicly available RGB-D videos for RGB-D ob-
ject tracking. To demonstrate the utility of the RGBD1K
dataset, we designed a new baseline method named SPT
for RGB-D tracking. The SPT is trained offline using all
the RGB-D videos of the training set of RGBD1K. The ex-
tensive experimental results obtained using the RGBD1K
test set, DepthTrack test set and CDTB dataset, have
demonstrated the benefits of training on RGBD1K, and
its capacity to promote the development of RGB-D track-
ers in the future. The supplementary material is avail-
able here: https://drive.google.com/drive/folders/1xpHP-
R2VTbp8n2sfipHlNAgdHKXrvsnC?usp=share link.
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