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Abstract

Automatic segmentation of left ventricular endocardium in
echocardiography videos is critical for assessing various car-
diac functions and improving the diagnosis of cardiac dis-
eases. It is yet a challenging task due to heavy speckle noise,
significant shape variability of cardiac structure, and lim-
ited labeled data. Particularly, the real-time demand in clin-
ical practice makes this task even harder. In this paper, we
propose a novel proxy- and kernel-based semi-supervised
segmentation network (PKEcho-Net) to comprehensively ad-
dress these challenges. We first propose a multi-scale re-
gion proxy (MRP) mechanism to model the region-wise
contexts, in which a learnable region proxy with an arbi-
trary shape is developed in each layer of the encoder, al-
lowing the network to identify homogeneous semantics and
hence alleviate the influence of speckle noise on segmenta-
tion. To sufficiently and efficiently exploit temporal consis-
tency, different from traditional methods which only utilize
the temporal contexts of two neighboring frames via fea-
ture warping or self-attention mechanism, we formulate the
semi-supervised segmentation with a group of learnable ker-
nels, which can naturally and uniformly encode the appear-
ances of left ventricular endocardium, as well as extracting
the inter-frame contexts across the whole video to resist the
fast shape variability of cardiac structures. Extensive exper-
iments have been conducted on two famous public echocar-
diography video datasets, EchoNet-Dynamic and CAMUS.
Our model achieves the best performance-efficiency trade-off
when compared with other state-of-the-art approaches, attain-
ing comparative accuracy with a much faster speed. The code
is available at https://github.com/JingyinLin/PKEcho-Net.

Introduction
Echocardiography has been widely used for cardiac func-
tion assessment and cardiovascular disease (CVD) diagno-
sis (Chen et al. 2020) owing to its advantages of being
real-time, economical, and noninvasive. The assessment and
diagnosis are often based on the interpretation of ejection
fraction (EF) and chamber volume, which depends on the
accurate segmentation of key structures, such as left ven-
tricular endocardium. In clinical practice, even for experi-
enced clinicians, the accurate annotation of key structures in
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Figure 1: Challenges in echocardiography video segmenta-
tion. (a) speckle noise and blurred contours. (b)-(c) the inter-
and intra- sequence shape variabilities of cardiac structures.

end-diastolic (ED) and end-systolic (ES) frames in echocar-
diography videos is time-consuming and limited by inter-
and intra- observer variability (Leclerc et al. 2019). There-
fore, there is a high demand for automatic segmentation ap-
proaches to accurately segment the key structures and esti-
mate the EF from echocardiography videos.

However, it remains a challenging task due to the follow-
ing reasons. First, compared to other commonly used medi-
cal imaging modalities, such as CT scans and magnetic res-
onance imaging (MRI), ultrasound (US) images are full of
speckle noise, which makes the boundaries of the targeting
objects difficult to be determined (Figure 1 (a)). Second, in
inter- and intra-frames of echocardiography videos, cardiac
structures often have significant shape variability (Figure 1
(b, c)). Third, due to the busy schedule of physicians, they
have no time to provide pixel-level annotations across the
whole video, and only ED and ES frames are manually an-
notated. Fourth and more importantly, to fulfill the routine
clinical requirements, we have to tackle these challenges in
a real-time manner; in such a case, efficiency is of great sig-
nificance as accuracy in this task.

