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Abstract
In this work, we are dedicated to leveraging the BERT pre-
training success and modeling the domain-specific statistics
to fertilize the sign language recognition (SLR) model. Con-
sidering the dominance of hand and body in sign language
expression, we organize them as pose triplet units and feed
them into the Transformer backbone in a frame-wise man-
ner. Pre-training is performed via reconstructing the masked
triplet unit from the corrupted input sequence, which learns
the hierarchical correlation context cues among internal and
external triplet units. Notably, different from the highly se-
mantic word token in BERT, the pose unit is a low-level sig-
nal originally located in continuous space, which prevents the
direct adoption of the BERT cross-entropy objective. To this
end, we bridge this semantic gap via coupling tokenization of
the triplet unit. It adaptively extracts the discrete pseudo la-
bel from the pose triplet unit, which represents the semantic
gesture/body state. After pre-training, we fine-tune the pre-
trained encoder on the downstream SLR task, jointly with
the newly added task-specific layer. Extensive experiments
are conducted to validate the effectiveness of our proposed
method, achieving new state-of-the-art performance on all
four benchmarks with a notable gain.

1 Introduction
Sign language is a primary communication tool for the deaf
community. It is characterized by its unique grammar and
lexicon, which are difficult to understand for non-sign lan-
guage users. To bridge this communication gap, automatic
sign language recognition (SLR) is widely studied with
broad social influence. As one basic task, isolated SLR aims
to recognize at the gloss-level and is a fine-grained classifi-
cation problem. In this work, we focus on this task.

Due to high annotation cost, current labeled sign data
sources are limited. Since common deep-learning-based
methods are data-hungry, they are prone to over-fitting on
SLR. To this end, several attempts have been made in SLR.
For instance, considering the dominant role of hand, some
methods (Hu, Zhou, and Li 2021; Albanie et al. 2020) uti-
lize the cropped hand sequence as the auxiliary information.
HMA (Hu, Zhou, and Li 2021) proposes to recognize sign
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language in a model-aware paradigm with the hand mesh
as the intermediate constraint. However, those methods di-
rectly optimize on the target benchmark but fail to leverage
the universal statistics in the sign language domain.

Notably, self-supervised pre-training techniques repre-
sented by BERT (Devlin et al. 2018) have achieved great
success in Natural Language Processing (NLP). BERT
builds on the strong Transformer (Vaswani et al. 2017) back-
bone and designs an ingenious pretext task, i.e., masked lan-
guage modeling (MLM). It aims to reconstruct the masked
word tokens from the corrupted input sequence, whose ob-
jective is implemented by cross entropy to maximize the
joint word probability distribution. However, the main ob-
stacle to leverage its success in video SLR is the different
characteristics of the input signal. In NLP, the input word to-
ken is discrete and pre-defined with high semantics. In con-
trast, the video signal of sign language is continuous with the
spatial and temporal dimensions. This signal is quite low-
level, making the original BERT objective not applicable.
Besides, since the sign language video is mainly character-
ized by hand and body movements, the direct adoption of
the BERT framework may not be optimal.

To tackle the above issue, we propose a self-supervised
pre-trainable framework with a specific design for sign lan-
guage, namely BEST. Focusing on the main properties of
sign language, we organize the hand and body as the pose
triplet unit. This triplet unit is embedded and fed into the
Transformer backbone. Basically, our framework contains
two stages, i.e., self-supervised pre-training and downstream
fine-tuning. During pre-training, we propose the masked
unit modeling (MUM) pretext task to capture the context
cues. The input hand or body unit embedding is randomly
masked, and then the framework reconstructs the masked
unit from this corrupted input sequence. Similar to BERT,
self-reconstruction is optimized via the cross-entropy objec-
tive. To this end, we jointly tokenize the pose triplet unit as
the pseudo label, which represents the gesture/body state.
After pre-training, the pre-trained Transformer encoder is
fine-tuned with the newly added prediction head to perform
the SLR task.

Our contributions are summarized as follows,

• We propose a self-supervised pre-trainable framework.
It leverages the BERT success, jointly with the specific
design for the sign language domain.
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• We organize the main hand and body movement as the
pose triplet unit and propose the masked unit model-
ing (MUM) pretext task. To utilize the BERT objective,
we generate the pseudo label for this task via coupling
tokenization on the pose triplet unit.

• Extensive experiments on downstream SLR validate the
effectiveness of our proposed method, achieving new
state-of-the-art performance on four benchmarks with a
notable gain.

