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Abstract

Automatic assembly is a promising research topic in 3D com-
puter vision and robotics. Existing works focus on generating
assembly (e.g., IKEA furniture) from scratch with a set of
parts, namely 3D part assembly. In practice, there are higher
demands for the robot to take over and finish an incomplete
assembly (e.g., a half-assembled IKEA furniture) with an off-
the-shelf toolkit, especially in human-robot and multi-agent
collaborations. Compared to 3D part assembly, it is more com-
plicated in nature and remains unexplored yet. The robot must
understand the incomplete structure, infer what parts are miss-
ing, single out the correct parts from the toolkit and finally,
assemble them with appropriate poses to finish the incomplete
assembly. Geometrically similar parts in the toolkit can inter-
fere, and this problem will be exacerbated with more missing
parts. To tackle this issue, we propose a novel task called 3D
assembly completion. Given an incomplete assembly, it aims
to find its missing parts from a toolkit and predict the 6-DoF
poses to make the assembly complete. To this end, we propose
FiT, a framework for Finishing the incomplete 3D assembly
with Transformer. We employ the encoder to model the in-
complete assembly into memories. Candidate parts interact
with memories in a memory-query paradigm for final candi-
date classification and pose prediction. Bipartite part matching
and symmetric transformation consistency are embedded to
refine the completion. For reasonable evaluation and further
reference, we design two standard toolkits of different diffi-
culty, containing different compositions of candidate parts. We
conduct extensive comparisons with several baseline methods
and ablation studies, demonstrating the effectiveness of the
proposed method.

Introduction
Automatic assembly is a desirable capability of intelligent
robot. Everyone dreams of owning Andrew, the android in
Bicentennial Man, that can not only assemble a new Lego
as your birthday surprise but also maintain your beloved toy
which is broken, to mend your broken heart.

At present, for a robot, assembling a Lego or even furniture
is coming true. Existing works have enabled the robot with
the ability to assemble a set of parts into a whole from scratch,
namely 3D part assembly (Zhan et al. 2020). Maintaining a
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broken toy, or in general, finishing an incomplete assembly
somehow remains unexplored yet. It is a fundamental but
essential task in human-robot and multi-agent cooperative
assembly. Take as an example the robot cooperates with
humans in assembling a complex IKEA furniture. Rather
than replacing humans to complete the work, it will be more
welcome to assist with the assembly. On the multi-agent
assembly line, human-like cooperation requires the agent to
take over various work-in-process assemblies which are half-
assembled by other agents, and try to finish the assembly in
its power. With such an ability, maintenance can be a piece
of cake, e.g., to repair a broken chair that lacks a leg, and the
dream of Andrew will soon come true.

Despite its great significance, it is a challenging task to fin-
ish an incomplete assembly without any instruction manual
or external guidance. Unlike 3D part assembly, which fo-
cuses on inter-part relation modeling, the robot needs a more
detailed comprehension of the incomplete structure and infer
part-to-structure relationships for the candidate parts. More-
over, for a particular missing part, the toolkit may contain
multiple confusing candidates that are similar in geometry
but distinct in functionality (i.e., invalid for assembly), which
can interfere with the correct selection. This issue can be
further exacerbated when multiple parts are missing.

To tackle this issue, we propose 3D assembly completion,
a novel task that aims to single out the correct missing parts
from a toolkit of candidates and predict the 6-DoF poses to
complete the assembly. To this end, we propose a framework
named FiT, for Finishing the incomplete 3D assembly with
Transformer. We model the incomplete assembly into memo-
ries with the encoder and take the candidate parts modeled by
the decoder as queries to interact with memories, completing
multiple tasks of candidate classification and pose prediction.

During training, we design bipartite part matching to des-
ignate a unique candidate for each missing part, avoiding the
conflict of multiple correct candidates in the toolkit. We also
propose symmetric transformation consistency to approxi-
mate stability optimization for generating more stable and
practical assemblies.

