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Abstract

This paper proposes an unsupervised multi-exposure image
fusion (MEF) method via contrastive learning, termed as
MEF-CL. It breaks exposure limits and performance bottle-
neck faced by existing methods. MEF-CL firstly designs sim-
ilarity constraints to preserve contents in source images. It
eliminates the need for ground truth (actually not exist and
created artificially) and thus avoids negative impacts of in-
appropriate ground truth on performance and generalization.
Moreover, we explore a latent feature space and apply con-
trastive learning in this space to guide fused image to ap-
proximate normal-light samples and stay away from inappro-
priately exposed ones. In this way, characteristics of fused
images (e.g., illumination, colors) can be further improved
without being subject to source images. Therefore, MEF-
CL is applicable to image pairs of any multiple exposures
rather than a pair of under-exposed and over-exposed images
mandated by existing methods. By alleviating dependence on
source images, MEF-CL shows better generalization for vari-
ous scenes. Consequently, our results exhibit appropriate illu-
mination, detailed textures, and saturated colors. Qualitative,
quantitative, and ablation experiments validate the superiority
and generalization of MEF-CL. Our code is publicly available
at https://github.com/hanna-xu/MEF-CL.

Introduction
The dynamic range of a natural scene is usually much
larger than that of a digital camera (Kou et al. 2017). The
camera can only capture scenes within a limited dynamic
range, resulting in unsatisfactory image illumination, con-
tent, and other characteristics. As shown in the source im-
ages in Fig. 1, it is difficult for a single image to describe all
the scene contents. These improperly exposed images can
be enhanced by single-image enhancement methods. How-
ever, under-exposed regions suffer from not only poor vi-
sualization but also low signal-to-noise ratio (SNR). Be-
sides, the missing contents in over-exposed regions cannot
be recovered by correction. Thus, the single-image based
enhancement still shows limited performances. By compar-
ison, multi-exposure image fusion (MEF) can merge the in-
formation in multi-exposure images into a fused image. The
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Figure 1: Example of single-image enhancement by single-
image enhancement method (Afifi et al. 2021) and the pro-
posed multi-exposure image fusion method. By integrating
more information, the fusion result shows better scene de-
scription than the single-image enhancement result.

fused image preserves the details and colors of source im-
ages and exhibits higher dynamic range and better scene de-
scription. Thus, MEF has been widely used in many fields,
such as industrial welding, remote sensing, medical imag-
ing, unmanned driving and other fields (Xing et al. 2018).

In the past few decades, a variety of MEF algorithms have
been proposed, which can be divided into traditional and
deep learning-based methods. The traditional methods use
the relevant digital transformation to analyze and design fu-
sion rules in the spatial or transformation domain. However,
these methods extract features manually and thus show lim-
ited generality to complex scenes and various illumination
environments. Moreover, considering the fusion feasibility,
they forcibly use the same transformation for images with
different exposures without considering differences, result-
ing in limited expression ability of extracted features.

Recently, deep learning has driven the development of
image fusion. The deep learning-based methods can rely
on distinctive network branches to achieve differentiated
and targeted feature extraction. Moreover, based on deep
learning, the methods can also learn adaptive feature fusion
strategies (Xu, Zhang, and Ma 2021). These methods can
be divided into supervised and unsupervised methods. Su-
pervised methods rely on ground truth (GT) for supervision,
while GT in MEF does not actually exist and is created ar-
tificially, which maybe inaccurate and unrealistic. The un-
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supervised methods usually depend on some image char-
acteristics to design constraints and fusion rules. Thus, the
characteristics of the fused image have strong correlation
with source images, resulting in performance bottlenecks.
For this reason, existing methods forcibly require a pair of
over-exposed and under-exposed images for fusion.

