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Abstract

Efficiently training accurate deep models for weakly super-
vised semantic segmentation (WSSS) with image-level labels
is challenging and important. Recently, end-to-end WSSS
methods have become the focus of research due to their high
training efficiency. However, current methods suffer from
insufficient extraction of comprehensive semantic informa-
tion, resulting in low-quality pseudo-labels and sub-optimal
solutions for end-to-end WSSS. To this end, we propose a
simple and novel Self Correspondence Distillation (SCD)
method to refine pseudo-labels without introducing external
supervision. Our SCD enables the network to utilize feature
correspondence derived from itself as a distillation target,
which can enhance the network’s feature learning process by
complementing semantic information. In addition, to further
improve the segmentation accuracy, we design a Variation-
aware Refine Module to enhance the local consistency of
pseudo-labels by computing pixel-level variation. Finally, we
present an efficient end-to-end Transformer-based framework
(TSCD) via SCD and Variation-aware Refine Module for the
accurate WSSS task. Extensive experiments on the PASCAL
VOC 2012 and MS COCO 2014 datasets demonstrate that our
method significantly outperforms other state-of-the-art meth-
ods. Our code is available at https://github.com/Rongtao-
Xu/RepresentationLearning/tree/main/SCD-AAAI2023.

Introduction
Weakly Supervised Semantic Segmentation (WSSS) aims
to use weak/cheap labels to alleviate the reliance on time-
consuming pixel-level annotations (Zhang et al. 2021). The
most challenging scenario for WSSS methods is to use only
image-level labels which we focus on, as it has no real lo-
calization information, and usually relies on multi-stage so-
lutions to generate high-quality pseudo-labels.

Multi-stage methods (Hou et al. 2018; Lee et al. 2019; Wu
et al. 2021) first train a classification model and then train a
semantic segmentation network with refined pseudo-labels,
which are generated from class activation maps (Zhou et al.
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Figure 1: Visualization examples of CAMs generated by our
TSCD. The corresponding categories are drawn on the orig-
inal image with red crosses.

2016) (CAMs). Due to the complex pipeline of multi-stage
methods and the need to train multiple models, recently
some end-to-end methods (Araslanov and Roth 2020; Zhang
et al. 2020a, 2021; Ru et al. 2022) have been proposed
to speed up the training process. However, these methods
rely heavily on the pseudo-labels generated by CAM as su-
pervision information and still show limited performance
in obtaining the comprehensiveness of semantic informa-
tion and segmentation accuracy. The recent work (Caron
et al. 2021) reveals that there is corresponding information
about image semantic segmentation in the dense features of
self-supervised transformers. We find that these dense fea-
tures can be class activation maps, and further construct
novel CAM feature correspondence to learn semantic cor-
respondence information. In this paper, we propose a simple
and novel method named Self Correspondence Distillation
(SCD), which can enhance the network feature learning pro-
cess by complementing semantic information to refine CAM
without external supervision. Our SCD allows the network
to utilize the CAM feature correspondence derived from it-
self as the distillation target for segmentation prediction fea-
tures. This mechanism can help the network obtain compre-
hensive image semantic information and improve accuracy.

To further refine the initial pseudo-labels obtained
by CAM, we design a Variation-aware Refine Module
(VARM), which introduces the idea of image noise reduc-
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tion, and updates pseudo-labels by calculating image pixel-
level variation and image local information. Based on SCD
and VARM, we provide an end-to-end Transformer-based
framework with Self Correspondence Distillation (TSCD)
for WSSS. We also visualize the CAM generated by our
TSCD in Figure 1, and the results show that our TSCD
can generate fine-grained CAMs by capturing comprehen-
sive image semantic information.

In summary, our main contributions are as follows:

• We propose a novel Self Correspondence Distillation
method, namely SCD, to enhance the feature learning of
WSSS networks. According to our knowledge, this is the
first attempt to use the network’s own CAM feature cor-
respondence as the distillation target.

• We design the Variation-aware Refine Module (VARM)
to address the local inconsistency of pseudo-labels. Our
VARM refines the CAM by computing image pixel-level
variation and employing pixel-adaptive convolution.

