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Abstract

Gaze estimator computes the gaze direction based on face im-
ages. Most existing gaze estimation methods perform well
under within-dataset settings, but can not generalize to un-
seen domains. In particular, the ground-truth labels in unseen
domain are often unavailable. In this paper, we propose a new
domain generalization method based on gaze-consistent fea-
tures. Our idea is to consider the gaze-irrelevant factors as
unfavorable interference and disturb the training data against
them, so that the model cannot fit to these gaze-irrelevant
factors, instead, only fits to the gaze-consistent features. To
this end, we first disturb the training data via adversarial at-
tack or data augmentation based on the gaze-irrelevant fac-
tors, i.e., identity, expression, illumination and tone. Then we
extract the gaze-consistent features by aligning the gaze fea-
tures from disturbed data with non-disturbed gaze features.
Experimental results show that our proposed method achieves
state-of-the-art performance on gaze domain generalization
task. Furthermore, our proposed method also improves do-
main adaption performance on gaze estimation. Our work
provides new insight on gaze domain generalization task.

Introduction
Gaze indicates where a person is looking. It has been used
in a variety of applications, such as human-computer inter-
action (Katsini et al. 2020; Wang et al. 2015), virtual re-
ality (Wang, Zhao, and Lu 2022; Zhang, Wang, and Shi
2021), and saliency prediction (Xu, Sugano, and Bulling
2016). Gaze estimation techniques compute the gaze direc-
tion, which can be roughly categorized into the model-based
approaches and the appearance-based approaches. Model-
based approaches usually require dedicated devices, i.e., eye
trackers, while appearance-based approaches only use inex-
pensive webcams and their performance is also relatively
poor (Lu et al. 2011, 2014; Zhang et al. 2017a).

With the advances of machine learning techniques,
appearance-based gaze estimation has achieved signifi-
cant progress (Zhang et al. 2017a; Cheng et al. 2020a).
Appearance-based gaze estimation approaches usually use
hand-crafted gaze features (Lu et al. 2011, 2014) or features
extracted using deep learning models (Zhang et al. 2017a;
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Cheng et al. 2020a) to regress gaze directions. They usually
trained and tested on the same dataset, i.e., the same domain.
However, these algorithms suffer from severe performance
degradation when they are trained on one dataset (source
domain) and tested on another dataset (target domain). Such
problem has been defined as cross-domain gaze estimation
problem (Liu et al. 2021). This limits its applications, since
the background is often changing in real-world settings.

Cross-domain gaze estimation is more challenging, as it
relies on gaze feature extracted from tiny eyeball regions on
the face images. In fact, a number of domain adaption meth-
ods have been proposed for other computer vision tasks, e.g.,
object recognition (Ghifary, Kleijn, and Zhang 2014). For
cross-domain gaze estimation, Liu et al. proposed the first
plug-and-play gaze adaptation framework (PnP-GA), which
is an ensemble of networks that learn collaboratively with
the guidance of outliers (Liu et al. 2021).

At the core of the cross-domain gaze estimation is to bal-
ance the model generalization ability and over-fitting prob-
lem. On the one hand, more diversified samples are favored
so that the trained model is more generalized to different
conditions; on the other hand, more data on the same domain
may lead to over-fitting. Therefore, our goal is to disturb
the data with diverse gaze-irrelevant factors while keeping
the gaze feature consistent. We define several gaze-irrelevant
factors: identity, facial expression, illumination and tone.

In this paper, our motivation is to consider the gaze-
irrelevant features as unfavorable interference and disturb
the training data against them. We argue that by introducing
more diversified training data disturbed by these factors, the
gaze model fails to fit to the gaze-irrelevant factors, rather,
it only fits to the gaze-consistent features. Towards this end,
we first synthesize diversified training data based on gaze-
irrelevant factors using adversarial attack or data augmenta-
tion. Then we learn the gaze-consistent feature by minimiz-
ing the distance between the gaze features from disturbed
data and non-disturbed gaze features. The primary contribu-
tions of this paper are:

• We propose a generalized gaze estimator that learns the
gaze direction from gaze-consistent features for gaze do-
main generalization task. We first disturb the training
data based on gaze-irrelevant factors (identity, facial ex-
pression, illumination and tone), and then extract the
gaze-consistent features to learn the gaze direction.
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• Experimental results show that our proposed method
achieves state-of-the-art performance on gaze domain
generalization task, and is able to indeed confuse gaze-
irrelevant factors. Moreover, our proposed method can
also improve gaze domain adaption performance.

