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Abstract

Despite the quality improvement brought by the recent meth-
ods, video super-resolution (SR) is still very challenging, es-
pecially for videos that are low-light and noisy. The current
best solution is to subsequently employ best models of video
SR, denoising, and illumination enhancement, but doing so
often lowers the image quality, due to the inconsistency be-
tween the models. This paper presents a new parametric rep-
resentation called the Deep Parametric 3D Filters (DP3DF),
which incorporates local spatiotemporal information to en-
able simultaneous denoising, illumination enhancement, and
SR efficiently in a single encoder-and-decoder network. Also,
a dynamic residual frame is jointly learned with the DP3DF
via a shared backbone to further boost the SR quality. We
performed extensive experiments, including a large-scale user
study, to show our method’s effectiveness. Our method con-
sistently surpasses the best state-of-the-art methods on all
the challenging real datasets with top PSNR and user rat-
ings, yet having a very fast run time. The code is available
at https://github.com/xiaogang00/DP3DF.

Introduction
The goal of video super resolution (SR) is to produce high-
resolution videos from low-resolution video inputs. While
promising results are demonstrated on general videos, exist-
ing approaches typically do not work well on videos that are
low-light and noisy. Yet, such a setting is very common in
practice, e.g., applying SR to enhance noisy videos taken in
a dark and high-contrast environment.

Fundamentally, video denoising and video illumination
enhancement are very different tasks from video SR: the
former deals with noise and brightness in videos whereas
the latter deals with the video resolution. Hence, to map a
low-resolution, low-light, and noisy (LLN) video to a high-
resolution, normal-light, and noise-free (HNN) video, the
current best solution is to collectively use the best network
model of each task by cascading models in a certain order.

However, doing so has several drawbacks. First, the net-
work complexity is threefold, resulting in a slow inference,
as we have to subsequently run three separate network mod-
els for denoising, illumination enhancement, and SR. Also,
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Figure 1: An example frame (a) from a challenging under-
exposed video enhanced by (b) a SOTA SR method (Xiang
et al. 2020); (c) SOTA methods in video denoising (Tas-
sano, Delon, and Veit 2020) + video illumination enhance-
ment (Zhang et al. 2021) + video SR (Xiang et al. 2020);
and (d) our approach. We can see that (d) is more sharp with
distinct contrast, less noise, and less aliasing vs. (b) & (c).
Please zoom to view the details. Score is PSNR/SSIM.

as the three networks are trained separately, we cannot en-
sure their consistency, e.g., artifacts from a preceding de-
noising or illumination enhancement network could be am-
plified by the subsequent SR network; see Fig. 1 (c). Alter-
natively, one may try to cascade and train all networks end-
to-end. Yet, existing networks for video SR, denoising, and
illumination enhancement often take multiple frames as in-
put and output only a single frame, so a subsequent network
cannot obtain sufficient inputs from the preceding one. Also,
these networks are rather complex, so it is hard to fine-tune
them together for high performance.

Another approach is to use parallel branches of different
purposes in a framework. However, as the branches are sepa-
rated from one another, their connections are weak for joint
learning. Also, the input to all branches should be identi-
cal, while the sizes of their outputs are inconsistent: the out-
put size of the SR branch is larger than its input size, while
the other branches have same input and output sizes. Hence,
how to achieve various purposes with one common branch
and representation is worth to be considered. Further, we
eventually will need to infer the different branches to pro-
duce the final results, which is time costly.
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In this paper, we present a new solution to map LLN
videos to HNN videos within a single end-to-end network.
The core of our solution is the Deep Parametric 3D Filter
(DP3DF), a novel dynamic-filter representation we formu-
lated collectively for video SR, illumination enhancement,
and denoising. This is the first work that we are aware of
in exploring an efficient architecture for simultaneous video
SR, denoising, and illumination enhancement. Beyond the
existing works with dynamic filters, our DP3DF considers
the burst from adjacent frames. Hence, DP3DF can effec-
tively exploit local spatiotemporal neighboring information
and complete the mapping from LLN video to HNN video
in a single encoder-and-decoder network. Also, we show
that general dynamic filters in existing works are just special
cases of our DP3DF. Further, we set up an additional branch
for learning dynamic residual frames on top of the core
encoder-and-decoder network, so we can share the backbone
for learning the DP3DF and residual frames to promote the
overall performance.