In recent years, several deep learning models have been
proposed to address these challenges. The success of opti-
cal flow based methods in natural video segmentation moti-
vated their application to echocardiographic videos (Ta et al.
2020; Wei et al. 2020). These methods employ motion field
estimation to generate smooth pseudo-labels for unlabeled
frames and rely on various constraints to enhance the tem-
poral consistency of segmentation results. However, speckle
noise significantly affects the quality of the estimated mo-
tion field and results in unsatisfactory performance. To deal
with the influence of speckle noise, several methods (Chen
et al. 2021; Wu et al. 2022a; Liu et al. 2021) exploit the
inherent characteristics of 2D or 3D convolutions or local
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attention mechanisms to learn more effective features in re-
stricted contexts for more robust temporal consistency. How-
ever, they only take the contexts of neighboring frames into
account, probably due to the real-time requirements. Differ-
ent from the above methods, Painchaud et al. (Painchaud
et al. 2022) proposes a post-processing method to enhance
temporal consistency, which corrects temporal inconsisten-
cies via regularized shape encoding based on the segmen-
tation results of an existing model. However, its accuracy
largely depends on the segmentation model and its efficiency
is also not satisfactory. On the other hand, several methods
also have been proposed to develop lightweight networks
to fulfill the real-time requirement. A recently proposed
method (Zamzmi et al. 2022) transfers relevant knowledge
for fine-tuning on top of a lightweight framework to enhance
generalization and speed up convergence. But it failed to ex-
ploit temporal relationships between video frames and hence
still cannot achieve satisfactory accuracy.

In this paper, we propose a novel proxy- and kernel-
based semi-supervised echocardiography video segmenta-
tion to comprehensively address the above-mentioned chal-
lenges; we focus on the segmentation of left ventricular en-
docardium, which is essential for the assessment and diag-
nosis of many CVDs. To mitigate the effect of speckle noise,
we propose a multi-scale region proxy (MRP) mechanism to
model the region-wise contexts, in which a learnable region
proxy with an arbitrary shape is developed in each layer of
the encoder, helping identify homogeneous semantics and
hence alleviate the influence of speckle noise on segmenta-
tion. More importantly, according to the reconstructed proxy
relationships, our network is able to generate fine-grained
predictions without any decoder, thereby greatly improv-
ing the inference efficiency. To fully exploit and transmit
temporal contexts among labeled and unlabeled frames, we
further formulate the semi-supervised segmentation using
a group of learnable kernels, which is capable of naturally
and uniformly encoding the appearances of left ventricu-
lar endocardium, as well as extracting the inter-frame con-
texts across the whole video to resist the fast shape variabil-
ity of cardiac structures. Extensive experiments on two fa-
mous benchmarks, EchoNet-Dynamic (Ouyang et al. 2020)
and CAMUS (Leclerc et al. 2019), demonstrate that the pro-
posed model achieves the best performance-efficiency trade-
off when compared with other state-of-the-art approaches.
Our main contributions can be summarized as follows:

• We propose a novel network for semi-supervised
echocardiography video segmentation which replaces the
decoder by building region proxies with arbitrary shapes
in each layer of the encoder, and formulates the semi-
supervised segmentation with a set of learnable kernels.

• While the MRP mechanism can resist the influence of
speckle noise, the learnable kernels are able to suffi-
ciently exploit the temporal consistency for accurate seg-
mentation; working together, they comprehensively ad-
dress the challenges of this task with high efficiency.

• Our model achieves state-of-the-art results on both two
famous benchmarks, attaining comparative accuracy as
state-of-the-art methods with a much faster speed.

Related Works
Echocardiography Video Segmentation
Echocardiography video segmentation requires exploring
the temporal consistency between video frames, and im-
proving the segmentation accuracy of labeled frames by ex-
ploiting the information of unlabeled frames. Optical flow is
widely used in video semantic segmentation tasks, several
methods (Li et al. 2019; Ta et al. 2020; Wei et al. 2020;
Wu et al. 2020) have attempted to use motion estimation
for echocardiographic video tasks, but motion estimation is
noise sensitive. To deal with the influence of speckle noise,
several methods (Chen et al. 2021; Wu et al. 2022a; Liu et al.
2021) exploit the inherent characteristics of 2D or 3D con-
volutions or local attention mechanisms to learn more effec-
tive features in restricted contexts for more robust tempo-
ral consistency, but they only take the contexts of neighbor-
ing frames into account. Different from the above method,
Painchaud et al. (Painchaud et al. 2022) proposes a post-
processing method to enhance temporal consistency, but its
accuracy largely depends on the segmentation model. On the
other hand, several methods have been proposed to develop
lightweight networks to fulfill the real-time requirements.
Inspired by BiSeNet (Yu et al. 2018), Zamzmi et al. (Za-
mzmi et al. 2021) proposed a region-of-interest based tri-
lateral attention network (TaNet) for real-time cardiac re-
gion segmentation. In another work (Zamzmi et al. 2022),
they fine-tune TaNet by transferring relevant knowledge to
enhance model generalization and speed up convergence.
TransBridge (Deng et al. 2021) and LVNet (Awasthi et al.
2022) develop a lightweight echocardiography segmentation
model through channel splitting. However, all four meth-
ods above fail to exploit the temporal relationships between
video frames.