• We provide an end-to-end Transformer-based frame-
work (TSCD) with Self Correspondence Distillation and
VARM for weakly supervised semantic segmentation.
Our TSCD achieves state-of-the-art segmentation perfor-
mance on PASCAL VOC 2012 and MS COCO 2014.

Related Work
Weakly-Supervised Semantic Segmentation
Recently, deep learning has been developed rapidly (Wang
et al. 2022b,d; Xu et al. 2022b, 2023; Zhao et al. 2021),
especially in image segmentation (Xu et al. 2021b, 2022a;
Wang et al. 2022a, 2021, 2022c; Dong et al. 2020). Weakly-
Supervised Semantic Segmentation (WSSS) methods are
mainly divided into two types: Multi-stage Methods and
End-to-End Methods, both of which rely on class activa-
tion maps (Zhou et al. 2016) to generate pseudo labels.
For Multi-stage Methods, the erasure methods (Hou et al.
2018) make the classifier focus on the complete object re-
gion by erasing the discriminative region. To obtain mul-
tiple attribute maps of target objects, Lee et al. (Lee et al.
2019) utilize dilated convolutions to accumulate activation
regions, while (Wu et al. 2021) explore semantic similarities
and differences across multiple input images. Several recent
approaches attempt to explain and improve CAM genera-
tion, such as (Zhang et al. 2020b) from the perspective of
causal relationships between images and labels, and (Lee
et al. 2021a) from the perspective of information bottleneck
theory. Due to the rough boundary of the obtained initial
localization map, refinement techniques such as CRF and
IRN (Ahn, Cho, and Kwak 2019) are applied for subsequent
refinements.

While most WSSS methods are based on multi-stage, re-
cent End-to-End Methods have also achieved comparable
performance to multi-stage methods. For End-to-End Meth-
ods, training a well-performing end-to-end model is chal-
lenging due to the extremely limited supervision brought by
the rough initial CAM. To address this problem, many stud-
ies have focused on improving pseudo-segmentation labels
obtained from CAM maps. Araslanov et al. (Araslanov and

Roth 2020) proposed 1Stage which achieved great progress
on the WSSS task via pixel-adaptive mask refinement, while
Zhang et al. (Zhang et al. 2020a) used CRF on CAM to gen-
erate fine labels as supervision. Besides, Zhang et al. (Zhang
et al. 2021) introduce feature-to-prototype alignment loss
and adaptive affinity field, and Ru et al. (Ru et al. 2022)
learn affinity from attention to refine CAM. Different from
the above methods, we refine the CAM by learning the fea-
ture correspondence of the network’s own CAMs.

Knowledge Distillation and Self-Supervised
Feature Learning
Knowledge distillation (Hinton, Vinyals, and Dean 2015)
is a model compression method by transferring knowledge
from large models to small models. Usually the student net-
work and the teacher network share the same capacity, and
the student network imitates the intermediate output of the
teacher network. Recent studies (Hou et al. 2019) focus on
attention distillation, where the student network learns at-
tention maps obtained from the teacher network. Hou et
al. (Hou et al. 2019) proposed SAD that can learn attention
knowledge without a teacher network. Different from (Hou
et al. 2019), we exploit feature correspondence to obtain
comprehensive image semantic information without teacher
network, inspired by self-supervised feature learning.

The goal of self-supervised feature learning is to learn
meaningful visual features without human annotation, while
contrastive learning over multiple augmentations is used to
address this problem (Chen et al. 2020). Recently, Pinheiro
et al. (O Pinheiro et al. 2020) generate spatially dense feature
maps to compare local pixel features. (Hamilton et al. 2022)
treats pretrained self-supervised features as input. Different
from the above methods, our TSCD refines the CAM with-
out external supervision, by taking the CAM feature corre-
spondence as the distillation target, and our novel idea is that
the CAM feature correspondence may be extracted for self-
learning.