2 Related Work
In this section, we will briefly review several related topics,
including sign language recognition and self-supervised pre-
training.

2.1 Sign Language Recognition
Sign language recognition has received much attention in
recent years (Koller et al. 2018; Momeni et al. 2022; Niu and
Mak 2020; Jin and Zhao 2021; Hu, Zhou, and Li 2021; Li
et al. 2020b). Typically, the research works can be grouped
into two categories based on the input modality, i.e., RGB-
based methods and pose-based methods.

RGB-based Methods. Early works (Farhadi, Forsyth,
and White 2007; Fillbrandt, Akyol, and Kraiss 2003; Starner
1995) on SLR focused on hand-crafted features computed
for hand shape variation and body motion. Along with the
popularity of convolutional neural networks (CNNs) in com-
puter vision, many works in SLR adopt CNNs as the back-
bone (Selvaraj et al. 2022; Sincan and Keles 2020; Joze and
Koller 2018; Koller et al. 2018; Hu, Zhou, and Li 2021). For
example, 3D CNNs are adopted due to their representation
capacity for spatio-temporal dependency (Huang et al. 2018;
Joze and Koller 2018; Albanie et al. 2020; Li et al. 2020b).

Pose-based Methods. Pose modality is a compact and
high-level representation of human action and contains
physical connection among skeleton joints (Li et al. 2018;
Ng et al. 2021; Yan, Xiong, and Lin 2018). To extract the
semantic representation of pose data, some works (Li et al.
2018; Du, Wang, and Wang 2015) explore graph convolu-
tional networks (GCNs) as the backbone. These GCN-based
methods (Camgoz et al. 2018; Li et al. 2018; Yan, Xiong,
and Lin 2018; Min et al. 2020) show impressive perfor-
mance in action recognition. Tunga et al. (Tunga, Nutha-
lapati, and Wachs 2021) combine GCN and Transformer to
capture spatial-temporal information based on sign language
pose sequence for sign language recognition. In this work,
given the compactness of pose data, we utilize them as our
input modality.

2.2 Self-Supervised Pre-training
Self-supervised pre-training methods have achieved remark-
able success in Natural Language Processing (NLP) and
Computer Vision (CV) fields, which make full use of large-
scale unlabeled data to learn generic feature representation
for a wide range of downstream tasks. In NLP, with the
strong modeling capability of Transformer (Vaswani et al.
2017), many works propose to pre-train on this backbone
for generic representations (Devlin et al. 2018; Lewis et al.

2019; Conneau and Lample 2019). BERT is one of the most
popular methods, which designs a cleverly masked language
modeling (MLM) pretext task. MLM predicts the masked
word tokens from the corrupted input sentence, which aims
to capture the context cues in the text corpus.

Motivated by BERT, some works attempt to leverage its
success into CV tasks (Su et al. 2019; Sun et al. 2019; Zhu
and Yang 2020; Bao, Dong, and Wei 2021; He et al. 2022).
There exist different characteristics of the input signal be-
tween NLP and CV. Different from the semantic discrete
word token, the signal in CV tasks is usually low-level and
continuous, which makes the original BERT objective not
applicable. One way to tackle this problem is changing its
objective into regression. He et al. (He et al. 2022) propose
masked autoencoders (MAE) to reconstruct the missing pix-
els of masked image patches using regression objective. Hu
et al. (Hu et al. 2021a) propose a pre-trained model for sign
language based on self-reconstruction of the hand pose data.
Jiang et al. (Jiang, Camgoz, and Bowden 2021) attempt to
utilize BERT-style refined pose for sign language. Accord-
ing to (Ramesh et al. 2021), the former method may fo-
cus too many short-range dependencies and hurt the down-
stream performance. Therefore, some methods turn to tok-
enizing the input signal to provide the discrete pseudo label.
BEiT (Bao, Dong, and Wei 2021) propose masked image
modeling (MIM) with tokenized image patches as super-
vision. It is originally designed for image-based tasks, and
cannot be directly adopted into the video-based sign lan-
guage domain, due to different task characteristics and input
modalities.

3 Methods
Our proposed method consists of two stages, i.e., self-
supervised pre-training and downstream task fine-tuning. As
shown in Figure 1, during pre-training, we first utilize a dis-
crete variational autoencoder to learn codebooks for the up-
per body, left and right hand. It performs coupling tokeniza-
tion on the pose triplet unit as the pseudo label for the fol-
lowing pretext task. Then we pre-train the BEST model via
our designed masked unit modeling (MUM) pretext task to
capture the context cues. Finally, we append the task-specific
layer and fine-tune the pre-trained parameters on the down-
stream SLR task.