Dynamic Kernel
Shape-fixed receptive fields lead to static convolution ker-
nels to learn coarse representations that are insufficient for
dense labeling. To solve this problem, Dai et al. (Dai et al.
2017) proposed a deformable convolutions module to im-
prove the modeling ability of geometric changes. Specifi-
cally, a parallel network is first used to learn the offsets, and
then these offsets are added to the position of each sampling
point in the convolution kernel, thereby deforming the re-
ceptive field of the model without being restricted by the
regular grid. On this basis, a variety of dynamic kernels (Wu
et al. 2018; He, Deng, and Qiao 2019; Zhu et al. 2019; Gao
et al. 2020; Li and Chen 2021; Tian, Gao, and Peng 2022)
were proposed. Different from the above methods that uses
dynamic kernels to extract fine-grained features, recent stud-
ies apply dynamic kernels to directly generate segmentation
predictions (Fang et al. 2021; Wang et al. 2021; Zhang et al.
2021; Li et al. 2022a; Wu et al. 2022b; Yu et al. 2022), where
a set of learnable parameters are used to dynamically gen-
erate segmentation kernels for more accurate segmentation
predictions. We propose a MRP module and kernel-based
semi-supervised segmentation (KSS) mechanism to effec-
tively resist the speckle noise and improve the temporal con-
sistency respectively.
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Figure 2: Overview of our PKEcho-Net, which mainly consists of an MRP module and a KSS mechanism for semi-supervised
segmentation of echocardiography videos (only the first frame in ED and the last frame in ES are annotated).

Figure 3: More details of MRP. (a) Our MRP mechanism in
each layer of the encoder. (b) Region proxies are established
by learning the relationships between the 3×3 neighborhood
of each pixel in fi and the corresponding regions in fi−1.

Methods
Overview
The architecture of our PKEcho-Net is illustrated in Fig-
ure 2. For each frame of the input echocardiography video,
we first propose an MRP module to alleviate the interference
of speckle noise in segmentation. On the other hand, consid-
ering that only the first frame in ED and the last frame in
ES are manually annotated in each echocardiography video,
we formulate the semi-supervised echocardiography video
segmentation with a group of learnable kernels, which can
naturally and uniformly encode the identical left ventricular
appearances and the inter-frame contexts across the whole
video. Hence, our PKEcho-Net can better transmit the global
temporal appearance context to resist the fast shape variabil-
ity of cardiac structures during the whole video.

Multi-scale Region Proxy
The quality of features in our task may greatly degraded
by massive speckle noise existing in echocardiographical
images. To alleviate the damage of speckle noise, we pro-
pose an MRP module to capture the region-wise context in
a more flexible manner. Different from traditional methods,
which usually relied on a rigid tessellation on the input im-
age to model region-wise context with constrained receptive

fields (Liu et al. 2021; Wu et al. 2022a), we employ multi-
scale learnable region proxies in each layer of the encoder,
which can have arbitrary shapes and denote the homoge-
neous semantics to resist the speckle noise, as shown in Fig-
ure 3. Unlike the single region proxy proposed by (Zhang,
Pang, and Lu 2022), our MRP module consists of N − 1
affinity estimators, whereN is the layer number of the back-
bone network. In this regard, we can establish the associa-
tion between the pixels in the current layer and the pixels
in the corresponding homogeneous region of the previous
layer, thereby further improving the anti-noise ability.