To solve these issues, we propose a novel end-to-end
unsupervised MEF model based on contrastive learning,
named as MEF-CL. The proposed method has three ad-
vantages: i) As an unsupervised method, MEF-CL does
not require pseudo (artificially created) GT for supervision
and thus can avoid the remaining inappropriate under-/over-
exposed regions in fusion results; ii) Compared with existing
unsupervised methods, the proposed method can break ex-
posure limits and then broaden its application. Specifically,
unlike existing methods only applicable to a pair of under-
exposed and over-exposed images to generate a properly ex-
posed fused image, MEF-CL can also fuse two over-exposed
images or two under-exposed images. As shown in Fig. 2,
when fusing a pair of over-exposed or under-exposed im-
ages, the fused image of the existing MEF method exhibits
the illumination between those of two source images. In
other words, the fused image is still over-exposed or under-
exposed. By comparison, in both cases, our fused images in
Fig. 2 show significantly appropriate and satisfactory illumi-
nation and scenes; iii) When focusing on the common multi-
exposure image fusion (fusing a pair of over-exposed and
under-exposed images), our fused image also shows clear
details and advantageous illumination.

These advantages benefit from the framework of MEF-
CL. We firstly design a fusion network and similarity con-
straint to generate the fused image, which preserves scene
contents of source images. Then, we apply contrastive learn-
ing to adaptively adjust the illumination and other apparent
characteristics of the fused image for better performance.
Specifically, a network maps images into a latent feature
space, where we design a contrastive learning block. This
block uses the contrastive loss guide fused images to ap-
proach the characteristics of normal-light images and stay
away from those of improperly exposed images. The contri-
butions are summarized as the following three aspects:

• It is the first time that contrastive learning is employed to
multi-exposure image fusion. We apply contrastive learn-
ing to adaptively adjust the characteristics of fused im-
ages. In this way, the characteristics of fused images are
guided to approach those of normal-light images for bet-
ter performance, such as richer texture details, superior
illumination, brighter colors, etc.

• Compared with existing unsupervised MEF methods, our
method breaks the exposure limit and thus broadens the
application. It can fuse any two different-exposure im-
ages rather than being limited to an over-exposed image
and an under-exposed image in existing MEF methods.

• It is a novel end-to-end unsupervised MEF network.
It mitigates the stumbling block caused by the lack of
ground truth. Compared with supervised MEF methods
taking pseudo ground truth for supervision, our fusion re-
sults are not restricted by the inappropriate influence of

Figure 2: Comparison of fusion performances for a pair of
over-exposed images, a pair of under-exposed images, and
the common over-exposed and under-exposed images (state-
of-the-art competitor: U2Fusion (Xu et al. 2022)).

pseudo ground truth. Thus, the proposed method shows
better generalization for various scenes.

Related Work
Multi-exposure Image Fusion. i) Traditional methods.
They mainly include pixel-based, patch-based and sparse
representation-based methods. Mertens (Mertens, Kautz,
and Van Reeth 2009) built a pyramid and set the weight
distribution by measuring the quality evaluation methods
of contrast, saturation and exposure per pixel. The patch-
based method takes full account of the relationship between
pixels and balances the illumination change in the neigh-
borhood. Sparse representation has been widely used be-
cause of its clear components and texture details and no ar-
tifacts (Wang, Liu, and He 2014; Sakai et al. 2015). Almost
all these methods manually design features, but the gen-
erality is limited for complex scenes. Moreover, to ensure
the feasibility of subsequent feature fusion, traditional meth-
ods are forced to use the same transformation for different
source images, without considering their feature differences,
which may lead to unsatisfactory feature expression abil-
ity. ii) Deep learning-based methods. These methods have
made great achievements in performance and visual effect
recently. Prabhakar et al. (Ram Prabhakar, Sai Srikar, and
Venkatesh Babu 2017) introduced deep learning into the
MEF task for the first time. This method uses MEF-SSIM
as the training loss function and constructs a new CNN ar-
chitecture to realize unsupervised learning. Xu et al. (Xu,
Ma, and Zhang 2020) applied the generative adversarial net-
works (GAN) to MEF for the first time. They introduced a
self attention mechanism into the proposed architecture to
further correct artifacts according to the fusion results.