Proposed Method
Preliminary
The Class Activation Map (CAM) was first proposed
in (Zhou et al. 2016) to enable classifiers learn object lo-
calization. Given a feature map f ∈ RH×W×D extracted by
CNN and the class c, we apply global average pooling and
fully connected layer operations to compute class scores:

yc =
1

HW

K∑
k

wc,k

∑
i

fk,i (1)

where wc,k represents the parameters of the fully connected
layer. CAM is achieved by weighting the contribution of
each channel of the feature map to a specific category of
the classification score. Formally, the class activation map
mc of the class c is:

mc = Relu(
K∑
k

wc,kfk,:). (2)

In this paper, we adopt the class activation map as the initial
pseudo-label.
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Figure 2: Illustration of the proposed end-to-end framework TSCD. Our TSCD uses the Transformer backbone as the encoder
and adopts CAM (Zhou et al. 2016) to generate initial pseudo-labels. The generated initial pseudo-labels are then refined with
our SCD and VARM. The yellow area indicates the application of our SCD. The optimization of the network consists of self
correspondence distillation loss, equivariant regularization loss, classification loss, and auxiliary loss, etc. A(·) means affine
transformation.

Self Correspondence Distillation
Our goal is to perform Self Correspondence Distillation to
refine the CAM of the original image. Our Self Correspon-
dence Distillation does not require any additional labels or
external supervision, while it can assist the network to ob-
tain comprehensive image semantic information. Recent ad-
vances in self-supervised feature learning have shown that
dense features are semantically related (Collins, Achanta,
and Susstrunk 2018; Zhou et al. 2016). In this paper, we
verify that these dense feature maps can be class activation
maps, and further construct CAM feature correspondence
for feature learning.

CAM Feature Correspondence: Formally, we focus on
the correlation volume between CAMs. Given two CAMs
m1 ∈ RH1×W1×C and m2 ∈ RH2×W2×C , with H1, H2 for
height, W1,W2 for width, and C for category, we define the
CAM feature correspondence as:

Mh1w1h2w2
=

∑
c

m1 ·m2

|m1| |m2|
. (3)

Specifically, given an image I ∈ RH×W×D and an affine
transformation A(·), we employ the feature maps extracted
by the encoder to generate CAMs. Taking CAM m1 as an
example, we use E : RH×W×D → RH1×W1×C to denote
the process of CAM m1 generation from the extracted fea-
ture maps. Therefore, m1 and m2 can be expressed as:

{
m1 = E(I)

m2 = E(A(I))
(4)

Then the CAM feature correspondence can be further ex-
pressed as:

Mh1w1h2w2 =
∑
c

E(I) · E(A(I))

|E(I)| |E(A(I))| (5)

whose entries represent the cosine similarity between
the feature at m1’s position (h1, w1) and m2’s position
(h2, w2). As shown in Figure 2, the encoder and decoder
share weights, and the segmentation prediction maps are de-
noted as s1 ∈ RH1×W1×C and s2 ∈ RH2×W2×C for images
I and A(I), respectively. Then the segmentation feature cor-
respondence is defined as:

Sh1w1h2w2 =
∑
c

s1 · s2
|s1| |s2|

. (6)

SCD for Training: The intuition behind our Self Cor-
respondence Distillation (SCD) is that segmentation fea-
ture correspondence can extract useful semantic information
from the CAM feature correspondence to refine CAMs in
a self-learning manner. Inspired by the self-supervised fea-
ture learning, we consider aligning the segmentation feature
correspondence with the network’s own CAM feature corre-
spondence. The loss function is designed to push the corre-
sponding CAMs together to enhance semantic relatedness,
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when there is a significant correlation between two segmen-
tation predictions. We implement the SCD loss function by
simple element-wise multiplication of the segmentation fea-
ture corresponding Sh1w1h2w2

and the CAM feature corre-
sponding Mh1w1h2w2

:

LSCD = −
∑

h1w1h2w2

Mh1w1h2w2 ·max(Sh1w1h2w2 , 0).

(7)
where max(·, 0) means the zero clamping. In practice, in
order to ensure the inference efficiency, we adopt a random
sampling strategy to train our SCD loss function, and the
number of samples is n. If the size of the segmentation pre-
diction map is different from the size of the corresponding
CAM, then bilinear upsampling is applied to the segmenta-
tion prediction map.