We design two standard toolkits for reasonable evaluation
and comparison, namely the original toolkit and the blended
toolkit. They contain candidate parts of different numbers,
geometry, and thus difficulties. We conduct extensive exper-
iments both qualitatively and quantitatively to demonstrate
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the effectiveness of the proposed method, which outperforms
several baseline approaches by a large margin and formu-
lates a strong baseline for the novel task of 3D assembly
completion.

Related Work
Component suggestion and composition. Given a partial
shape, a straightforward idea is to retrieve reasonable compo-
nents from a large shape database (Xie et al. 2013; Vranic and
Saupe 2004; Wang et al. 2012; Saupe and Vranić 2001). Com-
plementMe (Sung et al. 2017) learns the partial shape with
components and non-components by contrastive (Khosla et al.
2020; Ghojogh et al. 2020) learning jointly in the embedding
space. (Sung et al. 2018) shares a similar setting, which fo-
cuses on modeling complementarity and interchangeability of
components in dual embedding spaces. Although common in
partial input, the components to be retrieved are presented by
part groups (e.g., four legs of a chair as a component), which
are more discriminative than finest-grained parts which de-
note the setting in 3D assembly completion. Moreover, only
translation is considered which is naive. SCORES (Zhu et al.
2018) represents and completes missing parts as oriented
bounding boxes (OBBs), which lose detailed geometric in-
formation. Since geometric-similar parts may share the same
OBB, OBBs (Li et al. 2017) are not suitable for point-cloud-
based part assembly. COALESCE (Yin et al. 2020) aims to
synthesize well-connected shape by learning to translate and
scale components from different shapes, while 3D assem-
bly completion focus on the more complicated 6-DoF poses
prediction.

3D part assembly. 3D part assembly is a typical task which
aims to generate fully-assembled 3D shapes with a set of de-
termined parts from scratch (Chaudhuri et al. 2011; Jaiswal,
Huang, and Rai 2016; Kalogerakis et al. 2012). DGL (Zhan
et al. 2020) is a pioneering work that adopts the graph neural
network to reason about the part relations in a complete shape
iteratively. Similar in task definition, RGL-NET (Harish, Na-
gar, and Raman 2022) leverages a recurrent graph learning
paradigm to refine the relations of parts progressively for
more accurate pose prediction. PQ-Net (Wu et al. 2020) pro-
poses a part-wise Seq2Seq generative framework that models
the parts by 3D shape reconstruction. PageNet (Li, Niu, and
Xu 2020) is also a generative framework that consists a part
generator based on VAE-GANs (Gulrajani et al. 2017; Adler
and Lunz 2018) and a part assembler, to perform a two-stage
part-wise assembly. There are also other works that utilize
diverse sources of information as input, such as image (Li
et al. 2020). Overall, these works generally take as input a
full set of parts for an assembly, and predict the 6-DoF poses
for them, where inter-part relation modeling is essential in
the design of method. The novel task of 3D assembly com-
pletion naturally holds a different problem setup and remains
unsolved in literature.

3D shape completion. Another related task is 3D shape
completion, which mainly studies the problem of point-cloud-
based completion (Yu et al. 2021; Wen et al. 2020; Yu et al.
2022). Previous methods like TopNet (Tchapmi et al. 2019),

PCN (Yuan et al. 2018), and SA-Net (Wen et al. 2020) com-
monly adopt a generative solution with an encoder-decoder
framework. An encoder (e.g., PointNet (Qi et al. 2017)) is
utilized to extract the global feature of incomplete shape. Ac-
cordingly, a decoder is designed to infer the complete point
clouds. Other works like RL-GAN-Net (Sarmad, Lee, and
Kim 2019) and Render4Completion (Hu et al. 2019) follow
the framework of adversarial learning to improve the real-
ity and consistency of the completion. In general, 3D shape
completion aims to recover a set of point clouds without
exact geometry or boundary. 3D assembly completion fo-
cuses on part-level completion, where a part is a set of point
clouds with a specific geometry and semantic meaning. Re-
cent works (Yan et al. 2022; Mittal et al. 2022) also adopt
transformers (Vaswani et al. 2017) for global modeling of
point distribution. Transformer shows effectiveness in point
clouds relation modeling while we focus on a more coarse
level of parts.