To demonstrate the quality of our method, we conducted
comprehensive experiments to compare our method with
a rich set of state-of-the-art methods on two public video
datasets SMID (Chen et al. 2019) and SDSD (Wang et al.
2021), which provide static and dynamic low- and normal-
light video pairs. Through various quantitative and quali-
tative evaluations, including a large-scale user study with
80 participants, we show the effectiveness of our DP3DF
framework over SOTA SR methods and also different com-
binations of SOTA video methods on illumination enhance-
ment, denoising, and SR, both quantitatively and qualita-
tively. Our DP3DF framework surpasses the SOTA methods
with top PSNR and user ratings consistently. In summary,
our contributions are threefold:

• This is the first exploration of directly mapping LLN to
HNN videos within a single-stage end-to-end network.

• This is the first work we are aware of that simultaneously
achieves video SR, denoising, and illumination enhance-
ment via our DP3DF representation.

• Extensive experiments are conducted on two real-world
video datasets,demonstrating our superior performance.

Related Work
Video SR. Video SR aims to reconstruct a high-resolution
frame from a low-resolution frame together with the associ-
ated adjacent frames. The key problem is on how to align
the adjacent frames temporally with the center one. Sev-
eral video SR methods (Caballero et al. 2017; Tao et al.
2017; Sajjadi, Vemulapalli, and Brown 2018; Wang et al.
2018; Xue et al. 2019) use optical flow for an explicit tem-
poral alignment. However, it is hard to obtain accurate flow
and the flow warping may introduce artifacts in the aligned
frames. To leverage the temporal information, recurrent neu-
ral networks are adopted in some video SR methods (Huang,
Wang, and Wang 2017; Lim and Lee 2017), e.g., the convo-
lutional LSTMs (Shi et al. 2015). However, without an ex-
plicit temporal alignment, these RNN-based networks have
limited capability in handling complex motions. Later, dy-
namic filters and deformable convolutions are exploited for

temporal alignment. DUF (Jo et al. 2018) utilizes a dy-
namic filter to implement simple temporal alignment with-
out motion estimation, whereas TDAN (Tian et al. 2020) and
EDVR (Wang et al. 2019c) employ the deformable align-
ment in single- or multi-scale feature levels.
Video denoising. Early approaches are mostly patch-based,
e.g., V-BM4D (Maggioni et al. 2012) and VNLB (Arias and
Morel 2018), which extend from BM3D (Dabov et al. 2007).
Later, deep neural networks are explored for the task. Chen
et al. (Chen, Song, and Yang 2016) propose the first attempt
to video denoising based on RNN. Vogels et al. (Vogels et al.
2018) design a kernel-predicting neural network for denois-
ing Monte-Carlo-rendered sequences. Tassano et al. (Tas-
sano, Delon, and Veit 2019) propose DVDnet by separat-
ing the denoising of a frame into two stages. More recently,
Tassano et al. (Tassano, Delon, and Veit 2020) propose Fast-
DVDnet to eliminate the dependence on motion estimation.
Besides, some recent works focus on blind video denoising,
e.g., (Ehret et al. 2019) and (Michele and Jan 2019).
Video illumination enhancement. Learning-based low-
light image enhancement gains increasing attention re-
cently (Yan et al. 2014, 2016; Lore, Akintayo, and Sarkar
2017; Cai, Gu, and Zhang 2018; Wang et al. 2019a; Moran
et al. 2020; Guo et al. 2020). Wang et al. (Wang et al. 2019a)
enhance photos by learning to estimate an illumination map.
Sean et al. (Moran et al. 2020) learn spatial filters of vari-
ous types for image enhancement. Also, unsupervised learn-
ing has been explored, e.g., Guo et al. (Guo et al. 2020)
train a lightweight network to estimate pixel-wise and high-
order curves for dynamic range adjustment. Yet, applying
low-light image enhancement methods independently to in-
dividual frames will likely cause flickering, thus leading to
research on methods for low-light videos, e.g., (Zhang et al.
2016; Lv et al. 2018; Jiang and Zheng 2019; Xue et al. 2019;
Wang et al. 2019b; Chen et al. 2019). Zhang et al. (Zhang
et al. 2016) adopt a perception-driven progressive fusion. Lv
et al. (Lv et al. 2018) design a multi-branch network to ex-
tract multi-level features for stable enhancement.