Related Work
Typical Gaze Estimation Typical appearance-based gaze
estimation uses Convolutional Neural Network (CNN) to
regress gaze direction based on face images (Cheng et al.
2021) or eye images (Zhang et al. 2015), which has been first
proposed in (Zhang et al. 2015, 2017b). Following this work,
a number of gaze estimation methods were proposed (Zhang
et al. 2017a; Cheng, Lu, and Zhang 2018; Cheng et al.
2020b; Bao et al. 2021; Park, Spurr, and Hilliges 2018;
Cheng et al. 2020a; Fischer, Chang, and Demiris 2018). For
example, Park et al. developed a pictorial representation for
modelling the pupil center and eyeball center (Park, Spurr,
and Hilliges 2018). Cheng et al. (Cheng, Lu, and Zhang
2018; Cheng et al. 2020b) used a pair of eye images and
exploited the asymmetry property to estimate gaze. How-
ever, the above-mentioned methods only estimate gaze in
a within-dataset setting, they often experience a significant
performance degradation when tested on unseen domain,
i.e., new dataset. The cross-domain gaze estimation task is
still challenging.

Unsupervised Domain Adaption Unsupervised Domain
Adaption (UDA) adapts the model to target domain us-
ing a few unlabeled target domain samples. Kellnhofer et
al. (Kellnhofer et al. 2019) used domain discriminator and
left-right symmetry to adapt gaze estimation model to tar-
get domain. Wang et al. (Wang et al. 2019) proposed a
UDA method on gaze estimation using adversarial learn-
ing and Bayesian inference. Guo et al. (Guo et al. 2020)
introduced a new target domain representation embedding
mechanism with prediction consistency for gaze UDA. Liu
et al. (Liu et al. 2021) used network ensemble with momen-
tum and outlier guidance to achieve gaze UDA. Besides, Bao
et al. (Bao et al. 2022) proposed a new gaze UDA approach
based on rotation consistency. Wang et al. (Wang et al. 2022)
proposed contrastive regression for gaze UDA. Neverthe-
less, all these methods require target domain information,
which is usually difficult to obtain in real-world settings.

Domain Generalization Unlike UDA, Domain General-
ization (DG) forbids access to any target domain information
when training the model on source domain, which is more
difficult. Domain generalization tasks are often tackled by
feature distance minimization (Li et al. 2018), feature dis-
entanglement (Ilse et al. 2020), data generation (Tobin et al.
2017), etc. To the best of our knowledge, PureGaze (Cheng,
Bao, and Lu 2022) is the first and the only domain gener-
alization method developed for gaze estimation. They pro-
posed a gaze feature purification mechanism based on adver-
sarial learning to eliminate gaze-irrelevant factors. Although
PureGaze improved cross-dataset performance, they did not
analyze and explain the reason why these gaze-irrelevant
factors lead to performance degradation.
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Figure 1: Illustration of the gaze domain generalization task.

Domain Generalization for Gaze Estimation
Preliminaries
We first give preliminaries of the gaze estimation and do-
main generalization task. The source domain dataset is de-
fined as Ds =

{
(xs

i ,y
s
i )|

Ns
i=1

}
, where xs

i denotes the i-
th input image in source domain, ys

i is the correspond-
ing gaze label (pitch, yaw), and Ns is the total number of
images. Similarly, the target domain dataset is defined as
Dt =

{
(xt

i,y
t
i)|

Nt
i=1

}
. The gaze estimation method G(·) =

R(F (·)) is usually trained on the source domainDs, where
F represents the feature extractor and R denotes the Multi
Layer Perceptron (MLP) that regresses feature vectors to
gaze directions. Given an input face image x, the model out-
puts the predicted gaze direction ŷ = G(x).

As shown in Fig. 1, the goal of cross-domain gaze estima-
tion task is to make the predictions with the data from the tar-
get domain Dt using the model G trained on the source do-
main Ds. The prediction error is defined as the angular error
between the predicted gaze direction G(x) and the ground
truth gaze label y:

E[G(x),y] =
G(x) · y
∥G(x)∥ · ∥y∥

. (1)

If we know the target domain data {(xt
i,y

t
i)}, we can easily

fine-tune the model G by updating its parameters θ:

θ = argmin
θ

∑
i
E[G(xt

i),y
t
i ]. (2)

However, in practice we may not know the target do-
main in advance. In such cases, we need to optimize θ with-
out using the above minimization and target domain data
{(xt

i,y
t
i)}. This defines the problem of domain generaliza-

tion.