3.1 Tokenization in Pre-training
The tokenization provides pseudo labels for our designed
pretext task during pre-training. We utilize a discrete varia-
tional autoencoder (d-VAE) to jointly convert the pose triplet
unit into the triplet tokens (body, left and right hand), moti-
vated by VQ-VAE (Van Den Oord, Vinyals et al. 2017). Our
utilized pose triplet unit Jsign consists of two hand poses
Jleft , Jright , and an upper body pose Jbody . The d-VAE con-
tains three parts, i.e., encoder, quantizer, and decoder. The
encoder maps the pose triplet unit to the intermediate latent
vector z = Enc(Jsign). The quantizer is in charge of tok-
enizing each vector to be codewords coming from the hand
codebook Vhand = {hk}M1

k=1 and the upper body codebook
Vbody = {dk}M2

k=1. The quantized vector zq is computed as
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Figure 1: Illustration of our proposed BEST framework during pre-training. BEST mainly contains four components, i.e., a
pre-trained tokenizer, a pose embedding layer, a Transformer encoder, and a decoder. The input pose triplet unit is composed
by the body pose, the left and right hand pose. Given a sequence of pose triplet units, we utilize the proposed MUM pretext task
to pre-train our framework. The [M] denotes the learnable masked token for the input sequence. Meanwhile, the pre-trained
tokenizer coupling discretizes the triplet units into pseudo triplet unit labels to supervise the pre-training procedure.

follows,

zq = Concat(hkl , hkr , dkb), z = Concat(zl, zr, zb),

kl = Q hand(zl) = argmin
k∈{1,2,··· ,M1}

||zl − hk||,

kr = Q hand(zr) = argmin
k∈{1,2,··· ,M1}

||zr − hk||,

kb = Q body(zb) = argmin
k∈{1,2,··· ,M2}

||zb − dk||,

(1)

where l, r and b indicate the abbreviation of the ‘left’, ‘right’
and ‘upper body’, respectively. We still adopt the abbrevia-
tions l, r and b in the following introduction. The latent vec-
tor z is made up of three local representations of the pose
triplet unit, i.e., zl, zr, and zb. Q hand(·) is the hand quanti-
zation encoder that maps the vector to the index of the hand
codebook, which satisfies the minimum semantic distance
between the input vector and the corresponding codeword.
Similar to the hand quantizer, Q body(·) denotes the body
quantization encoder for the upper body. The quantized vec-
tor zq consists of a cascade of three codewords from two
codebooks. Based on the quantized vector, the decoder aims
to reconstruct the input pose triplet unit. The output of the
decoder is computed as follows,

Ĵsign = Dec(zq), (2)

whose output is the reconstructed hand and body
poses (Ĵleft , Ĵright and Ĵbody ).

This tokenizer is trained before self-supervised pre-
training. However, the tokenization process is non-
differentiable. To backpropagate the gradient from the de-
coder to the encoder, we utilize the straight-through estima-
tor (Bengio, Léonard, and Courville 2013) to copy the gra-

dient from the decoder to the encoder. The training objective
function of d-VAE is defined as follows,

Ld−V AE = Lhand + β1Lbody + β2||sg[z ]− zq||22
+ β3||sg[zq]− z ||22,

Lhand = ||Ĵleft − Jleft ||+ ||Ĵright − Jright ||,
Lbody = ||Ĵbody − Jbody ||,

(3)

where Lhand and Lbody denote the reconstruction losses of
2D hand and upper body pose, respectively. sg[·] represents
the stop-gradient operator, and β1, β2 and β3 are the weight-
ing factors to balance the impact of the four losses.

3.2 Framework Architecture in Pre-training
During pre-training, the framework contains four compo-
nents, i.e., a pose embedding layer, a pre-trained pose to-
kenizer, a Transformer encoder, and a decoder.

Pose Embedding Layer. This embedding layer aims to
extract the feature embedding from the input pose triplet
unit. Since pose has physical connection relationship, we
utilize the graph convolutional network (GCN) proposed
in (Cai et al. 2019) as the pose embedding layer. Specifi-
cally, given a pose sequence Vsign = {Jsign,t}Tt=1 with T
frames, it extracts the pose triplet unit fsign,t ∈ RD from
the body, left and right hand in a frame-wise manner and
concatenate them for the following module. Each part of the
triplet unit has the same feature dimension Dpart =

1
3D.