Method
Architecture
To start, let us denote {Xt} as the input LLN frames and
{Yt} as the synthesized HNN frames, where t is the time
index. Usually, we train the network with {Xt} downsam-
pled from the ground-truth frames {Ŷt} and we denote r as
the downsampling rate. To obtain realistic and temporally-
smooth videos, we consider N frames before and N frames
after time t for estimating the target frame Yt:

Yt = f(Xt′ , t
′ ∈ [t−N, t+N ]). (1)

Thus, the shape of the network input is T × H ×W × C,
where T = 2N+1 andH ,W ,C are the height, width, chan-
nel size of the input video. Then, the shape of the output SR
frame Yt shall be rH × rW × C. Fig. 2 illustrates the net-
work input, synthesized frame, and various components in
our framework. Overall, our framework first synthesizes an
intermediate HNN frame Zt, then constructs residual image
Rt to refine Zt to generate the final output Yt.
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Figure 2: Overview of our framework. The encoder branch (grey area) extracts deep features from network input {Xt} and the
decoder branch (blue area) produces the output for learning the DP3DF and residual image Rt (the branch in the red area).
Further, we learn the DF3DF (the branch in the yellow area) for synthesizing the intermediate HNN frame Zt. Finally, we
refine Zt using Rt to produce the final output Yt. The branch for learning the DP3DF and residual image share the same
encoder-and-decoder backbone. see Fig. 3 for the details of how to apply DP3DF to a video.

We propose to first learn a new parametric representation
called DP3DF for producing Zt. To complete the mapping
from {Xt} to Zt, DP3DF has the shape ofH×W × [r×r×
(kh×kw×kt+1)], where kh, kw, and kt are the dimensions
(height, width, and time, respectively) of a 3D volume cov-
ered by DP3DF at each pixel in the network input and the
“+1” is an additional component for illumination enhance-
ment. Each pixel has r × r DP3DF kernels, each of size
kh×kw×kt+1; see Fig. 3. For the enhancement of Xt(p),
where p denotes a pixel location, we sample a volume of
kh× kw × kt pixels around p in Xt and then use the learned
r × r kernels to produce r × r pixels for the original pixel
at p. Besides, we normalize the kh × kw × kt elements in
each kernel to be a sum of one for promoting smoothness in
the results and suppressing the noise. The additional “one”
dimension is for illumination adjustment.

DP3DF
Formulation. Our network predicts DP3DFWt from {Xt}
and the filter learning branch output; see Fig. 2. DP3DF ker-
nel Wt(p) associates with pixel Xt(p) in Xt. Each Wt(p)
can be decomposed into r × r kernels. Each kernel has
shape kh × kw × kt + 1 and can be decomposed into two
parts: W b

t (p) ∈ Rkh×kw×kt (weights for SR and denoising)
and Lb

t(p) ∈ R1 (weight for luminance adjustment), where
b ∈ [1, r× r]. Upsampled r× r pixels in Zt are predicted as

Zr1×r+r2
W =

sh∑
m=−sh

sw∑
n=−sw

st∑
o=−st

W (m,n, o)×Xt+o(i+m, j + n),

Zt(i× r + r1, j × r + r2) = Zr1×r+r2
W × Lr1×r+r2

t (i, j),
(2)

where sh = kh−1
2 , sw = kw−1

2 , st = kt−1
2 , p = (i, j),

r1 ∈ {0, 1, ..., r − 1} and r2 ∈ {1, 2, ..., r}, which together

iterate over the r × r kernels in Wt(p), and W (m,n, o) de-
notesW r1×r+r2

t (i, j)[m+sh, n+sw, o+st]. Especially, the
elements in W b

t (p) are normalized through Softmax, sum-
ming to one, whereas the elements in Lb

t(p) are processed
with the activation function of Sigmoid and we take recipro-
cals. The convolution with W b