Why Is It Hard?
Based on the above definition, one of the biggest chal-
lenge is that the CNN model is prone to overfitting on the
source domain without known the target domain. As a re-
sult, the model generalizability and performance drop, and
the trained model performs poor on the unseen target do-
main data, as shown in the right part of Fig. 2. To tackle
such a problem, a common approach in computer vision is
to improve the diversity of source domain training dataset.

However, the uniqueness of gaze estimation task makes it
a more challenging task. As shown in Fig. 2, the orientation
of eyeball determines the gaze direction, unfortunately, the
eyeball is only a tiny region on the facial image while other
regions contains a plethora of disturbing factors, e.g., vari-
ous facial expressions and illuminations. Thus, even though
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Figure 2: Illustration of our observation and motivation. We observed the uniqueness of gaze estimation task and domain gap
in gaze estimation. The model generalizability reduces as the extracted features are easily overfitted to gaze-irrelevant factors.

the diversity of gaze is sufficient to train the deep neural
network (e.g., the ETH-XGaze (Zhang et al. 2020) dataset
contains about 757 thousand samples for learning 2 degree-
of-freedom gaze direction), the extracted features are eas-
ily overfitted to gaze-irrelevant factors, which reduces the
model generalizability.

Formally, we denote the gaze feature extracted on source
domain as zs, i.e., zs = F (xs). Based on the above anal-
ysis, zs contains gaze factor (Gs) and gaze-irrelevant fac-
tors (e.g., identity Is, expression Es, illumination Us, and
tone T s as shown in Fig. 2), which can be denoted as
zs ← {Gs, Is, Es,Us, T s, ...}, where← indicates that these
factors are combined in a way that feature computation need.
Similarly, the gaze feature extracted on target domain can be
expressed as zt ← {Gt, It, Et,U t, T t, ...}. Note that we do
not assume that different gaze-irrelevant factors are indepen-
dent.

For xs from the source domain and xt from target do-
main which have similar gaze, the gaze features zs = F (xs)
and zt = F (xt) are similar in gaze factor G but dissim-
ilar in gaze-irrelevant factors like I, E , U , T , etc. When
the gaze estimation model G is trained on source domain
Ds only, the extracted feature zs will be easily overfitted to
gaze-irrelevant factors, such as Is, Es,Us, T s. When tested
G on target domain Dt, we will obtain gaze-irrelevant fac-
tors It, Et,U t, T t that are different to Is, Es,Us, T s. As a
result, the predicted gaze directions ŷt becomes less accu-
rate, which leads to significant performance drop and error
increase in target domain, as shown in the right part of Fig. 2.

Therefore, the following two prerequisites are necessary
to address the above problem:
• Prerequisite 1: try to disturb the information from gaze-

irrelevant factors (I, E ,U , T ) in the dataset so that they
can not be fitted, no matter these gaze-irrelevant factors
are coupled or disentangled.

• Prerequisite 2: make sure that the gaze information G
in the dataset is correct and can be learned, i.e., disturb-
ing gaze-irrelevant features does not affect gaze-relevant
feature in terms of performing gaze estimation task.

Note that these gaze-irrelevant factors are chosen simply
because they are the most obvious factors to distinguish be-
tween different gaze datasets.

Our Idea: Gaze-Irrelevant Feature Disturbation
Following the above two prerequisites, we propose our tech-
nology roadmap.

For Prerequisite 1, we disturb the training data from spe-
cific gaze-irrelevant factors (identity I, expression E , illu-
mination U and tone T ) by employing the adversarial attack
or data augmentation approach to synthesize a pair/group of
data. These synthesized data are conflicting so that they can
not fit to gaze-irrelevant factors. We name this phase as the
Gaze-irrelevant Feature Disturbation Phase (GiFD Phase,
see Fig. 3(I)).

For Prerequisite 2, the above synthesized data are fed into
the gaze model and make sure that the extracted gaze fea-
tures are consistent on gaze factor G. We call this phase
Gaze-consistent Feature Extraction Phase (GcFE Phase, see
Fig. 3(II)).