Tokenizer. As presented in Section 3.1, given a pose se-
quence {Jsign,t}Tt=1, we tokenize it as the pseudo labels
{kt}Tt=1 for pre-training, of which kt denotes the concatena-
tion of k l

t , kr
t and k b

t computed following Equation (1). The
tokenizer is only adopted for pseudo label inference, with all
parameters frozen during pre-training.

3599



Transformer Encoder. Given the feature sequence from
the pose embedding layer Fsign = {fsign,t}Tt=1, we further
add temporal embedding ftemp,t ∈ RD implemented by the
position encoding (Vaswani et al. 2017). The input sequence
F0 is computed as follows,

F0 = [fin,1, · · · , fin,T ],
fin,t = fmask,t + ftemp,t, t ∈ {1, · · · , T},
Fm = Mask(Fsign) = [fmask,1, · · · , fmask,T ],

(4)

where Mask(·) denotes the masking operator for the embed-
ding sequence and the masked frame positions are denoted
as M ∈ {1, · · · , T}α·T , in which α denotes the mask ra-
tio. We will explain the masked modeling in Section 3.3.
The input sequence F0 is fed into the Transformer encoder.
The Transformer encoder contains N layers of Transformer
blocks Fl = Block(Fl−1), where l = 1, · · · , N . The output
sequence of the last layer FN = [fout,1, · · · , fout,T ] is uti-
lized as the encoded representation of the pose triplet unit,
where fout,t corresponds to the t-th frame.

Decoder. Given the output sequence FN , the masked
frame positions M and the pseudo labels {kt}Tt=1, we utilize
the decoder to reconstruct the pose triplet unit. Since each
output feature fout,t contains three parts, i.e., f lout,t, f

r
out,t

and f bout,t, we record the masked positions of each part into
Ml, Mr and Mb, respectively. M = Ml ∪Mr ∪Mb. For
each feature fout,t, we use the softmax classifier to predict
the corresponding label of each part,

phand(k
l
t|fout,t) = softmaxkl

t
(W1f

l
out,t + b1), t ∈ Ml,

phand(k
r
t |fout,t) = softmaxkr

t
(W1f

r
out,t + b1), t ∈ Mr,

pbody(k
b
t |fout,t) = softmaxkb

t
(W2f

b
out,t + b2), t ∈ Mb,

(5)

where l, r and b denote the abbreviation of left, right and
upper body, respectively. W1 ∈ R|Vhand|×Dpart and W2 ∈
R|Vbody|×Dpart denote the projection matrix. b1 ∈ R|Vhand|

and b2 ∈ R|Vbody| denote the biases.

3.3 Pretext Task in Pre-training & Objective
Our designed pretext task is MUM, which aims to exploit
the hierarchical correlation context among internal and ex-
ternal triplet pose units. Given a pose sequence with a triplet
pose unit of length T , we first randomly choose the α · T
frames to process the mask operation. For clarification, we
define three parts of the pose triplet unit as f lsign,t, f

r
sign,t and

f bsign,t, respectively. If a unit is masked, a learnable masked
token emask ∈ RDpart is utilized to replace each part of
the triplet unit with 50% probability. Therefore, the masked
triplet unit includes three masking cases: only hand masked,
only body masked and hand-body masked. The hand masked
case aims to endow our model with the capacity of capturing
the local hand context. Compared with the hand counterpart,
the body masked case aims to mine the context of global
body movements. The hand-body masked case means that
body and hand features are masked simultaneously. Since

sign language conveys the full meaning with the coopera-
tion of hand and body, we expect to exploit the correlation
context cues between hand and body in this case. Therefore,
we utilize the MUM to pre-train our method and conduct an
ablation experiment to validate our thoughts.

The overall pre-training objective is to maximize the log-
likelihood of the correct labels given the corrupted sequence,
which is computed as follows,

Lpre−train = max
∑

Vsign∈D
EM

[∑
t∈M

log p(kt|Vsign)

]
∑
t∈M

log p(kt|Vsign) =
∑
t∈Ml

log phand(k
l
t|f lout,t)

+
∑

t∈Mr

log phand(k
r
t |f rout,t)

+
∑

t∈Mb

log pbody(k
b
t |f bout,t),

(6)

where D is the training corpus, M represents the masked
frame positions, fout,t is the masked triplet unit. Ml and
Mr and Mb represent the masked positions for left hand,
right hand and body, respectively.