t (p) gives an effect of spatial-
temporal smoothing and helps achieve denoising. On the
other hand, the multiplication with Lb

t(p) adjusts the illumi-
nation and enhances the dark areas in the input frame. Also,
the resulting r × r pixels produce a high-resolution frame
from the low-resolution one.
Implementation. To learn the DP3DF, we adopt a network
of an encoder-and-decoder structure. As shown in Fig. 2,
the encoder has two downsampling layers, each with several
residual blocks (He et al. 2016). These residual blocks can
extract relevant features in each layer and use an instance
normalization to reduce the gap between different types of
videos. Then, we pass the features from the encoder through
several residual blocks to produce the input feature of the de-
coder. Subsequently, the decoder adopts a pixel shuffle (Shi
et al. 2016) for upsampling.

Residual Learning
To further enhance the performance, we adopt a residual
learning branch (see the red area in Fig. 2) to learn a residual
image Rt for enriching the final output with high-frequency
details. Importantly, the residual image Rt is produced from
multiple input frames {Xt} rather than a single input frame,
so sharing the same encoder-decoder structure with the main
branch for predicting the DP3DF allows us to reduce the
computational overhead. Finally, we combine the interme-
diate HNN frame Zt with the learned residual image Rt to
produce final output frame Yt.
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Figure 3: Illustrating how we apply the learned DP3DF to process an input video clip. For each pixel Xt(i, j), we locate its 3D
patch (green arrow) and its associated DP3DF kernel (red arrow), and then make use of the kernel components to process the
3D patch to produce r × r output pixels (yellow and blue arrows).

Loss Function
The overall loss has the following three parts.
(i) Reconstructing Zt. First, we define an L2 loss term for
obtaining an accurate prediction of Zt with the DP3DF:

Lr = ‖Zt − Ŷt‖, (3)

where ‖‖ is the L2 norm, and all pixel channels in ground
truth Ŷt and Zt are normalized to [0, 1]. Such clip opera-
tion is effective for the training of illumination enhancement,
eliminating invalid colors that are beyond the gamut and
avoiding mistakenly darkening the underexposed regions.
(ii) Residual learning branch. Like Zt, we define another
reconstruction loss for the residual learning branch to gener-
ate the final output Yt from Zt and Rt:

Le = ‖Yt − Ŷt‖. (4)

(iii) Smoothness loss. Many works employ the smooth-
ness prior for illumination enhancement, e.g., (Li and Brown
2014; Wang et al. 2019a), by assuming the illumination is
locally smooth. Harnessing this prior in our framework has
two advantages. It helps to not only reduce overfitting and
improve the network’s generalizability but also enhance the
image contrast. For adjacent pixels, say p and q, with similar
illumination values in a video frame, their contrast in the en-
hanced frame should be small; and vice versa. So, we define
the smoothness loss on the predicted Lm

t as

Ls =
∑

t

∑
m

∑
p[v

p
t × [∂xL

m
t (p)]2 + upt × [∂yL

m
t (p)]2], (5)

where ∂x and ∂y are partial derivatives in horizontal and ver-
tical directions, respectively, for the predictedLm

t ; vpt and uqt
are spatially-varying (per-channel) smoothness weights ex-
pressed as

vpt = (‖∂xXt(p)‖1.2 + ε)−1 and up
t = (‖∂yXt(p)‖1.2 + ε)−1,

(6)

where Xt is the logarithmic image of Xt; and ε is a small
constant (set to 0.0001) to prevent division by zero.
Overall loss. The overall loss L is

L = λ1Lr + λ2Ls + λ3Le, (7)

where λ1, λ2 and λ3 are the loss weights.

Experiments
Datasets
We perform our evaluation on two public datasets with in-
door and outdoor real-world videos: SMID (Chen et al.
2019) and SDSD (Wang et al. 2021). The videos in SMID
are captured as static videos, in which the ground truths are
obtained with a long exposure and the signal-to-noise ratio
of the videos under the dark environment is extremely low.
In this work, we explore the mapping from LLN to HNN
frames in the sRGB domain. Thus, we follow the script pro-
vided by SMID (Chen et al. 2019) to convert the low-light
videos from the RAW domain to the sRGB domain using
rawpy’s default ISP. On the other hand, SDSD is a dynamic
video dataset collected through an electromechanical equip-
ment, containing indoor and outdoor subsets. Also, we fol-
low the official train-test split of SMID and SDSD.