The above deep learning-based methods can be di-
vided into supervised and unsupervised methods. Super-
vised learning exhibits higher model fitting accuracy. How-
ever, the key factor that limits its performance is the lack of
GT. At present, the GT is pseudo which is actually selected
from the results of existing 13 representative methods. The
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Figure 3: Overall framework of the proposed unsupervised multi-exposure image fusion network based on contrastive learning.

performance of supervised methods is restricted by the ex-
isting methods. In addition, since it is not taken directly by
the HDR camera, the artifacts in the pseudo GT will also
directly affect the final fusion result.

The unsupervised learning is based on gradients, weights,
or other characteristics to maintain similarity between fusion
result and source images. For example, PMGI (Zhang et al.
2020a) and SDNet (Zhang and Ma 2021) use gradient and
intensity. U2Fusion (Xu et al. 2022) uses gradient of deep
features. However, the strong correlation between the fused
image and source images results in performance bottlenecks
and limited dynamic range. Moreover, they set the threshold
of loss functions artificially in advance, restricting the upper
limit of fusion performance in different scenes.

Contrastive Learning. According to whether the data is
labeled or not, it can be divided into supervised and un-
supervised learning. Unsupervised learning is mainly di-
vided into generative learning and contrastive learning. Con-
trastive learning focuses on learning common representa-
tions of similar instances and distinguishing differences be-
tween dissimilar instances. The Moco method (He et al.
2020) has achieved good results by increasing the propor-
tion of negative samples. Chen et al. (Chen et al. 2020) pro-
posed the SimCLR method to obtain two transformed im-
ages belonging to the same image by randomly transforming
the input image. The two transformed images have the same
high-level semantic information. Therefore, by maximizing
the similarity of the two modal data, contrastive learning has
achieved remarkable results. Therefore, contrastive learning
has great potential in the unsupervised field. Through train-
ing, the network can push the anchor close to the positive
sample and away from the negative sample in the deep fea-
ture space. In MEF, we aim to make the fused image close
to normal-light images and away from extreme exposure im-
ages to achieve better fusion performance.

Proposed Method
Problem Formulation
This paper studies the unsupervised MEF method and pro-
poses an unsupervised MEF network breaking exposure lim-
its via contrastive learning. Taking two source images I1 and
I2 with different exposures as inputs, the network aims to
learn the mapping function F corresponding to the fusion
network. The fusion network is expected to generate a fused

image If with rich details and appropriate illumination and
colors. The overall process is defined as follows:

If = F (I1, I2, θ) , (1)

where θ represents the parameters in the fusion network.
To realize F (·), the main framework is shown in Fig. 3. It

mainly consists of a fusion network and a contrastive learn-
ing block. The fusion network takes source images as input,
extracts features from source images, fuses the extracted fea-
tures and finally maps the fused features back to the image
domain to generate the fused image. Following this process,
it is possible to adjust other apparent characteristics of the
fused image while preserving the contents of source images.

To preserve the contents of source images into the fused
image, we define a loss function to optimize the fusion net-
work which constrains the similarity between the fused im-
age and source images. The self-supervised loss function re-
tains information from both source images for more detailed
scene descriptions and thus does not require ground truth
for guidance. However, the similarity constraint alone will
result in the high correlation between the fused image and
source images and place an upper limit on the fused image.
For this reason, the fusion results of existing methods are
subject to source images, making them only applicable to a
pair of under-exposed and over-exposed images.