Specifically, we employ two 3 × 3 convolutional layers
with an inner ReLU activation to construct the affinity esti-
mator between two neighboring feature maps, as shown in
Figure 3 (a). To further reduce computation cost, we adopt
depth-wise convolution (Howard et al. 2017) in the first
layer. Suppose that an output feature map of the i-th layer in
the backbone network is denoted as fi ∈ RC×H

h ×
W
w , where

i = 2, . . . , N , C is the number of channels, H ×W is the
resolution of fi−1, and h or w is the downsampling rate. To
alleviate the damage of heavy speckle noise, we can model
region-wise context based on the appearance-level relation-
ships between the neighborhood of each pixel in fi and h×w
non-overlapping regions in fi−1, as shown in Figure 3 (b).
For each pixel in the corresponding h × w region of fi−1,
we need define a M ×M neighbor pixels to learn a proxy
pixel with homogeneous semantics in fi. In our experiments,
we can set M = 3 to obtain a good balance between accu-
racy and efficiency. Thus, we adopt 3 × 3 instead of 1 × 1
convolutional layers to build the affinity estimator, which
can better establish appropriate proxy relationships to resist
heavy speckle noise. Finally, we can obtain an affinity map
ai→i−1 ∈ RM×M×(H h)×(W w) to describe the association
of pixels in fi with the corresponding proxy region in fi−1.

Kernel-based Semi-supervised Segmentation
Our task is a typical, yet special, semi-supervised segmenta-
tion task, where only the first frame in ED and the last frame
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Figure 4: Illustration of KSS. We iteratively train a group of learnable kernels to uniformly encode the identical left ventricular
appearances and the inter-frame contexts across the whole video, which is also much more compatible and memory efficient.

in ES are annotated in each echocardiography video. To
fully exploit and transmit the temporal appearance contexts
among labeled frames and unlabelled frames, we propose
a KSS mechanism to uniformly encode the identical left
ventricular appearances and the inter-frame contexts across
the whole video by a group of learnable kernels. Specifi-
cally, we initialize the group of kernel from the features ex-
tracted by the backbone network through a predictor, then
introduce hybrid attention and self-attention over temporal
and different videos to further refine the kernels for better
mask predictions. Compared with traditional methods which
only exploit temporal context of two neighboring frames
through feature warping (Ta et al. 2020; Wei et al. 2020)
or self-attention-based mean teacher semi-supervised archi-
tecture (Liu et al. 2021; Wu et al. 2022a), our PKEcho-Net is
able to better transmit the global temporal appearance con-
text to resist the fast shape variability of cardiac structures
during the whole video. More importantly, the KSS mecha-
nism is simply implemented with a group of kernel, which
is also much more compatible and memory efficient and can
be easily equipped in most deep learning architectures.

As shown in Figure 4, given the feature maps sequence
FN ∈ R(B T )×C×H×W , FN = {f lN}Tl=1, extracted from the
last layer in the backbone network, we first apply a predictor
to reduce the channel and output a coarse mask prediction
sequence P 0 ∈ R(B T )×c×H×W , where B is the batch size
and c is the number of classes. The predictor consists of two
convolutional layers with an inner ReLU activation, includ-
ing a 3×3 convolutional layer for the channel reduction and
a 1× 1 convolutional layer for the mask prediction.