Method
Let p ∈ Rnd×3 denotes a set of 3D part point clouds. Given
an incomplete assembly A = {p∗i }N−k

i=1 with N − k parts,
where N is the total number of parts in the complete assembly,
our goal is to single out its missing parts M = {pi}ki=1 from
a toolkit T = {pi}Mi=1 with M candidates, and predict the
poses {(Ri, ti)}ki=1 for the selected parts.

Here (R, t) denotes the 6-DoF pose of part in SE(3) space.
Individually, R ∈ R4 denotes the rigid rotation, represented
by unit quaternion where ∥R∥2 = 1 and t ∈ R3 denotes the
translation. Finally, the selected parts are assembled with the
incomplete assembly as A∪

(
∪k
i Ti (pi)

)
, where Ti represents

the joint transformation of pose (Ri, ti).
To tackle this problem, we propose a transformer-based

framework called FiT, which contains three major compo-
nents as illustrated in Figure 1. The encoder models the in-
complete assembly into memories. The decoder takes can-
didates of the toolkit as queries to interact with memories.
Finally, two predictors are designed for candidate classifica-
tion and pose prediction to complete the assembly.

Toolkit Construction
Before providing detailed designs of FiT, we first introduce
the toolkit, which is an indispensable component for 3D
assembly completion. For android Andrew, he must select the
appropriate parts from his magic box to maintain the broken
toy. In 3D assembly completion, such a service kit is also
required. We define it as toolkit. In this paper, a toolkit is a
set of candidate parts, which must contain the ground-truth
missing parts M. Besides, it also contains some other parts.
Considering practical situations, we propose two typical and
reasonable toolkit configurations.

Original toolkit. Given a broken toy, the most intuitive
solution is to find its missing parts from an original duplicate.
Similarly, considering an assembly S , we define its original
toolkit as Torig = M ∪ {pi|pi ∈ S}m1

i=1 which contains
m1 parts randomly sampled from S and k missing parts,
thus m1 + k = M . We adopt a balanced sampling strategy
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Figure 1: The pipeline of FiT, containing three major components:(a) an encoder to encode the parts of incomplete assembly, (b)
an decoder for relation modeling between candidate parts and incomplete shape, (c) two predictors for candidate selection and
pose prediction, individually.

according to the geometric class of parts, to avoid sampling
on the major class repeatedly (e.g., leg is the major part in
number for chairs).

Blended toolkit. Besides taking a duplicate, it is more
common cases to search in a box, blended with scattered
parts that are taken from the toy itself, or other worn toys.
Likewise, considering an assembly S and another assembly
Q−, we define the blended toolkit as Tblend = M∪{pi|pi ∈
S}m1

i=1 ∪ {qi|qi ∈ Q−}m2
i=1, where pi and qi are randomly

sampled from S and Q− respectively, and m1 +m2 + k =
M . Q− denotes a negative assembly which introduces more
disturbances. We consider total assemblies as a circular queue
and designate the former of each assembly as its negative
assembly.

Both toolkits consistently contains the correct missing
parts and sometimes more than one. Figure 1(d) visualizes an
example of toolkit construction. As is shown in the case, an
assembly naturally contains lots of parts that are extremely
similar in geometry (e.g., the leg and the bar that supports
the back, see Figure 1(d)), making it challenging to single
out the correct ones. The blended toolkit can introduce more
confusing parts and further increase the difficulty. We provide
more detailed insights into the toolkits in the supplementary
material.