Therefore, on the basis of content preservation, we in-
troduce contrastive learning into our method by designing
the subsequent contrastive learning block for further opti-
mization. In our method, taking any two source images with
different exposures, we expect to produce a moderately ex-
posed fused image similar to normal-light images. As there
is no ground truth for supervision, it is impossible to per-
form pixel-level similarity constraint. Alternatively, we map
multi-exposure images into some latent feature space. In this
space, the fused image is expected to be close to normal-
light images of other scenes to exhibit some common char-
acteristics of normal-light images, such as appropriate illu-
mination, saturate colors, abundant details, and some other
apparent characteristics. With the features of normal-light
images of other scenes as positive samples for guidance, the
features of fused image can get rid of the dependence on
source images and be pulled to normal exposure and colors.
Moreover, the source images are improperly exposed im-
ages. Their features can be additionally set as negative sam-
ples for contrastive learning. The features of the fused image
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Figure 4: Extracted shallow-level and deep-level features.

should be far apart from those of under-/over-exposed im-
ages. Then, the fused image can be further pushed to normal
exposure and colors. To realize it, we design a contrastive
loss function to guide the process in the feature space.

For the latent feature space, we expect the extracted fea-
tures to be a comprehensive representation of images. We
select the VGG-16 network (Simonyan and Zisserman 2014)
pre-trained on large-scale natural images to map source im-
ages into the feature space. As shown in Fig. 4, VGG-16 can
extract a variety of features from the image from shallow
to deep. The information in different levels represents vari-
ous characteristics. For example, shallow-level features con-
tain characteristics such as textures and shape details; while
deep-level features characterize the overall style of the im-
age, such as the overall illumination, color saturation, etc. In
this work, we select both shallow-level and deep-level fea-
tures as the feature space for contrastive learning.

Loss Function
To preserve the scene contents in source images, we imple-
ment the similarity constraint from two aspects: intensity
distribution and structural similarity. Thus, the loss function
of the proposed method consists of three items, including the
mean square error (MSE) loss (LMSE), the structural sim-
ilarity loss (LSSIM ) and the contrastive loss (LInfoNCE).
The general loss function is defined as follows:

L = LMSE + λ1LSSIM + λ2LInfoNCE , (2)

where λ1, λ2 are hyper-parameters to control the trade-off.

Mean Square Error Loss The mean square error loss
LMSE is used to constrain the intensity distribution differ-
ences of images at the pixel level. The calculation formula
is defined with L2 loss:

LMSE = 1
2 ‖If − I1‖2 +

1
2 ‖If − I2‖2 . (3)

Structural Similarity Loss The structural similarity met-
ric (SSIM) models distortion according to the similarity in
light, contrast and structural information. We use the struc-
tural similarity loss LSSIM to constrain the fused image in
terms of structure information so that the fused image can
fully learn the structure information of source images. The
calculation formula is as follows:

LSSIM = 1− SSIM(If ,I1)+SSIM(If ,I2)
2 . (4)

Contrastive Loss LInfoNCE (Hjelm et al. 2018; Hu et al.
2021) represents the contrastive loss. NCE stands for noise
contrastive estimation, which is widely used in contrastive
learning networks. Contrastive learning is to make similar
samples closer and push different samples away. One way to

achieve this is to use similarity metric to measure the simi-
larity between the features of two samples. In this paper, we
use the mean of pixel level cosine similarity as the similarity
between feature maps. With the feature maps fA and fB of
size H ×W × C, the definition of their similarity is:

S
(
fA, fB

)
= 1

HW

∑H
h=1

∑W
w=1

fA
hwf

B
hw

‖fA
hw‖‖fB

hw‖
. (5)

Most contrastive learning focuses on comparing features
with noise contrastive estimation (NCE) (Gutmann and
Hyvärinen 2010) function. NCE performs nonlinear logistic
regression to distinguish between observation data and some
artificially generated noise. This function is defined as:

LNCE = − log
exp(S(q,k+)/τ)

exp(S(q,k+)/τ)+exp(S(q,k−)/τ) , (6)

where S(·) represents the cosine similarity between feature
maps as mentioned above. τ represents the temperature su-
per parameter, k+, k− and q represent the characteristics of
positive, negative and anchor samples, respectively.