During the iterations for the kernel refinement, we first
initialize the group of kernel with 1×1 convolutional kernel
k0p ∈ R(B T )×c×1×d with expanded dimensions, where d is
the number of channels after reduction. Suppose that the fea-
ture map after channel reduction is Fr ∈ R(B T )×d×H×W .
To refine the kernel based on the intra-frame appearance
context, we apply a dot product between the feature maps
sequence Fr and the P 0 to group the pixels with similar se-
mantics. Thus, we can formulate the grouped feature maps

sequence in the ith iteration as

F i
g =

H∑
x

W∑
y

P i−1(x, y) · Fr(x, y) (1)

where F i
g ∈ R(B T )×c×1×d is the grouped feature maps.

Given the grouped feature maps sequence, we further
adopt a hybrid attention mechanism (Li et al. 2022a) to learn
more effective distinct cues and appearance semantics in
each frame. Specifically, the implementation of hybrid at-
tention is similar to vanilla self-attention (Fvsa) (Vaswani
et al. 2017), where only the query (Q), key (K) and value
(V ) are denoted with different inputs. Based on the bidirec-
tional attention between feature map and learned kernel, we
can obtain a kernel embedding kie ∈ R(B T )×c×1×d written
as

kie =(Fvsa(F
i
g, k

i−1
p , ki−1p ) + F i

g)+

(Fvsa(k
i−1
p , F i

g, F
i
g) + ki−1p )

(2)

Fvsa(Q,K, V ) = ψ4

(
σ

(
ψ1(Q)ψ2(K)T√

d

)
ψ3(V )

)
(3)

where ψj , j = 1, . . . , 4 are different linear layers and σ is
a Softmax function. We employ LayerNorm (LN) after the
residual connection between the output of Fvsa and its input
query, and the same is true for the following.

In addition, we also use vanilla self-attention to model
pair-wise relationships in temporal dimension to enhance the
temporal consistency among different kernel embeddings
during the whole video. By restoring the dimension order
of the kernel embeddings with a reshape operator, we can
adopt a feed-forward network (Fffn) (Vaswani et al. 2017)
to predict a new kernel kip for segmentation, where the di-
mension of the inner-layer should be the same as the input.
The above process can be written as

kit
′
= Fvsa(k

i
t, k

i
t, k

i
t) + kit, k

i
t = φ1(k

i
e)

kib
′
= Fvsa(k

i
b, k

i
b, k

i
b) + kib, k

i
b = φ2(k

i
t

′
)

kip = Fffn(k
i
e

′
) + kie

′
, kie
′
= φ3(k

i
b

′
)

(4)
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Method Backbone
CAMUS EchoNet-Dynamic

DSC P-value HD ASD corr bias±std DSC P-value HD ASD corr bias±std
VKNet ResNet-50 92.8 0.036 4.2 1.4 83.3 -2.6±8.7 92.2 0.031 3.3 1.2 79.1 1.8±9.5
HITF ResNet-50 92.7 0.033 4.3 1.4 82.7 -1.8±9.1 92.2 0.028 3.3 1.2 78.3 2.2±10.1
CLAS UNet-3D 92.1 0.042 4.8 1.6 81.0 -3.8±8.8 92.1 0.024 3.3 1.2 80.8 2.9±9.2
PLANet ResNet-34 92.9 0.026 4.1 1.4 84.7 0.5±8.3 91.7 0.020 3.4 1.3 76.5 -1.2±10.7
TaNet ResNet-18 92.5 0.020 4.6 1.5 83.4 -2.4±8.5 92.0 0.045 3.3 1.2 78.8 1.2±9.7
LVNet - 91.7 0.047 5.0 1.6 75.7 -1.1±10.7 92.2 0.022 3.3 1.2 81.2 -1.2±9.2
SSCF ResNet-18 93.3 0.031 4.0 1.3 85.8 0.5±8.2 92.3 0.023 3.3 1.2 83.3 -0.9 ± 8.6

Ours
ResNet-18 93.7 0.029 3.6 1.2 87.5 -0.7±7.4 92.7 0.034 3.1 1.1 84.2 -1.8 ± 8.3
ResNet-34 93.9 0.038 3.5 1.2 86.0 -0.6±8.0 92.8 0.037 3.1 1.1 85.3 -0.8±8.0
ResNet-50 94.2 - 3.4 1.1 89.9 -0.3 ± 6.7 93.1 - 3.1 1.1 87.4 -1.6±7.4

Table 1: Statistical comparison with state-of-the-art methods on the CAMUS and EchoNet-Dynamic test sets.