Architecture of FiT
The transformer takes as input the part point clouds of incom-
plete shape A and toolkit T . Since a part point cloud is a set
of nd points that are unorderly sampled, we first use a vanilla
PointNet (Qi et al. 2017) to extract a global permutation-
invariant feature for each part cloud. The PointNet features
are sent to the encoder and decoder for further relation mod-
eling. Note that the part clouds of incomplete assembly are
transformed with ground-truth poses before being sent to

the PointNet, representing they are pre-assembled and the
candidate part clouds remain in canonical space.

Encoder. The structure of incomplete assembly provides
essential evidence for reasoning about the missing parts. We
use the transformer encoder to capture such structural infor-
mation. Detailed, the encoder takes as input the PointNet
features of the parts in incomplete assembly. We employ
self-attention mechanism computed by Eq.1 to model both
geometry and pose relations of the parts, where Q,K,V ∈
R(N−k)×256 denote query, key and value, respectively. The
part-to-part interaction is conducted through multiple self-
attention layers in a progressive manner. Finally, the parts of
incomplete shape are encoded into memories to formulate a
memory bank for further interaction.

Attention(Q,K,V) = Softmax
(
QKT /

√
dk

)
V (1)

Worth noting that the PointNet is more sensitive to variation
in geometry but less in pose. This may cause pose infor-
mation degradation during self-attention modeling. To this
end, we concatenate the parts of incomplete shape with their
poses at the input of self-attention layers in encoder and the
memory (i.e., the output of encoder), to reinforce pose-aware
information.

Decoder. The decoder takes as input the PointNet features
of the candidate parts in toolkit. Different toolkits may con-
tain different numbers of candidates, with different distribu-
tions of geometry. We first enable self-attention mechanism
among the candidate parts, which capture the relations (i.e.,
geometry distribution) of candidates. Then the candidate parts
serve as queries to calculate multi-head attention with memo-
ries from the encoder to model the relationships between the
candidates and the incomplete structure. Multi-head attention
is computed by Eq.1 in a similar way, with Q ∈ RM×256

obtained from candidates and K,V ∈ R(N−k)×256 from
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memories. With such interaction mechanism, we incorpo-
rate the global information of incomplete assembly into the
queries, which is essential in the prediction of correct can-
didates. We apply multi-head attention layers of standard
transformer for both self- and decoder-encoder attention.

Positional encoding. Since the transformer is permutation-
invariant to the input parts, we adopt position encoding as
a supplementary. Following (Zhang et al. 2022), we design
part-aware position encoding, a vector that contains intra-
class encoding and inter-class encoding. Instead of the vanilla
position encoding, we concatenate the input features with
the part-aware position encoding. Detailed computation is
described in the supplementary material.

Predictors. We design two predictors for the final tasks.
One predictor is designed to perform binary classification
for the candidate parts. we use sigmoid operation to output a
classification score in (0, 1) for each candidate, which indi-
cates the possibility of being the correct missing part. Another
predictor is used to predict 6-DoF poses for the candidates.
We employ a 3-layer feed-forward network for both predic-
tors, including two fully-connected layers with a hidden size
of 256 and ReLU activation function and a linear projection
layer.

Multi-Task Learning of FiT
We consider 3D assembly completion as multiple tasks of
classifying the candidates into the correct missing parts or
not and predicting poses for the correct candidates. During
training, we propose bipartite part matching and symmetrical
transformation consistency to refine the completion.

Bipartite part matching. The assembly model infers k
parts from a fixed-size toolkit of M candidates in candidate
classification, where M is usually more extensive than k. A
straightforward idea is to supervise all correct candidates
with label 1 and the others 0. However, such indiscriminate
supervision may confuse with multiple missing parts. Take as
an example a chair that misses a leg and a back. If the toolkit
contains several correct leg candidates, the model possibly
overfits selecting legs repeatedly. Instead, it is desirable that
only one of the leg candidates is matched for supervision.