Moco (He et al. 2020) proved that the employ of more
negative samples can make fuller use of contrastive learn-
ing. Thus, the contrastive loss function LInfoNCE extends
the calculation method from logistic regression to cross en-
tropy by improving the NCE loss function, making full use
of negative samples. For the i-th sample, the calculation for-
mula Li is as follows:

Li = − log
exp(S(fT

i ,f
+
i )/τ)

exp(S(fT
i
,f+

i )/τ)+
∑N

j=1
exp(S(fT

i
,f−

j )/τ)
, (7)

where f+i , f−j and fTi represent the features of positive sam-
ples, negative samples and fused images respectively, andN
represents the number of negative samples. In this work, N
is set to 360. Finally, the total contrastive loss is as follows:

LInfoNCE = 1
N

∑N
i=1 Li. (8)

Network Architecture
Fusion Network We use the fully connected DenseNet to
make full use of the feature information of the source image
to generate the fused image. It solves the problem of tradi-
tional encoder-decoder networks with many parameters, low
feature utilization, and severe information distortion. Thus,
it can avoid the fused image from losing feature information
in source images. The framework adopts DenseNet (Huang
et al. 2017) architecture, as shown in Fig. 3. It consists of
10 layers. The kernel size is 3 × 3 and the stride is 1. The
activation function of the first 9 layers is LeakyReLU with
the slope set to 0.2 and that of the last layer is tanh.

Contrastive Learning Block The contrastive learning
block consists of three main components, including fea-
ture extraction block, attribute block and content block. The
framework is shown in Fig. 3.

Feature Extraction Block. The levels of image features
increase with the network depth. By increasing the layer
numbers of convolutional neural network, we can extract
higher-level and richer image features. Based on it, we use
the pre-trained VGG-16 network (Simonyan and Zisserman
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2014) to extract multi-level image features, as shown in
Fig. 4. The numbers are the sizes of the extracted feature
maps. For an input RGB image I1, we separate it into RGB
channels respectively. Then, we send the channels into the
VGG-16 network and extract the feature maps from them.
The extracted feature maps are concatenated along the chan-
nel dimension as fS and fD.

Attribute Block and Content Block. The deeper the con-
volutional neural network is, the more deep-level features
that people cannot perceive in the image can be extracted. In
Fig. 4, fS belongs to shallow-level feature, which retains a
large number of texture and shape details, while fD mainly
retains deep-level features, such as content or spatial struc-
ture. Therefore, the attribute block uses the shallow-level
features to improve the texture of the fused image, while
the content block uses the deep-level features to improve the
scene content information of the fused image.

In the contrastive learning task, we take the naturally cap-
tured normal-light images as positive samples, and the im-
ages with over-exposed or under-exposed regions as nega-
tive samples. We extract the shallow-level or deep-level fea-
tures of these samples and the fused images. The contrastive
loss function promotes the features of the fused images in
the feature space, making them close to the positive sam-
ples and away from the negative samples and changing the
weight of the fusion network. Finally, the fused image has
rich texture details and visual effects.

Experiment Results and Discussions
Implementation Details
We conduct experiments on the SICE dataset (Cai, Gu,
and Zhang 2018)1 and perform the verification on different
scenes, including indoor and outdoor scenes.We randomly
selected 479 image sequences as the training set. The re-
maining 80 image sequences are as the test set. We select
the brightest and darkest images in each sequence as the
over-exposed and under-exposed negative sample images,
respectively. It can significantly divide the over-exposed,
under-exposed, and normal-light domains in the latent fea-
ture space. In the training phase, all the images are cropped
into patches of size 64 × 64. The hyper-parameters are set
as: λ1 = 10, λ2 = 20, τ = 0.01. The batch size is set to 20,
the training epoch is 2, and the learning rate is 0.0001. We
use the RMSProp optimizer for optimization. The overall
framework is implemented in TensorFlow. The experiments
are performed on an NVIDIA Geforce GTX Titan V GPU.