3.4 Downstream Fine-Tuning
After pre-training, we directly fine-tune the parameters un-
der the downstream SLR task. We replace the decoder with
a simple MLP as the prediction head. During fine-tuning, we
do not mask any triplet pose unit, and supervise the output of
the prediction head with ground-truth labels. Besides, only
the pose information is insufficient to convey the full mean-
ing of sign language. We utilize a late fusion strategy to sum
the prediction results of pose data and RGB data. In our ex-
periment, we refer our method with only pose data, fusion
of RGB data as Ours and Ours (+R), respectively.

4 Experiments
4.1 Datasets and Metrics
Datasets. We conduct experiments on four public sign
language datasets, i.e., NMFs-CSL (Hu et al. 2021b),
SLR500 (Huang et al. 2018), WLASL (Li et al. 2020a) and
MSASL (Joze and Koller 2018). The training sets of all
datasets participate in the pre-training stage. Table 1 presents
an overview of the above-mentioned datasets.

NMFs-CSL is a large-scale Chinese sign language (CSL)
dataset with a vocabulary size of 1,067. All samples are split
into 25,608 and 6,402 samples for training and testing, re-
spectively. SLR500 is another CSL dataset including 500
daily words performed by 50 signers. It contains a total of
125,000 samples, of which 90,000 and 35,000 samples are
utilized for training and testing, respectively. The above two
datasets collect samples in the controlled lab scene.

WLASL is a large-scale American sign language (ASL)
dataset, containing 2000 words performed by over 100
signers. It totally consists of 21,083 samples. In par-
ticular, it selects the top-K most frequent words with
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Name Language Vocab. Videos Signers Source
WLASL ASL 2000 21.1k 119 Web, lexicons
NMF-CSL CSL 1067 32.0k 10 lab
MSASL ASL 1000 25.5k 222 Web, lexicons
SLR500 CSL 500 125k 50 lab

Table 1: Statistics of public isolated SLR datasets. ASL de-
notes American Sign Language, and CSL denotes Chinese
Sign Language.

K = {100, 300}, and organize them as two subsets,
namely WLASL100 and WLASL300. MSASL is another
popular ASL dataset with a total of 25,513 samples and
a vocabulary size of 1000. Similar to WLASL, it also
provides two subsets, named MSASL100 and MSASL200,
respectively. Different from NMFs-CSL and SLR500,
WLASL and MSASL collect data from the Web and bring
more challenges due to the unrestricted real-life scenario.

Metrics. For evaluation, we report the classification accu-
racy, i.e., Top-1 (T-1) and Top-5 (T-5) for the downstream
SLR task. We adopt both per-instance (P-I) and per-class (P-
C) accuracy metrics following (Li et al. 2020a; Joze and
Koller 2018). Per-instance accuracy is computed over whole
test data. Per-class accuracy is the average of the sign cat-
egories present in the test set. For WLASL and MSASL,
we report both per-instance and per-class accuracy due to
the unbalanced samples per class of the two datasets. For
NMFs-CSL and SLR500, we only report per-instance accu-
racy with an equal number of samples for each class.

4.2 Experiment Settings
Data Preparation and Processing. Our proposed method
utilizes the pose modality to represent hand and body move-
ments. Since no available pose annotation is provided in sign
language datasets, we utilize the off-the-shelf pose detector
MMPose to extract the 2D pose keypoints. In each frame,
the extracted 2D pose includes 49 joints, containing 7 upper
body joints and 42 hand joints. Furthermore, considering the
different scales among triplet units, we crop the body, left
and right hand pose separately and rescale them to 256 ×
256.
Model Hyper-Parameters. For the tokenizer, the vocabu-
lary size of hand codebook M1 and body codebook M2 are
1000 and 500, respectively. The dimension of each code-
word in two codebooks is 512. The weighting factors β1,
β2 and β3 in equation 3 are set to 0.1, 1.0 and 0.9, respec-
tively. During pre-training, the Transformer encoder con-
tains 8 heads with the input size of the Transformer en-
coder D as 1536 and position-wise feed-forward dimension
as 2048.
Training Setup. The Adam (Kingma and Ba 2014) opti-
mizer is employed in our experiments. For tokenizer train-
ing, we set the initial learning rate as 0.001 and decrease
it with a factor of 0.1 per 10 epochs. For pre-training, the
weight decay and momentum are set to 0.01 and 0.9, re-
spectively. The learning rate is set to 0.0001, with a warmup
of 6 epochs, and linear learning rate decay. For the down-