Implementation
We empirically set kh=kw=kt=3 and number of frames
T=3. Experiments on all datasets were conducted on the
same network structure, whose backbone is an encoder-and-
decoder structure; see Fig. 2. The encoder has three down-
sampling layers with 64, 128, 256 channels, while the de-
coder has three up-sampling layers with 256, 128, 64 chan-
nels. The branches for learning the DP3DF and residual have
three and one convolution layers, respectively.

We train all modules end-to-end with the learning rate ini-
tialized as 4e-4 for all layers (adapted by the cosine learning
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SMID SDSD Indoor SDSD Outdoor
Methods PSNR SSIM PSNR SSIM PSNR SSIM

Ours w/o T. 23.67 0.69 25.49 0.83 24.98 0.75
Ours w/o S. 22.84 0.63 24.87 0.78 24.02 0.71
Ours w/o R. 25.44 0.71 27.01 0.83 25.69 0.76

Ours 25.73 0.73 27.11 0.85 25.80 0.77

Table 1: The quantitative evaluation in the ablation study.

(a) Input (b) Ours w/o Temporal

(c) Ours w/o Spatial (d) Ours

Figure 4: Example visual samples in the ablation study.

scheduler); scale factor r = 4; batch size = 16; and patch
size = 64 × 64. The patches are cropped randomly from
the down-sampled low-resolution frame. We use Kaiming
Initialization (He et al. 2015) to initialize the weights and
Adam (Kingma and Ba 2014) for training with momentum
set to 0.9. We implement our method using Python 3.7.7 and
PyTorch 1.2.0 (Paszke et al. 2019), and ran all experiments
on one NVidia TITAN XP GPU. PSNR and SSIM (Wang
et al. 2004) are adopted for quantitative evaluation.

Ablation Study

We evaluate the major components in DP3DF on three ab-
lated cases: (i) “w/o T.” removes the property of the 3D fil-
ters by ignoring the temporal dimension and filtering only in
the spatial dimensions; (ii) “w/o S.” removes the spatial di-
mensions in DP3DF and applies filters only in the temporal
dimension; and (iii) “w/o R.” removes the branch of residual
learning.

Table 1 summarizes the results, showing that all ablated
cases are weaker than our full method. Especially, “w/o T.”
does not have the ability to incorporate information from
the adjacent time frames and “w/o S.” cannot obtain infor-
mation from the adjacent pixels, thereby both having weaker
performance. These two cases show the necessity of consid-
ering both the temporal and spatial dimensions in our 3D
filter. Though “w/o R” leverages multiple frames as DP3DF,
our full model still consistently achieves better results. Fur-
ther, Fig. 4 shows some visual samples, revealing the appar-
ent degradation caused by removing different components in
our 3D filter.

SMID SDSD Indoor SDSD Outdoor
Methods PSNR SSIM PSNR SSIM PSNR SSIM
BasicVSR 21.78 0.62 20.72 0.71 20.91 0.70
BasicVSR++ 22.48 0.65 21.02 0.75 21.31 0.72
IconVSR 21.99 0.63 20.94 0.73 20.89 0.71
RBPN 24.87 0.72 23.47 0.80 22.46 0.74
Zooming 24.89 0.71 26.32 0.84 22.05 0.72
TGA 23.40 0.67 23.92 0.76 23.83 0.74
TDAN 24.65 0.70 24.00 0.80 22.57 0.74
PFNL 20.85 0.60 23.19 0.82 23.31 0.72
ToFlow 23.08 0.66 21.82 0.76 22.07 0.71
EDVR 24.50 0.70 25.00 0.83 23.37 0.75
Ours 25.73 0.73 27.11 0.85 25.80 0.77

Table 2: Quantitative comparison with various SOTA SR
methods on the SMID and SDSD datasets.