Performance Evaluation
We use nine state-of-the-art methods for comparison, in-
cluding two traditional methods: GFF (Li, Kang, and Hu
2013), FMMEF (Li et al. 2020), and seven deep learning-
based methods: Deepfuse (Ram Prabhakar, Sai Srikar,
and Venkatesh Babu 2017), MEF-Net (Ma et al. 2019),
IFCNN (Zhang et al. 2020b), MEF-GAN (Xu, Ma, and
Zhang 2020), U2Fusion (Xu et al. 2022), AGAL (Liu
et al. 2022), and TransMEF (Qu et al. 2022). IFCNN and

1https://github.com/csjcai/SICE

MEF-GAN are supervised. MEF-Net, Deepfuse, U2Fusion,
AGAL and TransMEF are unsupervised.

Qualitative Comparison To validate the effectiveness
and generalization of MEF methods, the results on outdoor
and indoor scenes are compared in Figs. 5 and 6, respec-
tively. By comparison, our method shows two advantages.

First, our methods show better generalization for complex
and various scenes. As shown in Figs. 5 and 6, when dealing
with indoor and outdoor scenes, many competitors exhibit
large differences in the fusion performance. For example, in
Fig. 5, AGAL not only recovers the color in the sky, but also
restores the texture details of the house clearly. It reflects
the powerful feature extraction ability and color recovery
ability of its self-attention mechanism. However, in Fig. 6,
when dealing with the indoor scene where the source images
show large exposure differences, AGAL shows obvious tex-
ture and color distortion. Similarly, GFF and MEF-Net show
satisfied performances in the indoor scene, especially shown
in the color card. As shown in Fig. 6, their fused images
show bright colors and high saturation. However, in Fig. 5,
their fused images suffer from serious artifacts and dark re-
gions. By comparison, our MEF-CL shows good fusion per-
formance in both indoor and outdoor scenes. The reason is
that the supervised method essentially forces the fusion re-
sults to be close to the pseudo GT while the pseudo GT may
have color distortion, halo artifacts and other drawbacks.
These drawbacks ultimately limit the fusion performance
and affect the fusion results. In comparison, unsupervised
methods usually use texture or luminance loss to generate
the ideal fused image. The pre-defined loss function places
an upper limit on the image quality of the fused image arti-
ficially. When dealing with complex multi-exposure scenes,
the parameters in the network cannot be flexibly adjusted,
resulting in performance gaps. In our method, we train the
fusion network with a large number of positive and negative
samples. Through contrastive learning, over-exposed, under-
exposed, and normal-light domains can be divided in the la-
tent feature space. It does not need the pseudo GT for super-
vision as supervised methods and is more flexible and accu-
rate than artificial setting as in existing unsupervised meth-
ods. Thus, MEF-CL can achieve superior generalization.

Second, our fusion results show more appropriate illumi-
nation, more detailed textures, and more saturated colors.
On the one hand, as shown in Figs. 5 and 6, the fusion re-
sults of GFF, Deepfuse, IFCNN, MEF-GAN, and U2Fusion
show dark illumination in some regions. The scenes in these
regions suffer from poor visibility due to inappropriate illu-
mination. By comparison, our fusion results show more ap-
propriate illumination for these regions. On the other hand,
as shown in the first example in Fig. 5 and the second ex-
ample in Fig. 6, our fusion results show more detailed and
clearer textures than all the competitors. And the artifacts
can also be alleviated in our results. Moreover, our fusion
results exhibit more saturated colors. As for the traditional
methods, GFF and FMMEF produce serious color distortion
and artifacts in the fusion results. In the deep learning-based
methods, some unsupervised methods still use traditional
methods to fuse the colors of source images. It inevitably
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over-exposed under-exposed GFF FMMEF Deepfuse MEF-Net IFCNN MEF-GAN U2Fusion AGAL TransMEF ours

Figure 5: Qualitative comparison results on outdoor multi-exposure image pairs.

over-exposed under-exposed GFF FMMEF Deepfuse MEF-Net IFCNN MEF-GAN U2Fusion AGAL TransMEF ours

Figure 6: Qualitative comparison results on indoor multi-exposure image pairs.

results in colors with low saturation, represented by Deep-
fuse, IFCNN, U2Fusion, and TransMEF. Compared with all
competitors in general, our results exhibit the superior colors
with the best visual effect.