Variation-Aware Refine Module
The initial pseudo-labels obtained by CAM are usually lo-
cally inconsistent and have rough boundaries. Many multi-
stage methods employ CRF to further refine the initial
pseudo-labels, which reduces the training efficiency. For
end-to-end methods, Araslano et al. (Araslanov and Roth
2020) utilize pixel-adaptive convolution (Su et al. 2019) to
extract local image information for local consistency, while
Ru et al. (Ru et al. 2022) further combine spatial information
to build a refinement module. Different from (Araslanov and
Roth 2020; Ru et al. 2022), we design the Variation-aware
Refine Module, which introduces the idea of image noise
reduction to overcome local inconsistencies.

Specifically, for positions (i, j) and (k, l) in image I , we
first compute the image pixel-level variation:

Vij,kl = (xi,j−1,kl − xi,j,kl)
2 + (xi+1,j,kl − xi,j,kl)

2. (8)

Next we calculate the local information term krgb:

krgbij,kl =
−(α |Ii,j − Ik,l|)2

σ2
ij

(9)

where σij represents the standard deviation and α repre-
sents the smoothing weight. To enhance the local consis-
tency of pseudo-labels, for pixels with large variation in
the image, we calculate the correction kernel kij,kl to avoid
some abruptly deformed values:

kij,kl =
exp(krgb

ij,kl)∑
(x,y)∈N(i,j) exp(k

rgb
ij,kl)

− β
exp(Vij,kl)∑

(x,y)∈N(i,j) exp(Vij,kl)

(10)
where N(i, j) is the set of neighbors of (i, j), obtained us-

ing dilated convolution as defined in (Araslanov and Roth
2020). We adopt an iterative update strategy to update the
pixel label (CAM) Pi,j,c:

Pi,j,c
t =

∑
(k,l)∈N(i,j)

kij,klPk,l,c
t−1 . (11)

Our Variation-aware Refine Module enhances the local
consistency of the initial pseudo-labels by perceiving pixel-
level variation, while ensuring high training efficiency.

Transformer-Based Framework with Self
Correspondence Distillation
As shown in Figure 2, our Transformer-based framework
with Self Correspondence Distillation (TSCD) consists of a
transformer backbone, SCD, VARM, equivariant regulariza-
tion loss, classification loss, auxiliary loss and segmentation
loss. Next, each loss function and total loss are introduced
separately.

Equivariant Regularization Loss: Equivariant con-
straints have been shown to narrow the supervision gap be-
tween weak supervision and full supervision (Du et al. 2021;
Wang et al. 2020). We construct an equivariant constraint us-
ing an equivariant regularization loss:

Lequ = ∥A(m1)−m2∥1 = ∥A(E(I))− E(A(I))∥1 .
(12)

Classification Loss: As shown in Figure 2, the aggre-
gated feature maps are fed into the classification layer to
compute prediction vector p for the image-level classifica-
tion. We adopt the multi-label soft-margin loss as the clas-
sification loss for network training. For the total number of
classes C, the classification loss is defined as:

Lcls =
1

C

C∑
c=1

(lclog(
1

1 + e−pc
) + (1− lc)log(

e−pc

1 + e−pc
))

(13)
where l is the ground truth for class labels.

Auxiliary Loss: To further enhance the performance of
our network, we adopt the affinity loss of (Ru et al. 2022) as
our auxiliary loss in Figure 2. Affinity loss is beneficial to the
self-attention learning of the encoder and helps the network
focus on complete object regions. Different from (Ru et al.
2022), we directly use the attention maps (A1,A2) output
by the last two layers of the encoder to calculate the auxiliary
loss. Formally, the auxiliary loss is expressed as:

Laux =
1

N−

∑
R−

(1− 1

1 + e−concat(A1,A2)
)+

1

N+

∑
R+

(
1

1 + e−concat(A1,A2)
)

(14)

where concat means that attention maps are concatenated
together, R+ and R− denote the set of positive and negative
samples in the pseudo-affinity labels generated by refining
pseudo-labels, while N+ and N− denote the number of R+

and R− respectively.
Total Loss: We adopt the cross-entropy loss as the seg-

mentation loss Lseg . Besides, to enhance the local consis-
tency of segmentation results, we also adopt the commonly
used regularization loss Lreg (Tang et al. 2018; Zhang et al.
2021). The total loss is defined as:

L = λ1(Lcorr + Lseg + Lequ + Laux) + λ2Lreg + λ3Lcls

(15)
where λ1,λ2 and λ3 are empirically set to 0.1, 0.01 and 1

respectively.
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Figure 3: Examples of segmentation results of AFA (Ru
et al. 2022) and our method on PASCAL VOC validation
images. The red box shows the difference.