Method Flops Params FPS
VKNet (Li et al. 2022b) 124G 29.0M 216
HITF (Li et al. 2022a) 718G 41.0M 91
CLAS (Wei et al. 2020) 1125G 19.1M 82
PLANet (Liu et al. 2021) 721G 37.8M 142
TaNet (Zamzmi et al. 2021) 278G 26.3M 155
LVNet (Awasthi et al. 2022) 32G 0.4M 50
SSCF (Wu et al. 2022a) 625G 57.7M 62
Ours (ResNet-18) 42G 11.7M 428
Ours (ResNet-34) 80G 21.8M 312
Ours (ResNet-50) 109G 25.7M 258

Table 2: Efficiency comparison with the state-of-the-art
methods on one RTX 3090 GPU at 320× 320 resolution.

where φj , j = 1, . . . , 3 are different dimension transfor-
mations, kit ∈ R(B c)×T×d, kib ∈ R(T c)×B×d, and kie

′ ∈
R(B T )×c×1×d. We also employ LN after the residual con-
nection between the output of Fffn and its input query.

Finally, by applying a convolution between the feature
maps Fr and the kernel prediction kip, we can generate a
finer mask prediction P i = kip ∗ Fr for the next itera-
tion of kernel refinement and loss function computation. Be-
fore calculating the loss, we can gradually recover the size
of P i through the affinity maps sequence {An→n−1}Nn=2,
An→n−1 = {aln→n−1}Tl=1, estimated with our MRP mech-
anism, which can be written as

P i′ =
M×M∑
j=1

(
P i(j) · {An→n−1(j)}Nn=2

)
(5)

where M ×M is the number of neighbor pixels to learn a
proxy pixel with homogeneous semantics.

Loss Functions
We adopt a Dice loss Ldice (Milletari, Navab, and Ahmadi
2016) to supervise our PKEcho-Net. To further improve the
anti-noise ability in handling the finely detailed boundaries
of LV, we also introduce a boundary loss Lb (Kervadec et al.

Method Interval DSC HD ASD
ResNet-50 - 92.3 4.5 1.6
ResNet-50 + VRP 4 92.7 4.3 1.4

ResNet-50 + MRP
4 93.1 4.1 1.2
2 93.3 3.9 1.3
1 93.5 3.7 1.3

Table 3: Ablation study of MRP on the CAMUS test set.

2021) in training our PKEcho-Net, which can adaptively
guide the inner segmented region in the echocardiography
by measuring the distance-to-boundary information on the
basis ofLdice. Moreover, we supervise each mask prediction
P i′, i = 0, . . . , S, S is the number of iterations, to ensure
that kernel refinement iterations do not deviate right direc-
tion during the kernel-based semi-supervised segmentation.
Finally, the total loss Ltotal of our method can be written as

Ltotal =

S∑
i=0

(
Ldice(P

i′, G) + Lb(P
i′, D)

)
(6)

where G is the ground truth, and D is the distance map pre-
computed from G.

Experiments
Datasets and Evaluation Metrics
We evaluated our method on two public echocardiography
video datasets: EchoNet-Dynamic (Ouyang et al. 2020) and
CAMUS (Leclerc et al. 2019) datasets.

• EchoNet-Dynamic contains 10,030 apical-4-chamber
echocardiography videos, each of which was cropped
and masked to remove text and information outside the
scanning sector. All videos are downsampled to a nor-
malized resolution of 112× 112.