SMID SDSD Indoor SDSD Outdoor
Methods PSNR SSIM PSNR SSIM PSNR SSIM
F.+Z. 25.22 0.71 26.82 0.80 22.93 0.72
F.+TGA 23.97 0.70 24.15 0.78 24.11 0.74
F.+TDAN 24.95 0.71 24.30 0.76 23.55 0.70
T.+Z. 24.34 0.67 25.74 0.77 22.15 0.69
T.+TGA 23.07 0.66 23.65 0.72 23.48 0.70
T.+TDAN 24.12 0.68 23.69 0.71 23.01 0.67
F.+T.+Z. 23.97 0.74 26.54 0.81 24.41 0.73
F.+T.+TGA 24.57 0.76 25.31 0.78 25.01 0.75
F.+T.+TDAN 24.00 0.70 25.89 0.87 23.81 0.71
T.+F.+Z. 23.73 0.70 26.01 0.79 23.69 0.74
T.+F.+TGA 24.66 0.68 24.70 0.77 24.88 0.72
T.+F.+TDAN 24.21 0.71 24.88 0.81 23.35 0.70
Ours 25.73 0.73 27.11 0.85 25.80 0.77

Table 3: Comparison with baselines that combine SOTA
video SR, denoise, and illumination enhancement networks.
··F.” means FastDVDnet, “Z.” denotes Zooming, “T” is TCE.

Comparison
Baselines. As far as we are aware of, there is no cur-
rent work designed for directly mapping LNN videos to
HNN videos. So, we choose the following two classes of
works to compare with. First, we consider a rich collec-
tion of SOTA methods for video SR: BasicVSR (Chan et al.
2021), IconVSR (Chan et al. 2021), BasicVSR++ (Chan
et al. 2022), RBPN (Haris, Shakhnarovich, and Ukita
2019), Zooming (Xiang et al. 2020), TGA (Isobe et al.
2020), TDAN (Tian et al. 2020), PFNL (Yi et al. 2019),
ToFlow (Xue et al. 2019), and EDVR (Wang et al.
2019c). We trained them on each dataset with their re-
leased code. Second, we collectively use network models
for video denoising, illumination enhancement, and SR in
a cascaded manner: illumination enhancement+SR, denois-
ing+SR, illumination enhancement+denoise+SR, and de-
noise+illumination enhancement+SR, where “+” indicates
the order of using different networks. Here, we employ Fast-
DVDnet (Tassano, Delon, and Veit 2020), a SOTA method
for video denoising, and TCE (Zhang et al. 2021), a SOTA
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(a) Input 9.58/0.50 (b) RBPN 23.29/0.78 (c) Zooming 23.52/0.78 (d) TGA 22.36/0.75

(e) TDAN 22.92/0.75 (f) ToFlow, 22.27/0.75 (g) EDVR 23.44/0.77 (h) Ours 24.54/0.79

Figure 5: Qualitative comparison on SMID. Our result contains sharper details and more vivid colors. Score means PSNR/SSIM.
Please zoom to view.
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Figure 6: Quantitative comparisons between our framework
and existing SOTA video SR methods in terms of method
run time on input images of 960×512

method for video illumination enhancement, for use with
various SOTA video SR methods.
Quantitative analysis. Table 2 shows the comparison re-
sults with the SOTA SR methods. From the table, we can
see that our method consistently achieves the highest PSNR
and SSIM for all the datasets. Especially, our PSNR values
are higher than all others by a large margin. This superiority
shows that our method has strong capability of enhancing
LLN videos. Also, the right two columns show results on
the SDSD indoor and outdoor subsets. These videos contain
dynamic scenes, so they are very challenging to handle. Yet,
our method is able to obtain high-quality results with top
PSNR and SSIM for both subsets.

On the other hand, Table 3 summarizes the compari-
son results with baselines that collectively combine SOTA
video denoising, illumination enhancement, and SR net-
works. Here, we trained each network (videos SR, illumi-
nation enhancement, and denoising) individually on the as-
sociated dataset. From Table 3, we can see that our method
always produces top PSNR values for all three datasets and
our SSIM values stay high compared with others.