Experiments
Experimental Settings
Dataset and evaluation metric: We evaluate our method on
the commonly used PASCAL VOC 2012 (Everingham et al.
2010) dataset and MS COCO 2014 (Lin et al. 2014) dataset.
The PASCAL VOC 2012 dataset consists of training, val-
idation and test sets with a total of 21 semantic classes.
Usually the SBD dataset (Hariharan et al. 2011) is used for
the augmentation of the PASCAL VOC 2012 dataset, and
the augmented dataset includes 10,582 images for training,
1,449 images for validation, and 1,464 images for testing.
The MS COCO 2014 dataset (Lin et al. 2014) contains 81
classes with training set and validation set, each containing
82,081 and 40,137 images respectively. Note that we only
use image-level labels for annotation. We adopt the mean
Intersection-Over-Union (mIoU) as the evaluation metric.

Reproducibility: We implement our method using the
PyTorch framework. For the training phase, we employ
the AdamW optimizer with an initial learning rate set to
6 × 10−5 and a weight decay factor 0.01. We use simple
data augmentation strategies such as random rescaling, ran-
dom horizontal flipping, and random cropping. We set the
batch size to 8 and the crop size to 512 × 512 . For VARM,
we set (α, β) to (4, 0.01). Besides, we follow (Ru et al.
2022) and set the dilation rate of the dilated convolution to
[1, 2, 4, 8, 12, 24]. The number of samples n for SCD loss is
set to 40. For pseudo-label generation, we follow (Ru et al.

Method Sup Backbone val test
Fully-supervised methods
DeepLab

F
R101 77.6 79.7

Segformer MiT-B1 78.7 -

Multi-Stage weakly-supervised methods
MCISECCV ′2020

I + S
R101 66.2 66.9

AuxSegNetICCV ′2021 WR38 69.0 68.6
EPSCV PR′2021 R101 70.9 70.8
SEAMCV PR′2020

I

WR38 64.5 65.7
SC-CAMCV PR′2020 R101 66.1 65.9
CDAICCV ′2021 WR38 66.1 66.8
AdvCAMCV PR′2021 R101 68.1 68.0
CPNICCV ′2021 R101 67.8 68.5
RIBNeurIPS′2021 R101 68.3 68.6
End-to-End weakly-supervised methods
EMICCV ′2015

I

VGG16 38.2 39.6
MILCV PR′2015 - 42.0 40.6
CRF-RNNCV PR′2017 VGG16 52.8 53.7
RRMAAAI′2020 WR38 62.6 62.9
RRM+AAAI′2020 MiT-B1 63.5 -
1StageCV PR′2020 WR38 62.7 64.3
AA&LRACMMM ′2021 WR38 63.9 64.8
AFACV PR′2022 MiT-B1 63.8 -
AFA+ CRFCV PR′2022 MiT-B1 66.0 66.3
TSCD (Ours) I MiT-B1 65.0 65.2
TSCD + CRF (Ours) MiT-B1 67.3 67.5

Table 1: Semantic segmentation comparisons of PASCAL
VOC 2012 dataset. F: full supervision; S: saliency maps; I:
image-level labels.

2022) and set the two background thresholds to 0.55 and
0.35, respectively. For the experiments on PASCAL VOC
2012, the total number of iterations is set to 20,000, with
2,000 iterations warmed up for the classification branch. For
the experiments of MS COCO 2014, the total number of it-
erations is set to 80,000, with 5,000 iterations of warm-up.