In this way, we guarantee that the extracted features can fit
to gaze factor G and cannot fit to the gaze-irrelevant factors,
such as I, E , U and T .

Learning from Gaze-Consistent Feature
Gaze & Gaze-Irrelevant Tasks
We use ResNet-18 (He et al. 2016) as the backbone to
construct multiple branches to process gaze factor G and
other gaze-irrelevant factors (I, E or U ). These branches are
used as shown in Fig. 3. All the branches share weights on
layer1, and the subsequent layers are task specific. At in-
ference time, only gaze branch is used for gaze estimation.
Details are described below.

• Gaze (G): The gaze branch regresses the gaze direction.
We use L1 Loss as gaze loss function:

Lgaze = ∥y − ŷ∥1, (3)

where y is the ground truth gaze direction and ŷ is the
estimated gaze direction.

• Identity (I): The identity branch classifies the iden-
tity label using the commonly-used face recognition al-
gorithm CosFace (Wang et al. 2018). Note that ETH-
XGaze (Zhang et al. 2020) provides identity labels.
For Gaze360 (Kellnhofer et al. 2019), we first use
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Figure 3: Illustration of the roadmap. (I) GiFD Phase, (II) GcFE Phase, (III) Inference Procedure.

CosFace (Wang et al. 2018) pretrained on CASIA-
WebFace (Yi et al. 2014) to generate face feature vec-
tors, then use k-means clustering (MacQueen 1967) to
obtain pseudo identity labels. We use Focal Loss (Lin
et al. 2017) as identity loss function:

Lide = FL(yide, ŷide), (4)

where FL denotes the Focal Loss, yide denotes the
ground truth (pseudo label for Gaze360) identity label
and ŷide denotes the estimated identity label.

• Expression (E): The expression branch classifies the ex-
pression label. It consists of a feature extractor and a
MLP (based on CosFace (Wang et al. 2018)), which is
commonly-used in classification tasks (He et al. 2016).
We use 7-class expression classifier pretrained on the
FER2013 dataset (Goodfellow et al. 2013) and VGG-
19 (Simonyan and Zisserman 2015) backbone to obtain
pseudo expression labels. We use Focal Loss (Lin et al.
2017) as expression loss function:

Lexp = FL(yexp, ŷexp), (5)

where yexp is the pseudo expression label and ŷexp is the
estimated expression label.

• Illumination (U ): The illumination branch regresses the
average illumination intensity of one image, which con-
sists of a feature extractor and a MLP. We use the Value
channel in the HSV (Hue, Saturation and Value) color
space to approximate the illumination intensity (Hu,
Song, and Zhi 2010). We use L1 Loss as illumination
loss function:

Lillu = ∥yillu − ŷillu∥1, (6)

where yillu is the ground truth illumination intensity
(Value channel in HSV color space) and ŷillu is esti-
mated illumination intensity.

• Tone (T ): Tone indicates the level of image saturation.
Note that here we do not use one branch to estimate tone,
instead, we employ data augmentation to obtain tone-
disturbed images. Although adversarial attack does work
for tone, we found it simpler and more efficient to use
data augmentation to deal with it.

GiFD Phase: Gaze-Irrelevant Feature Disturbation
In this part, we will discuss the GiFD Phase (Fig. 3(I)) in
detail, which addresses the Prerequisite 1.

This phase aims to disturb the training data from specific
gaze-irrelevant factors, such as Identity (I), Expression (E),

Illumination (U ) and Tone (T ), so that they can not be fitted.
To achieve this, we use adversarial attack or data augmen-
tation to disturb the training data x according to the gaze-
irrelevant factors.

For Identity (I), Expression (E) and Illumination (U ), we
use adversarial attack to generate the disturbed data. With-
out loss of generality, we take Identity (I) for example. We
use the Fast Gradient Sign Method (FGSM) (Goodfellow,
Shlens, and Szegedy 2014), a fast and commonly-used ad-
versarial attack method, to generate disturbed data:

x̃← x− ϵ · sign(
∂Lide

∂x
), (7)

where x denotes original input image and x̃ denotes adver-
sarial sample. Now x̃ is the desired data after disturbation,
which can not fit to Identity (I) factor. We empirically set
ϵ = 0.1 in our experiments. Tab. 2 shows the performance
of different ϵ. For Expression (E) and Illumination (U ), we
use the same strategy to generate disturbed data which can
not fit to Expression (E) factor and Illumination (U ) factor,
respectively.