Fig. 6 reports the run time of our method vs. the SOTA
video SR methods. We ran all methods on Intel 2.6GHz CPU

& TITAN XP GPU. From the figure, we can see that our
method is efficient with very low running time.
Qualitative analysis. Next, we show visual comparisons
with other methods. Fig. 5 shows the comparison on SMID.
Overall, the results show two main advantages of our method
over others. First, the result from our method has high con-
trast and clear details, as well as natural color constancy and
brightness. Therefore, the frame processed by our method is
more realistic than those by the others. Second, in regions
with complex textures, it can be observed that our outputs
have fewer artifacts. So, our result looks cleaner and sharper
than those produced by the others. Further, these results
demonstrate that our method can simultaneously achieve
video SR, noise reduction, and illumination enhancement.

Figs. 7 and 8, respectively, show the visual comparisons
on the SDSD indoor and outdoor subsets. Compared with
the results of the baselines, our results are visually more ap-
pealing due to the explicit details, vivid colors, rational con-
trast, and plausible brightness. These results show the limi-
tations of the existing approaches in converting LLN videos
to HNN videos, and the superiority of our framework.
User study. Further, we conducted a large-scale user study
with 80 participants (aged 18 to 52; 32 females and 48
males) to compare the perceptual quality of our method
against various SOTA video SR approaches. In detail, we
randomly selected 36 videos from the test sets of SMID
and SDSD, and compared the results of different methods
on these videos using an AB test. For each test video, our
produced result is “Video A” whereas the result from some
other baseline is “Video B.” In the test, each participant had
to simultaneously watch videos A and B (we avoid bias by
randomizing the left-right presentation order when showing
videos A and B in each AB-test task) and choose among
three options: “I think Video A is better”, “I think Video B
is better”, and “I cannot decide.” Also, we asked the par-
ticipants to make decisions based on the natural brightness,
rich details, distinct contrast, and vivid color of the videos.
For each participant, the number of tasks is 10 methods × 2
videos = 20, and it took around 30 minutes on average for
each participant to complete the user study.
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(e) TDAN 25.02/0.87 (f) ToFlow 22.69/0.83 (g) EDVR 26.27/0.88 (h) Ours 27.55/0.89

Figure 7: Qualitative comparison on indoor videos in the SDSD dataset Score means PSNR/SSIM. Our result contains sharper
details and more vivid colors. Please zoom to view.

(a) Input 11.30/0.65 (b) RBPN 24.59/0.83 (c) Zooming 24.24/0.82 (d) TGA 20.64/0.79

(e) TDAN 22.37/0.81 (f) ToFlow 24.57/0.83 (g) EDVR 24.64/0.83 (h) Ours 25.80/0.84

Figure 8: Qualitative comparison on outdoor videos in the SDSD dataset. Score means PSNR/SSIM. Our result contains sharper
details and more vivid colors. Please zoom to view the sample frames.
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Figure 9: “Ours” is the percentage of test cases, in which
the participant selected our results as better; “Other” is the
percentage that another method was chosen to be better; and
“Same” is the percentage that the user could not decide.

Fig. 9 summarizes the results of the user study, demon-
strating that our results are more preferred by the partici-
pants over all the baselines. Also, we performed the statisti-
cal analysis by using the T-TEST function in MS Excel and
found that the associated p-values in the comparison with the
baseline methods are all smaller than 0.001, showing that the
conclusion has a significant level of 0.001 statistically.

Conclusion

This paper presents a new approach for video super reso-
lution. Our novel parametric representation, Deep Paramet-
ric 3D Filters (DP3DF), enables a direct mapping of LNN
videos to HNN videos. It intrinsically incorporates local
spatiotemporal information and achieves video SR simul-
taneously with denoising and illumination enhancement ef-
ficiently within a single encoder-and-decoder network. Be-
sides, a dynamic residual frame can be jointly learned with
the DP3DF, sharing the backbone and improving the visual
quality of the results.

Extensive experiments were conducted on two real-world
video datasets, SMID and SDSD, to show the effectiveness
of our new approach. Both the quantitative and qualitative
comparisons between our approach and current SOTA meth-
ods demonstrate our approach’s consistent top performance.
Further, an extensive user study with 80 participants was
conducted to evaluate and compare the results in terms of
human perception. Results also showed that our results con-
sistently receive higher ratings than those from the baselines.
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