Network Configuration: Considering the training effi-
ciency, our transformer backbone adopts the recent Seg-
former (Xie et al. 2021). For the encoder, we adopt the Mix
Transformer (MiT) (Xie et al. 2021) and initialize the pa-
rameters with ImageNet-1k pretrained weights. Then we use
the MLP decoder header (Xie et al. 2021) as the decoder to
predict the refined pseudo-labels.

Comparisons with State-of-the-Arts
PASCAL VOC 2012 dataset: For a fair comparison, we
follow the evaluation code of (Ru et al. 2022). We re-
port mIoU values of state-of-the-art semantic segmentation
methods and our method’s mIoU values on VOC 2012 val-
idation and test images in Table 1. It is observed that our
TSCD outperforms all the other state-of-the-art end-to-end
methods in VOC 2012. These end-to-end methods include
1Stage (Araslanov and Roth 2020) and AFA (Ru et al.
2022), etc. R101 means using ResNet101 (He et al. 2016) as
the backbone, and WR38 means using WideResNet38 (Wu,
Shen, and Van Den Hengel 2019). Our method also achieves
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Figure 4: Examples of segmentation results of our method
on COCO val images.

comparable performance to recent multi-stage methods,
including SEAM (Wang et al. 2020), SC-CAM (Chang
et al. 2020) and CDA (Su et al. 2021), etc. Compared to
RRM (Zhang et al. 2020a) and AFA (Ru et al. 2022) using
the same backbone, our method improves mIoU on the val
set by 5% and 2%, respectively. Our TSCD even achieves
85.5% of its fully supervised counterpart, Segformer (Xie
et al. 2021). This validates the effectiveness of our pro-
posed Self Correspondence Distillation method (SCD) and
Variation-aware Refine Module (VARM).

MS COCO 2014 dataset: The mIoU values for the se-
mantic segmentation on the MS COCO 2014 dataset are
presented in Table 2. We report the semantic segmenta-
tion performance of multi-stage methods (EPS (Lee et al.
2021b), AuxSegNet (Xu et al. 2021a), CDA (Su et al. 2021),
CGNet (Kweon et al. 2021) and RIB (Lee et al. 2021a))
and end-to-end methods AFA (Ru et al. 2022). We can
see that our TSCD significantly outperforms these state-of-
the-art end-to-end methods and multi-stage methods except
RIB (Lee et al. 2021a), reaching mIoU of 40.1%. Compared
with AFA using the same backbone, the mIoU of our method
is improved by 3%.

Ablation Studies
We conduct various ablation studies on the PASCAL VOC
2012 dataset.

Ablation studies of our TSCD framework: First, we
verify the effectiveness of each part of our TSCD. Table 3 re-
ports the quantitative results of ablation analysis on the PAS-
CAL VOC 2012 validation set. Our transformer-based base-
line model achieves an mIoU of 47.2%. Compared to the
baseline, our VARM and SCD further significantly improve
mIoU by 20% and 34%, respectively. Using the auxiliary
loss Laux and equivariant regularization loss Lequ brings
the proposed framework to 64.2% mIoU and 65.0% mIoU,

Method Sup Backbone mIoU(%)

Multi-Stage weakly-supervised methods
AuxSegNetICCV ′2021 I + S WR38 33.9
EPSCV PR′2021 R101 35.7
SEAMCV PR′2020

I

WR38 31.9
CONTANeurIPS′2020 WR38 32.8
CDAICCV ′2021 WR38 31.7
CGNetICCV ′2021 WR38 36.4
RIBNeurIPS′2021 R101 43.8
End-to-End weakly-supervised methods
AFACV PR′2022 I MiT-B1 38.0
AFA + CRFCV PR′2022 MiT-B1 38.9
TSCD (Ours) I MiT-B1 39.2
TSCD + CRF (Ours) MiT-B1 40.1

Table 2: Semantic segmentation comparisons of MS COCO
2014 validation images.

VARM SCD Laux Leuq Method val

Baseline 47.2

"

TSCD (Ours)

56.8
" " 63.5
" " " 64.2
" " " " 65.0

Table 3: Ablation studies on our TSCD framework. Here
"indicates that this component is applied.

respectively.