As shown in Fig. 4(b), the adversarial samples on one
specific branch decreases the performance of gaze-irrelevant
factor estimation. It can be observed that the corresponding
gaze-irrelevant factors have been disturbed.

For Tone (T ), we use ColorJitter in PyTorch as data
augmentation strategy to generate x̃. The disturbed data of
Tone (T ) contains different combinations of tones. They
teach the model to learn face images with different combi-
nations of tones with the same gaze label.

Note that we generate the disturbed data for each factor
independently.

GcFE Phase: Gaze-Consistent Feature Extraction
In this part, we will describe the GcFE Phase (Fig. 3(II))
details, which solves Prerequisite 2.

The goal of this phase is to guarantee the extracted fea-
tures z can fit to gaze factor G and cannot fit to the gaze-
irrelevant factors, such as I, E , U and T , then to make sure
the gaze information G in the dataset is correct and can be
learned. To obtain this goal, we feed disturbed data x̃ and
original data x into the gaze model to obtain gaze feature
z̃ and gaze feature z, respectively. Then we minimize the
distance between these two features to make sure the gaze
estimation model G can extract gaze-consistent features.

We generate z̃ and z by feeding x̃ and x into the gaze
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estimation branch F respectively:

z̃← F (x̃), z← F (x). (8)

To force the gaze estimation model G to extract gaze-
consistent features, we minimize the distance between the
z̃ and z to align these two features. Now we need to find a
proper distance metric. In domain adaption tasks, Maximum
Mean Discrepancy (MMD) (Ghifary, Kleijn, and Zhang
2014) is commonly used to measure the distance between
the features in source domain and target domain. Moreover,
we compare different distance metrics to align features. As
shown in Tab. 2, LMMD achieves the best performance. So
we use MMD function LMMD described above as feature
alignment distance function:

Lali = LMMD(z, z̃). (9)

Note that if we use more than one factors to generate z̃,
we will use the mean of such function of every factor for
training. For example, if we need to generate z̃ on Iden-
tity and Expression, let z̃ide be the z̃ of Identity and z̃exp
be the z̃ of Expression, then Lali = (LMMD(z, z̃ide) +
LMMD(z, z̃exp))/2.

Total Loss Function
The total loss function is:

L = Lgaze + λideLide + λexpLexp + λilluLillu + λaliLali,
(10)

where Lgaze,Lide,Lexp,Lillu and Lali denote the gaze,
identity, expression and illumination branch loss function,
and the feature alignment distance function, respectively.
λide, λexp, λillu, λali are hyper-parameters. We empirically
set λide = λexp = λillu = λali = 1.0.

Training and Inference
Algorithm 1 describes the training procedure of our pro-

posed method. During training, only source domain dataset
Ds is needed. For each batch of data, we first generate adver-
sarial examples or augmented examples (GiFD Phase), then
optimize the loss function (GcFE Phase).

In inference phase (see Fig.3(III)), we only use gaze
branch (G) with target domain dataset Dt, and compute
mean angular error between predicted gaze directions and
ground-truth gaze directions (Eq. 1) to evaluate domain gen-
eralization performance.

Experimental Results
Preparation
Datasets In this paper, we use 4 commonly-used gaze
datasets, i.e., ETH-XGaze (DE) (Zhang et al. 2020),
Gaze360 (DG) (Kellnhofer et al. 2019), MPIIGaze
(DM ) (Zhang et al. 2017a) and EyeDiap (DD) (Funes Mora,
Monay, and Odobez 2014).

Since ETH-XGaze and Gaze360 have larger gaze distri-
butions than MPIIGaze and EyeDiap (Liu et al. 2021), we
use ETH-XGaze (DE) and Gaze360 (DG) datasets for train-
ing, and use MPIIGaze (DM ) and EyeDiap (DD) for evalua-
tion. As a result, we perform 4 domain generalization tasks,
i.e., DE → DM , DE → DD, DG → DM and DG → DD.