stream SLR task, the learning rate is initialized to 0.0001
and decreases by a factor of 0.1 per 10 epochs. we disturb the
coordinates of the input pose sequence with a random per-
turbation matrix to relieve overfitting during training. Fol-
lowing (Hu et al. 2021a), we temporally select 32 frames
using random and center temporal sampling during training
and testing, respectively. All experiments are implemented
by PyTorch and trained on NVIDIA RTX 3090.

4.3 Comparison with State-of-the-Art Methods
In this section, we compare our method with previous state-
of-the-art methods on four public datasets. Following (Hu
et al. 2021a), we group the previous methods by the input
modality, i.e., pose-based and RGB-based methods.
NMFs-CSL Dataset. As shown in Table 5, we compare with
the previous methods. SignBERT (Hu et al. 2021a) is a self-
supervised pre-training method with hand prior to model the
hand sequence. Compared with SignBERT, our method still
achieves the best performance in top-1 accuracy under dif-
ferent settings. GLE-Net (Hu et al. 2021b) is the state-of-the-
art method with discriminative clues from global and local
views. Compared with GLE-NET, Ours (+R) outperforms it,
achieving 79.2% top-1 accuracy.
MSASL Dataset. As shown in Table 2, ST-GCN (Yan,
Xiong, and Lin 2018) shows inferior performance compared
with RGB-based methods, which may be attributed to the
failure of pose detection. Compared with ST-GCN (Yan,
Xiong, and Lin 2018), self-supervised learning methods,
i.e., SignBERT (Hu et al. 2021a) and Ours, relieve this is-
sue by leveraging the stored statistics during pre-training.
Our method outperforms SignBERT (Hu et al. 2021a) with
4.89%, 5.96% and 9.28% Top-1 per-instance accuracy im-
provement on MSASL100, MSASL200 and MSASL1000,
respectively. Notably, our method even achieves comparable
performance with RGB-based methods. When fused with
the RGB method, the performance is further improved.
WLASL Dataset. Similar to MSASL, WLASL is a chal-
lenging dataset with unconstrained recording conditions and
unbalanced sample distribution. As shown in Table 3, Pose-
TGCN (Li et al. 2020a) and PSLR (Tunga, Nuthalapati,
and Wachs 2021) show inferior performance caused by the
erroneous estimation of poses. HMA (Hu, Zhou, and Li
2021) utilizes a hand statistic model to refine the pose and
improve the performance. BSL (Albanie et al. 2020) and
TCK (Li et al. 2020b) utilize external RGB data to enhance
the model robustness and boost their performance. Com-
pared with them, our method achieves the best performance
on all subsets.
SLR500 Dataset. As shown in Table 4, compared with
STIP (Laptev 2005) and GMM-HMM (Tang et al. 2015)
based on hand-craft features, deep-learning-based meth-
ods (Yan, Xiong, and Lin 2018; Qiu, Yao, and Mei 2017; Hu
et al. 2021a) achieve notable performance gain. Our method
still achieves new state-of-the-art performance among both
pose-based and RGB-based methods.

4.4 Ablation Study
In this section, we conduct ablation studies to validate the
effectiveness of our proposed approach and select proper
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Method

MSASL100 MSASL200 MSASL1000
P-I P-C P-I P-C P-I P-C

T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

Pose-based
ST-GCN (Yan, Xiong, and Lin 2018) 59.84 82.03 60.79 82.96 52.91 76.67 54.20 77.62 36.03 59.92 32.32 57.15
SignBERT (Hu et al. 2021a) 76.09 92.87 76.65 93.06 70.64 89.55 70.92 90.00 49.54 74.11 46.39 72.65
Ours 80.98 95.11 81.24 95.44 76.60 91.54 76.75 91.95 58.82 81.18 54.87 80.05

RGB-based
I3D (Carreira and Zisserman 2017) - - 81.76 95.16 - - 81.97 93.79 - - 57.69 81.05
TCK (Li et al. 2020b) 83.04 93.46 83.91 93.52 80.31 91.82 81.14 92.24 - - - -
BSL (Albanie et al. 2020) - - - - - - - - 64.71 85.59 61.55 84.43
HMA (Hu, Zhou, and Li 2021) 73.45 89.70 74.59 89.70 66.30 84.03 67.47 84.03 49.16 69.75 46.27 68.60
Ours (+R) 89.56 96.96 90.08 97.07 86.83 95.66 87.45 95.72 71.21 88.85 68.24 87.98

Table 2: Comparison with state-of-the-art methods on MSASL dataset. Our proposed method fused with another RGB-based
method, I3D (Carreira and Zisserman 2017), is represented by Ours (+R).