• CAMUS contains 450 cases from both healthy volun-
teers and patients, each of which further includes an
apical-2-chamber and an apical-4-chamber echocardio-
graphy video. Thus, CAMUS has 900 videos with an av-
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Figure 5: Visual comparison with different state-of-the-art methods on the CAMUS and EchoNet-Dynamic test sets. Red, green,
and yellow regions represent the ground truth, prediction, and their overlapping regions, respectively.

Figure 6: Correlation graphs for the clinical metrics on the
CAMUS (left) and EchoNet-Dynamic (right) test sets.

erage resolution of 984 × 600, where 19% of the cases
have poor quality with lower contrast and heavier noise.

In our experiments, we employed four widely-used met-
rics to evaluate the echocardiography video segmentation:
Dice Similarity Coefficient (DSC), Hausdorff Distance-95%
(HD), and Average Surface Distance (ASD), and a clinical
metric, Left Ventricular Ejection Fraction (LVEF).

Implementation Details
We implemented our method with the PyTorch framework
and adopted the pre-trained ResNet-50 (He et al. 2016)
as the backbone network to obtain a relatively better ini-
tialization. For the proposed MRP and KSS modules, we
adopted the “Kaiming” strategy (He et al. 2015) to initial-
ize the parameters. We trained our model for 50 epochs
with a poly strategy, where the learning rate is multiplied
by (1 − iter

itermax
)0.9 for each iteration with an initial learn-

ing rate of 1e-3 for all experiments. We set batchsize = 8
and an Adam optimizer (Kingma and Ba 2014) is also used
to accelerate the convergence. By unifying the image resolu-
tion of the EchoNet-Dynamic and CAMUS to 128×128 and
320 × 320, each video in both datasets is also equidistantly
reshaped into 10 frames. We split the training set, validation
set, and test set with a ratio of 7:1:2, where four kinds of data
augmentations are used to enrich the video data diversity for

Figure 7: Performance vs. efficiency on the CAMUS test set.

training, including horizontal flipping, randomly turning the
brightness or contrast in a range of [-15%, +15%] and ran-
dom rotations in [-20, 20] degrees.

Comparison with State-of-the-art Methods
We compared our method with seven state-of-the-art meth-
ods on both the EchoNet-Dynamic and CAMUS datasets, in-
cluding two most relevant natural video segmentation meth-
ods (VKNet (Li et al. 2022b) and HITF (Li et al. 2022a))
and five latest echocardiography video segmentation meth-
ods (CLAS (Wei et al. 2020), PLANet (Liu et al. 2021),
TaNet (Zamzmi et al. 2021), LVNet (Awasthi et al. 2022)
and SSCF (Wu et al. 2022a)). As shown in Table 1, our
method generally outperforms other competitors with the
highest performances in all metrics on both datasets. We fur-
ther performed the Wilcoxon rank-sum test of DSC, and our
method (ResNet-50 based) has a statistical improvement of
DSC at the 5% level (all P-values are less than 0.05). From
the visual comparisons of typical challenging test cases from
both datasets, we clearly observe that even for the complex
regions near the LV endocardium, our results are still the
closest to the ground truth, as shown in Figure 5.

Moreover, we conducted a statistical comparison using
the clinical metrics on both datasets, including the Pearson
correlation coefficient (corr), mean bias (bias), and standard
deviations (std) of LVEF between ground truth and the pre-
diction, where LVEF is calculated with Simpson’s rule (Fol-
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Method H.A. T.A. DSC HD ASD
ResNet-50 - - 92.3 4.5 1.6

ResNet-50 + KSS
92.8 4.2 1.4

X 93.2 3.9 1.3
X X 93.6 3.6 1.2

Table 4: Ablation study of KSS on the CAMUS test set.