Algorithm 1: Training Procedure of Our Proposed Method
Input: Training Dataset on Source Domain Ds

Parameter: λide, λexp, λillu, λali, ϵ
Output: Gθ(·)

1: for i← 1 to Ns do
2: Randomly sample (xs,ys)← Ds.
3: # GiFD Phase
4: Calculate Lide with Eq. (4).
5: Generate z̃ide on Identity with Eq. (7) and (8).
6: Calculate Lexp with Eq. (5).
7: Generate z̃exp on Expression with Eq. (7) and (8).
8: Calculate Lillu with Eq. (6).
9: Generate z̃illu on Illumination with Eq. (7) and (8).

10: Generate z̃tun on Tone using ColorJitter.
11: # GcFE Phase
12: Calculate Lgaze on gaze branch with Eq. (3).
13: Calculate Lide, Lexp, Lillu on gaze-irrelevant factor

branches with Eq. (4), (5) and (6).
14: Lali ← z, z̃ide, z̃exp, z̃illu, z̃tun with Eq. (9).
15: Train Gθ(·) and gaze-irrelevant factor branches with

Eq. (10).
16: end for
17: return Gθ(·).

ETH-XGaze contains 80 subjects, and we use data from
75 subjects for training (713646 images) and the rest 5 sub-
jects data for validation. For Gaze360, we only use the front-
side face images for training, the total number is 84902.
For these two datasets, we use the pre-processed data pro-
vided by the authors. For MPIIGaze, we follow the method
in (Sugano, Matsushita, and Sato 2014) to rectify the dataset
and use the full dataset with 45000 images for evaluation.
For EyeDiap, we follow (Zhang et al. 2017a) to sample the
images for every 15 frames in the VGA videos of screen tar-
gets session. The processed dataset contains 16674 images.

Comparison Methods For Baseline, we use the same
model as our proposed method, and only train the gaze es-
timation branch using L1 loss between the predicted gaze
direction and its ground truth. For typical gaze estimation
methods, we use RT-Gene (Fischer, Chang, and Demiris
2018), Dilated-Net (Chen and Shi 2018), Full-Face (Zhang
et al. 2017a) and CA-Net (Cheng et al. 2020a) for com-
parison and use the results reported in (Cheng, Bao, and
Lu 2022) for reference. For domain generalization meth-
ods, to the best of our knowledge, PureGaze (Cheng, Bao,
and Lu 2022) is the first and the only domain generaliza-
tion method on gaze estimation. Therefore, we choose the
PureGaze for comparison and use the results reported by
the author. For reference, we also use SOTA unsupervised
domain adaption methods, including ADDA (Tzeng et al.
2017), DAGEN (Guo et al. 2020), GazeAdv (Wang et al.
2019), Gaze360 (Kellnhofer et al. 2019), PnP-GA (Liu et al.
2021), RUDA (Bao et al. 2022) and CRGA (Wang et al.
2022) for comparison. Note that these methods usually re-
quire a small amount of unlabeled target domain data.
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Factor DE

→ DM

DE

→ DD

DG

→ DM

DG

→ DD
Avg

Baseline 8.80 8.52 8.18 9.00 8.63

Identity (I) 7.92 7.49 8.10 9.73 8.31
Expression (E) 6.85 7.14 7.81 8.79 7.65
Illumination (U ) 7.29 6.52 7.73 8.53 7.52
Tone (T ) 7.62 8.61 7.68 9.10 8.25

I + E 7.84 7.42 8.62 9.07 8.24
I + U 7.50 6.91 8.35 8.64 7.85
I + T 7.42 6.97 7.76 7.76 7.48
E + U 7.62 7.37 8.47 9.01 8.12
E + T 6.85 7.38 7.60 9.34 7.67
U + T 6.89 8.06 7.44 8.93 7.83

I + E + U 6.89 7.78 7.82 8.52 7.75
I + E + T 7.48 7.17 7.59 8.59 7.71
I + U + T 7.47 7.31 7.82 8.19 7.70
E + U + T 7.01 7.34 7.56 8.91 7.71

I + E + U + T 6.50 7.44 7.55 9.03 7.63

Table 1: Results of four domain generalization tasks when
using different combinations of gaze-irrelevant factors to
generate disturbed data. Angular error in degrees are shown.
Bold and underline denote the best and the second best re-
sult among each column, respectively.

Implementation Details We use a single NVIDIA GPU to
run the experiments. ResNet-18 (He et al. 2016) is used as
backbone for all the experiments. All the images are resized
to 224× 224 and normalized to [0, 1]. The batch size is 128,
and we train the model for 10 epochs for ETH-XGaze and
100 epochs for Gaze360. We use Adam optimizer with a
learning rate of 10−4, and set β1 = 0.9, β2 = 0.95.