Method

WLASL100 WLASL300 WLASL2000
P-I P-C P-I P-C P-I P-C

T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

Pose-based
ST-GCN (Yan, Xiong, and Lin 2018) 50.78 79.07 51.62 79.47 44.46 73.05 45.29 73.16 34.40 66.57 32.53 65.45
Pose-TGCN (Li et al. 2020a) 55.43 78.68 - - 38.32 67.51 - - 23.65 51.75 - -
PSLR (Tunga, Nuthalapati, and Wachs 2021) 60.15 83.98 - - 42.18 71.71 - - - - - -
SignBERT (Hu et al. 2021a) 76.36 91.09 77.68 91.67 62.72 85.18 63.43 85.71 39.40 73.35 36.74 72.38
Ours 77.91 91.47 77.83 92.50 67.66 89.22 68.31 89.57 46.25 79.33 43.52 77.65

RGB-based
I3D (Carreira and Zisserman 2017) 65.89 84.11 67.01 84.58 56.14 79.94 56.24 78.38 32.48 57.31 - -
TCK (Li et al. 2020b) 77.52 91.08 77.55 91.42 68.56 89.52 68.75 89.41 - - - -
BSL (Albanie et al. 2020) - - - - - - - - 46.82 79.36 44.72 78.47
HMA (Hu, Zhou, and Li 2021) - - - - - - - - 37.91 71.26 35.90 70.00
Ours (+R) 81.01 94.19 81.63 94.67 75.60 92.81 76.12 93.07 54.59 88.08 52.12 87.28

Table 3: Comparison with state-of-the-art methods on WLASL dataset. Our proposed method fused with another RGB-based
method, I3D (Carreira and Zisserman 2017), is represented by Ours (+R).

Method Accuracy

Pose-based
ST-GCN (Yan, Xiong, and Lin 2018) 90.0
SignBERT (Hu et al. 2021a) 94.5
Ours 95.4

RGB-based
STIP (Laptev 2005) 61.8
GMM-HMM (Tang et al. 2015) 56.3
3D-R50 (Qiu, Yao, and Mei 2017) 95.1
HMA (Hu, Zhou, and Li 2021) 95.9
GLE-Net (Hu et al. 2021b) 96.8
Ours (+R) 97.7

Table 4: Comparison with state-of-the-art methods on
SLR500 dataset. 3D-R50 (Qiu, Yao, and Mei 2017) is uti-
lized for fusion with our method.

hyper-parameters for our framework. For fair comparison,
experiments are performed on the MSASL dataset and we
report the top-1 accuracy under the per-instance and per-
class metrics as the indicator.
Different Tokenizers. In Table 6, we compare the impact

of different tokenizers on the downstream SLR task. The
K-Means method is a simple model-free clustering algo-
rithm. Different from the learnable tokenizer, K-Means it-
eratively transfers the 2D pose data to a series of clustering
centers for hand and body, respectively. Then we directly
utilize the index of clustering centers as the pseudo labels.
For fair comparison, the number of clustering centers is the
same as the vocabulary size of our utilized codebook. VQ
and Ours stand for separate and coupled vector quantizers,
respectively. VQ learns the hand and body codebooks sep-
arately, while our proposed tokenizer jointly optimizes the
hand and body codebooks. It can be observed that our pro-
posed tokenizer shows the best performance to validate our
assumption. Since the body and hand are strongly correlated,
our coupling tokenization utilizes this cue for better code-
book learning. Moreover, we illustrate the qualitative results
of our proposed coupling tokenizer in Figure 2. Our tok-
enizer can successfully cluster similar pose triplet units un-
der the unconstrained settings, i.e., individual pose variance
and inaccurate pose detection.