Method Backbone val

R101-Base R101 53.5
WR38-Base WR38 56.2
R101-SCD R101 56.5
WR38-SCD WR38 59.1
TSCD w/o SCD MiT-B1 63.9
TSCD (Ours) MiT-B1 65.0

Table 4: Ablation studies on our SCD.

The experiments in Table 3 validate the effectiveness of
individual modules in our framework. We also visualized
the CAM of the baseline and the CAMs after applying our
VARM and SCD respectively. As shown in Figure 6, the re-
sults show that VARM can further refine CAM, and SCD
can enable the network to capture complete image semantic
information and improve the quality of pseudo-labels.

Ablation studies on SCD: To verify the generalization
and effectiveness of our SCD, we also apply it to different
mainstream backbones for weakly supervised semantic seg-
mentation. We named the ResNet101 (He et al. 2016) back-
bone we implemented for the WSSS task as R101-Base, and
the application of SCD on the R101-Base as R101-SCD. Im-
plementations based on the WideResNet38 (Wu, Shen, and
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Figure 5: Visualization of pseudo-label refinement via
VARM. Pseudo-labels are generated using CAM and our
baseline.

krgb V Method val
Baseline 47.2

" PAMR (Araslanov and Roth 2020) 54.3
" PAR (Ru et al. 2022) 54.9

" VARM 55.0
" " 56.8

Table 5: Ablation studies on VARM and comparison with
other refinement methods.

(b) 

(a) 

(c) 

Figure 6: Visualization examples of CAMs. From top to bottom: (a) CAMs generated by our baseline; (b) CAMs after applying
our VARM; (c) CAMs after applying our SCD.

Van Den Hengel 2019) backbone are named WR38-Base
and WR38-SCD, similar as ResNet101. The quantitative re-
sults in Table 4 show that both R101-SCD and WR38-SCD
improve the network performance compared to the original
backbone network, reaching mIoU of 56.5% and 59.1% on
the VOC val, respectively. After removing the SCD from
our TSCD, the network’s ability to obtain comprehensive se-
mantic information is weakened, resulting in a considerable
decrease in the network’s performance.

Ablation studies on VARM: Our VARM aims to over-
come local inconsistencies by perceiving pixel-level varia-
tion, thereby refining the initial pseudo-labels. Table 5 shows
the impact of each component in VARM on the segmenta-
tion results, and the comparison with other refinement meth-
ods such as PAMR (Araslanov and Roth 2020) and PAR (Ru
et al. 2022). We use the CAM generated by the transformer-
based baseline as the initial pseudo-label. The quantitative
results in Table 5 show that our VARM can effectively im-
prove the segmentation accuracy. Compared to baseline, our
VARM improves mIoU by 20% (47.2 → 56.8). Our VARM,
PAMR (Araslanov and Roth 2020) and PAR (Ru et al. 2022)
are all based on dilated pixel-adaptive convolutions, and our
method outperforms PAMR (Araslanov and Roth 2020) and
PAR (Ru et al. 2022), which validates the effectiveness of

VARM. In addition, Figure 5 shows that our VARM can en-
hance the local consistency of pseudo-labels and make the
segmentation boundaries clearer, which makes the refined
pseudo-labels closer to the ground truth. See supplementary
material for more details for our SCD and VARM.

Conclusion

We address the challenges of WSSS using image-level class
labels in obtaining comprehensive semantic information and
high segmentation accuracy, and propose a simple and novel
Self Correspondence Distillation method (SCD) to refine
CAM without additional labels. Our SCD uses the network’s
own CAM feature correspondence as the distillation target to
enhance the feature learning process of the network. To fur-
ther refine the initial pseudo-labels, we design the Variation-
aware Refine Module (VARM), which enhances the local
consistency of pseudo-labels by perceptual pixel-level varia-
tion. Based on SCD and VARM, an end-to-end Transformer-
based framework (TSCD) for WSSS is provided. Extensive
experiments demonstrate the effectiveness of our method,
achieving the state-of-the-art performance on the PASCAL
VOC 2012 and MS COCO 2014 datasets.
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