Gaze-Irrelevant Feature Disturbation Results
In this part, we will try different combinations of gaze-
irrelevant factors to generate disturbed data, then evaluate
the performance on four domain generalization tasks, in or-
der to know which combination is the most effective.

Tab. 1 shows the results. It can be seen that in most cases,
handling different combinations of gaze-irrelevant factors
improves domain generalization performance over Baseline.
Disturbing Identity and Tone together (I + T ) achieves the
best average domain generalization performance on the four
tasks, and disturbing Illumination only (I) results in the sec-
ond best average performance. Disturbing all four factors
(I + E + U + T ) achieves the third best performance. and
we use this combination for latter discussion.

To obtain the optimal model parameters, we compare
model performances of under different ϵ and distance met-
rics. Tab. 2 shows the results. We observed that ϵ = 0.1
achieves the best performance on DE → DM , DE → DD

and DG → DD tasks, and achieves a close-to-best perfor-
mance on the DG → DM task. For distance metrics, we
compare four different distance metrics, i.e., L1, L2, Jensen-
Shannon (JS) divergence (LJS) and MMD (LMMD). It can be
observed that MMD (LMMD) achieves the best performance
on DE → DM and DG → DM tasks, and achieves the best
average performance on four tasks. Thus, we set the inten-

DE

→ DM

DE

→ DD

DG

→ DM

DG

→ DD
Avg

ϵ = 0.01 7.11 7.85 7.64 9.15 7.94
ϵ = 0.05 6.87 7.89 7.50 9.45 7.93
ϵ = 0.1 6.50 7.44 7.55 9.03 7.63
ϵ = 0.2 7.02 8.16 11.55 12.17 9.73

L1 7.29 6.89 8.00 9.56 7.94
L2 7.23 7.70 7.66 8.35 7.74
LJS 6.95 7.82 8.85 8.28 7.98
LMMD 6.50 7.44 7.55 9.03 7.63

w/o Lali 7.48 8.15 7.92 9.66 8.30
w/ Lali 6.50 7.44 7.55 9.03 7.63

Table 2: Cross-dataset validation results of different adver-
sarial noise intensity ϵ, different distance metrics of feature
and w/ or w/o Lali. Results show the angular error in de-
grees. “w/o Lali” indicates directly using the disturbed data
to train the model, without feature alignment terms.
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Figure 4: (a) Samples before/after adversarial attack. (b) Ad-
versarial attack results of different gaze-irrelevant factors.

sity of adversarial perturbation ϵ = 0.1, and choose MMD
as the distance metric.

Moreover, to further show the necessity of Gaze-
consistent Feature Extraction Phase, i.e., feature alignment
terms Lali, we remove the feature alignment terms Lali and
train the model using disturbed data and original data di-
rectly. Results are shown in the last row in Tab. 2, which
indicate the performance drop when removing the feature
alignment terms and show the necessity of Gaze-consistent
Feature Extraction Phase.

Furthermore, our proposed method use adversarial attack
to generate disturbed data on Identity, Expression and Il-
lumination. We randomly choose 10000 samples from the
training set of DE , called Dadv and perform adversarial
attack on the branch of one of these factors. For Identity
and Expression, we evaluate the classification accuracy (the
higher the better) before and after adversarial attack, respec-
tively. For Illumination, we evaluate L1 distance (the lower
the better) between ỹillu and yillu on Dadv before and af-
ter adversarial attack. Samples before and after adversarial
attack are shown in Fig. 4(a). Results in Fig. 4(b) show that
adversarial attack is effective to lower the performance on
specific tasks of gaze-irrelevant factors, and it has the poten-
tial to generate the disturbed data that can not fit to gaze-
irrelevant factors.
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Figure 5: Fine-tuning with 100 labeled samples target do-
main using Baseline and Ours. Dashed line indicates the best
results, which are all achieved by our proposed method.

Comparison with SOTA Methods
In this part, we first compare our proposed method with ex-
isting domain generalization (DG) methods and typical gaze
estimation methods to evaluate the effectiveness of our pro-
posed method on domain generalization task. Note that this
task forbids to use any target domain information. Results
are shown in the second row of Tab. 3. It can be observed
that our proposed method (I + E + U + C) surpasses all the
SOTA methods in domain generalization task. For example,
our method outperforms the Baseline and PureGaze by 1°
and 0.66° in average, respectively, whose performance im-
provement is significant. Meanwhile, our proposed method
surpasses the Baseline on three domain generalization tasks,
and achieves similar performance for DG → DD. These re-
sults indicate the effectiveness of our proposed method on
domain generalization task.