Quantitative Comparison For objective evaluation, we
take peak signal-to-noise ratio (PSNR), MEF-SSIM (Ma,
Zeng, and Wang 2015), edge intensity (EI) (Rajalingam and
Priya 2018), correlation coefficient (CC) (Shah, Merchant,
and Desai 2013) and DeltaE for evaluation. PSNR repre-
sents the distortion in the fusion process. MEF-SSIM and
CC focus on the structural similarity and linear correlation
between the fused image and source images, respectively. EI
measures the sharpness of edges in the fused image. DeltaE
evaluates the color differences between the fused image and
GT. The quantitative results tested on the test set from SICE
dataset are reported in Tab. 1. Our MEF-CL is superior in
MEF-SSIM, CC and DeltaE. It shows that our fusion results
are closest to source images in structure and correlation with
the minimal color differences. For EI and PSNR, our MEF-
CL achieves the suboptimal performance. It proves that our
algorithm can generate fusion results with richer edge infor-
mation and produce less distortion.

Efficiency Comparison We compare the efficiency on the
120 test image pairs. The runtime is shown in Tab. 1. Tra-
ditional methods are tested on a laptop with 3.2 GHz AMD
Ryzen 7 5800H CPU. Due to the small model size, our MEF-
CL achieves comparable runtime efficiency, only legging be-
hind MEF-Net by a narrow margin.

Validation on Breaking Exposure Limits Due to the
high dynamic range of the real scene, the exposure ratios
between image sequences sometimes varies greatly. In un-
supervised deep learning methods, because they often use
weights or gradients as loss functions to constrain the fu-
sion. The common method is to fuse an over-exposed im-
age with an under-exposed image, which limits the range of

fusion. Through the strong deep-level feature guidance of
contrastive learning, our MEF-CL can enhance the dark ar-
eas in the under-exposed image and correct the bright areas
in the over-exposed image. In other words, we break through
the exposure limitation of unsupervised deep learning meth-
ods. As shown in Fig. 7, our results are more excellent in the
over-exposed image fusion and under-exposed image fusion.

Ablation Study
Ablation Study of Loss Functions In this section, we per-
form the ablation experiment to verify effectiveness of the
contrastive lossLInfoNCE . In addition, to improve the qual-
ity of fused images, we use LMSE and LSSIM for similar-
ity constraints from two aspects, i.e., intensity distribution
and structural similarity. To verify the effectiveness of these
losses, we remove them respectively and retrain the network.
The other settings are the same as those of MEF-CL.

The qualitative results are shown in Fig. 8. By comparing
(e) and (f), it shows that LInfoNCE plays a major role in en-
hancing the details and improving colors. Comparing (c) and
(f) or comparing (d) and (f), it can be seen that the absence of
LMSE results in large differences in the illumination, caus-
ing unreasonable intensity distribution. Without LSSIM , the
image is blurred and lacks texture details. Therefore,LSSIM
and LMSE complement each other. In addition, quantitative
experiments are also conducted. The results are shown in
Tab. 2. It proves the effectiveness of the contrastive loss and
the advantages of contrastive learning.

Ablation Study of Blocks The contrastive learning block
includes three blocks: feature extraction, attribute, and con-
tent. Attribute and content blocks complement each other.
In the above section, by ablating LInfoNCE , we verified the
role of the contrastive learning block in improving the de-
tails and enhancing the colors. To verify the functions of
shallow-level and deep-level features, we perform ablation
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MEF-SSIM CC PSNR EI DeltaE Runtime (second)