Masking Strategy. As shown in Table 7, we compare three
different settings on our proposed MUM, i.e., only mask-
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Method
Total Confusing Normal

T-1 T-1 T-1
Pose-based
ST-GCN (Yan, Xiong, and Lin 2018) 59.9 42.2 83.4
SignBERT (Hu et al. 2021a) 67.0 46.4 94.5
Ours 68.5 49.0 94.6
RGB-based
3D-R50 (Qiu, Yao, and Mei 2017) 62.1 43.1 87.4
DNF (Cui, Liu, and Zhang 2019) 55.8 51.9 86.3
I3D (Carreira and Zisserman 2017) 64.4 47.3 87.1
TSM (Lin, Gan, and Han 2019) 64.5 42.9 93.3
Slowfast (Feichtenhofer et al. 2019) 66.3 47.0 92.0
GLE-Net (Hu et al. 2021b) 69.0 50.6 93.6
HMA (Hu, Zhou, and Li 2021) 64.7 42.3 94.6
Ours (+R) 79.2 65.5 97.5

Table 5: Comparison with state-of-the-art methods on
NMFs-CSL dataset. Our proposed method fused with an-
other RGB-based method, 3D-R50 (Qiu, Yao, and Mei
2017), is represented by Ours (+R).

120,142,26 191,142,04 108,142,28 008,142,11 008,008,42

Figure 2: Qualitative results of our proposed coupling to-
kenization. Each two adjacent columns are organized as a
group. In the same row of each group, the pose corresponds
to the RGB image. Each group belongs to the same triplet
unit label.

ing hand, only masking body and masking both parts (hand
and body). The first row denotes the baseline without pre-
training. Only masked hand setting shows better perfor-
mance than only masked body setting due to the dominance
of hand during sign language expression. Our MUM adopts
the third masking setting, which achieves the best perfor-
mance. Compared with the baseline, our proposed MUM
achieves performance gain, i.e., 7.54%, 5.81% and 6.86%
for per-instance Top-1 accuracy improvement, respectively.
Pre-Training Data Scale. In Table 8, we investigate the ef-
fect of the pre-training data scale. The first row denotes that
our proposed framework is the method without pre-training.
It is clearly observed that the performance gradually in-
creases with the increment in the proportion of pre-training
data. The result demonstrates that our proposed method is
applicable to the pre-training for large-scale data.

5 Conclusion
In this paper, we propose a self-supervised pre-trainable
framework namely BEST, which leverages the success of
BERT with the specific design to the sign language do-
main. Focusing on the main properties during sign language

Quantizer MSASL100 MSASL200 MSASL1000

P-I P-C P-I P-C P-I P-C

K-Means 74.63 74.03 72.62 74.20 54.29 50.74
VQ 77.54 77.44 74.47 75.47 55.87 52.16
Ours 80.98 81.24 76.60 76.75 58.82 54.87

Table 6: Comparison with different pose tokenizers on
MSASL dataset. K-Means denotes a model-free clustering
algorithm. VQ and Ours stand for separate and coupled vec-
tor tokenizers, respectively.

Mask MSASL100 MSASL200 MSASL1000

Hand Body P-I P-C P-I P-C P-I P-C

73.44 73.75 70.79 71.46 51.96 48.50
✓ 76.75 77.22 71.37 72.07 54.60 51.63

✓ 68.82 68.82 67.11 67.84 47.72 43.87
✓ ✓ 80.98 81.24 76.60 76.75 58.82 54.87

Table 7: Effect of the masking strategy on MSASL dataset.
The first row denotes the baseline method without pre-
training. “Hand” and “Body” denote the only masking on
the hand and body part, respectively.

Percent MSASL100 MSASL200 MSASL1000

P-I P-C P-I P-C P-I P-C

0% 73.44 73.75 70.79 71.46 51.96 48.50
25% 74.50 75.20 71.89 72.69 53.67 50.81
50% 77.54 78.06 73.43 75.03 54.69 51.47
75% 78.47 78.77 74.54 75.32 56.06 53.16
100% 80.98 81.24 76.60 76.75 58.82 54.87

Table 8: Effect of the data scale during pre-training on
MSASL dataset. The “Percent” denotes the proportion of
pre-training data.

expression, we organize the hand and body movements as
the pose triplet unit. During pre-training, we propose the
masked unit modeling (MUM) pretext task to exploit the hi-
erarchical context cues among internal and external triplet
units. To make the original BERT objective applicable, we
attempt to bridge the semantic gap of pseudo label via cou-
pling tokenization on the triplet unit. Extensive experiments
validate the effectiveness of our method, achieving new
state-of-the-art performance on all four benchmarks.
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