In addition, we compare our proposed method with unsu-
pervised domain adaption (UDA) tasks on gaze estimation,
as shown in the third row of Tab. 3. Note that unsupervised
domain adaption methods require a small number of unla-
beled target domain samples. It can be seen that our pro-
posed domain generalization method with no access to tar-
get domain information can even surpass most of unsuper-
vised domain adaption methods on task DE → DD, which
demonstrates the strength of our proposed method as it does
not need any target domain information.

To further demonstrate the effectiveness of the proposed
framework, we fine-tune the baseline model and our pro-
posed model, i.e., further train the model trained on source
domain, on 100 randomly chosen target domain samples
with labels for 10 epochs, results on supervised domain
adaption task are shown in the last row of Tab. 3. These re-
sults show that our proposed method always achieves better
results after fine-tuning compared with fine-tuned baseline.
Furthermore, we show results of each epoch in Fig. 5 for task
DE → DM andDE → DD. It can be observed that for most
of time, the fine-tuned proposed method surpasses the fine-
tuned baseline. This result further proves that the proposed
method is easier to fine-tune on the target domain.

Analysis of Gaze-Consistent Feature Extraction
We further analyze the extraction of gaze-consistent fea-
ture. Gaze-consistent feature is extracted from original in-
put images x and is expected to be more correlated to gaze
and less correlated to gaze-irrelevant factors. To test this
hypothesis, we take DE → DM task as an example, and

Task Methods |Dt| DE

→ DM

DE

→ DD

DG

→ DM

DG

→ DD

DG

Baseline 0 8.80 8.52 8.18 9.00
Full-Face 0 12.35 30.15 11.13 14.42
RT-Gene 0 - - 21.81 38.60

Dilated-Net 0 - - 18.45 23.88
CA-Net 0 - - 27.13 31.41

PureGaze 0 7.08 7.48 9.28 9.32
Ours 0 6.50 7.44 7.55 9.03

UDA

ADDA 500 5.77 11.12 7.18 12.56
GazeAdv 100 7.26 8.37 7.88 9.81
Gaze360 100 6.23 7.80 7.00 8.77
DAGEN 500 5.68 7.92 8.02 11.08
PnP-GA 10 5.53 5.87 6.18 7.92
RUDA 100 5.70 7.52 6.20 7.02
CRGA > 0 5.48 5.66 5.89 6.49

SDA Baseline∗ 100 4.95 5.55 5.41 5.71
Ours∗ 100 4.76 5.43 5.34 5.66

Table 3: Results of SOTA methods. Angular error in degrees
are shown. Bold denotes the best result among each column
on one specific task. * denotes the model is fine-tuned using
100 randomly-chosen labeled target domain samples.

(a) Baseline: DE → DM (b) Ours: DE → DM

Figure 6: t-SNE visualization results of gaze feature. Note
that similar colors represent similar gaze directions.

use t-SNE (Van der Maaten and Hinton 2008) to visualize
gaze feature vectors extracted by Baseline and our proposed
method. Fig. 6 shows the visualization results, where simi-
lar colors represents similar gaze directions. We observe that
the gaze feature extracted by the Baseline is irrelevant to
gaze, as features of similar gaze directions are far apart (see
Fig. 6(a)). Interestingly, the gaze feature extracted by our
proposed method is highly correlated to gaze, as features of
similar gaze directions are close (see Fig. 6(b)). From these
experimental results, it can be concluded that our proposed
method is able to extract gaze-consistent feature.

Conclusion
In this paper, we propose a novel gaze domain generalization
method based on gaze-consistent features. We specifically
disturb training data against gaze-irrelevant factors using ad-
versarial attack (for Identity, Expression and Illumination)
or data augmentation (for Tone), then align the gaze fea-
tures from disturbed data with non-disturbed gaze features
using MMD. Our proposed method achieves state-of-the-art
performance on domain generalization task. We find that all
the proposed gaze-irrelevant factors can be disturbed and the
gaze features extracted by our method are more correlated to
gaze, which improves the explainability of our approach.
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