Figure 8: Visual comparison of feature maps restored from
different affinity maps. (a) Input image. (b) Ground truth. (c)
feature map extracted in the backbone. (d-g) feature maps
gradually restored to input image size using affinity maps.

land et al. 1979). As shown in Table 1, our method achieve
a higher correlation and lower deviation on LVEF than all
other methods, which further improves the confidence to
analyze and evaluate cardiac function through echocardio-
graphic segmentation. In Figure 6, we present the correlation
graphs of the proposed method (ResNet-50 based) on both
two datasets, where we can also observe a good consistency
between the ground truth and predicted clinical indices.

On the other hand, we also demonstrated the advantages
of our proposed method in efficiency by calculating the
number of parameters (Params) and floating point opera-
tions (Flops), and frames per second (FPS) during inference
of different networks. As shown in Table 2, we achieve the
fastest inference speed, which benefits from the MRP mod-
ule in saving a heavy decoder and the KSS mechanism in
kernel-level operation. Although LVNet exhibits the least
amount of computation and parameters, it suffers from the
worst inference speed due to excessive memory accesses. As
shown in Figure 7, our method obtains a better performance-
efficiency trade-off than all other competitors.

Ablation Studies
Multi-scale region proxy. To demonstrate the importance
of region proxy between adjacent layers in the encoder, we
composed various MRP modules by introducing affinity es-
timators with different interval layers. As shown in Table 3,
our MRP module can improve the performance of the back-
bone network in all indicators, where the performance is bet-
ter for the fewer number of interval layers. Moreover, by es-
tablishing semantic correlations between different scales to
resist speckle noise, our MRP module still outperforms the
vanilla region proxy (VRP) of (Zhang, Pang, and Lu 2022).
We also visualized the feature maps with gradually recov-
ered resolution using multi-scale affinity maps. As shown in
Figure 8, the feature maps become more and more clear, in-
dicating that our MRP module is sufficient to save the heavy
decoder in echocardiography video segmentation.

Iteration # DSC HD ASD
1 93.7 3.6 1.2
2 94.0 3.5 1.2
3 94.2 3.4 1.1
4 93.9 3.5 1.2

Table 5: Ablation study of the iteration # on CAMUS.

Figure 9: Failure cases on the CAMUS (a-c) and EchoNet-
Dynamic (d-f) test sets. Red and green contours denote the
ground truth and our prediction, respectively.

Hybrid attention and temporal self-attention in KSS.
To demonstrate the effectiveness of hybrid attention (H.A.)
for kernel-feature interactions and temporal self-attention
(T.A.) for modeling global temporal appearance context, we
conducted ablation studies by skipping different attention
mechanisms. Note that when the hybrid attention is disabled,
we adopt the gating mechanism from (Zhang et al. 2021) in-
stead. As shown in Table 4, hybrid attention outperforms the
gating mechanism, because the long-term dependency learn-
ing enables the kernel to better encode distinct cues in each
frame and leverage them to enhance the appearance con-
text. Similarly, temporal self-attention also improves perfor-
mance by modeling the global temporal context.

Iteration # in KSS. We also evaluated the impact of the
iteration # for kernel refinements in KSS. As shown in Ta-
ble 5, we can obtain the best performance after three it-
erations. However, if we further train the kernels, the per-
formance may drops slightly due to the unavoidable small
amount of noise carried in the over-iterations.

Discussions and Limitations
Although the above experiments only focus on the echocar-
diography video segmentation task, we believe our method
has potential for other semi-supervised video segmentation
tasks with sparse annotations. Moreover, our method still
has some limitations. As shown in Figure 9, our PKEcho-
Net still cannot handle the videos with extremely low con-
trast or too heavy noise, where the LV boundaries cannot be
distinguished even by an experienced cardiologist.

Conclusion
In this paper, we propose a novel and efficient semi-
supervised segmentation method for echocardiography
video that replaces the decoder by building region proxies
with arbitrary shapes in each layer of the encoder and for-
mulates the semi-supervised echocardiography video seg-
mentation with a group of learnable kernels. Our method
achieves state-of-the-art results on both the CAMUS and
EchoNet-Dynamic test sets with the fastest inference speed.
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