GFF 0.826 ± 0.01 0.567 ± 0.04 58.035 ± 0.65 68.535 ± 0.64 17.045 ± 0.74 1.356 ± 0.03
FMMEF 0.897 ± 0.01 0.731 ± 0.03 58.426 ± 0.79 69.042 ± 0.71 19.490 ± 0.46 1.196 ± 0.02
Deepfuse 0.890 ± 0.01 0.944 ± 0.02 58.687 ± 0.71 58.324 ± 0.60 13.790 ± 0.52 0.182 ± 0.01
MEF-Net 0.905 ± 0.01 0.710 ± 0.04 58.166 ± 0.74 74.351 ± 0.69 15.470 ± 0.62 0.023 ± 0.01
IFCNN 0.901 ± 0.01 0.926 ± 0.03 58.414 ± 0.64 98.784 ± 0.75 16.293 ± 0.71 0.038 ± 0.01

MEF-GAN 0.872 ± 0.01 0.928 ± 0.03 58.394 ± 0.66 62.584 ± 0.66 14.467 ± 0.66 1.002 ± 0.03
U2Fusion 0.835 ± 0.01 0.937 ± 0.03 58.586 ± 0.70 75.296 ± 0.64 18.807 ± 0.73 0.951 ± 0.05

AGAL 0.902 ± 0.01 0.933 ± 0.03 58.487 ± 0.67 73.578 ± 0.72 14.900 ± 0.38 0.044 ± 0.01
TransMEF 0.907 ± 0.01 0.937 ± 0.04 58.602 ± 0.75 75.349 ± 0.65 13.922 ± 0.64 0.051 ± 0.02

MEF-CL (ours) 0.911 ± 0.01 0.946 ± 0.03 58.604 ± 0.73 80.131 ± 0.68 13.572 ± 0.42 0.033 ± 0.01

Table 1: Quantitative comparison results of different MEF methods on the SICE dataset (mean and standard deviation of four
metrics are shown; bold: optimal, underline: suboptimal).

Under-exposed image fusion Over-exposed image fusion

under-exposed images Deepfuse MEF-Net U2Fusion ours over-exposed images Deepfuse MEF-Net U2Fusion ours

Figure 7: Fusion results of different MEF methods for fusing two over-exposed images and two under-exposed images.

Figure 8: Ablation study of loss functions.

MEF-SSIM CC PSNR EI

w/o LMSE 0.889 0.920 58.527 76.873
w/o LSSIM 0.907 0.934 58.495 79.845

w/o LInfoNCE 0.875 0.914 58.443 72.966
w/o attribute block 0.876 0.902 58.455 74.465
w/o content block 0.899 0.937 58.583 78.523

MEF-CL 0.911 0.946 58.604 80.131

Table 2: Quantitative comparison of ablation study with
mean and standard deviation (bold: optimal).

experiments on the attribute block and content block, respec-
tively. The qualitative results are shown in Fig. 9. Compar-
ing Figs. 9(c) and (e), when the attribute block is removed,
the fused image becomes blurred and lacks texture details.
Comparing Figs. 9(d) and (e), it can be found that although
the texture details have been improved, local areas suffer
from color distortion. By combining the attribute and con-
tent blocks, the fused image obtained by the complete net-
work (Fig. 9(e)) makes up for the previous defects, with rich
texture details and good visual perception. In addition, we

Figure 9: Ablation study of blocks.

also conduct quantitative experiments and results are shown
in Tab. 2. The method without attribute block ranks the sec-
ond. By combining them, MEF-CL shows the best results
on all the metrics. It shows that the combination of attribute
and content blocks can achieve higher similarity with source
images and exhibit higher contrast.

Conclusion

In this paper, we propose an unsupervised multi-exposure
image fusion network based on contrastive learning, termed
as MEF-CL. In our method, we fully extract the shallow-
level and deep-level features in the source images. Then, the
network uses contrastive learning to guide the fused image to
learn the characteristics of normal-light images, so that the
fused image can independently learn the texture and struc-
tural features in the source image, so as to achieve generality
in different fused scenes. Also because of contrastive learn-
ing, our method can be extended to image pairs of any dif-
ferent exposures. Compared with nine state-of-the-art multi-
exposure image fusion methods, our method can achieve ad-
vanced performance both qualitatively and quantitatively.
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