Inspired by DETR (Carion et al. 2020), we propose bipar-
tite part matching to designate the best-matched candidate for
each missing part, before computing the classification loss.
Given the ground-truth missing parts M and a set of candi-
date parts C, bipartite part matching searches for a subset of
candidates C∗ to minimize the cost:

C∗ = argmin
Ĉ⊆C

k∑
i

Lmatch (Mi, C∗
i ) . (2)

Here, we employ Chamfer distance (CD) as the matching cost
Lmatch to obtain the optimal assignment between the parts
of two sets. The optimal assignment is efficiently computed
with the Hungarian algorithm following (Stewart, Andriluka,
and Ng 2016). Chamfer distance is calculated between two
part clouds X and Y , formally,

dc(X ,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22. (3)

Finally, we supervise the candidate parts with the binary
cross-entropy loss:

Lc = −
M∑
i

y∗i log yi + (1− y∗i ) log (1− yi) , (4)

where y denotes the prediction and y∗ denotes the ground-
truth label. For candidate part pi, y∗i = 1 if pi ∈ C∗; else,
y∗i = 0.

Approximate stability optimization. Stability is the pri-
mary principle in the design of engineering structures. So is
in assembly. The stability criteria is established in order to
determine whether a structure is in stable equilibrium with a
given set of loadings. Based on energy methods (Yoo and Lee
2011), given a virtual displacement, the structure is stable
equilibrium if and only if ∆Π > 0, where Π denotes the total
potential energy and ∆Π the change of total potential energy.
We provide formula expression and an example of a 2-DoF
system in the supplementary material.

However, it is infeasible to apply potential energy analysis
for stability evaluation on 3D point-cloud-based assembly.
Alternatively, we find that a symmetric skeletal structure is
proven to retain its geometric stability while its geometry
or connectivity is altered (Chen, Sareh, and Feng 2015). In
other words, a symmetric structure tends to be more stable in
nature and robust to disturbances. In practice, most functional
objects (e.g., chairs and tables) obey a design principle of
symmetry to maintain structure-aware stability.

Inspired by this, we propose symmetric transformation
consistency to approximate stability optimization in train-
ing. It ensures the assembled shape remains symmetrical in
structure and can be easily achieved by measuring the Cham-
fer distance in Eq.3 between the assembled shape S and its
mirror image Φ (S), formally,

Lsym = dc (S,Φ (S)) , (5)

where Φ denotes the mirror transformation along the ground-
truth symmetry plane which is pre-computed.

Loss components. We apply straightforward supervision
on pose prediction. Each predicted pose can be decomposed
into translation t and rotation R. Given the ground-truth trans-
lation t∗i of the missing parts, the translation is supervised
with an L2 loss:

Lt =
k∑

i=1

∥ti − t∗i ∥22 . (6)

Rotation is supervised by Chamfer distance between the part
clouds with predicted rotation Ri (pi) and ground-truth rota-
tion R∗

i (pi):

Lr =

k∑
i=1

dc (Ri (pi) , R
∗
i (pi)) . (7)

We use shape Chamfer distance between the completed as-
sembly S and the ground-truth assembly S∗ to measure the
overall quality of assembly completion:

Ls = dc (S,S∗) . (8)
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k Toolkit MA↑ SCD↓ PA↑ CA↑
Chair Table Lamp Chair Table Lamp Chair Table Lamp Chair Table Lamp

1 original 92.93 91.14 90.22 0.0069 0.0049 0.0250 70.71 76.78 30.39 62.22 71.83 41.61
blended 81.04 84.89 54.55 0.0086 0.0052 0.0339 64.91 74.40 21.90 59.29 75.32 39.23

2 original 61.36 66.54 59.19 0.0240 0.0123 0.0424 44.16 52.61 20.17 36.47 50.22 31.11
blended 49.46 45.58 24.86 0.0286 0.0164 0.0556 39.51 36.34 8.732 34.93 39.03 26.75

3 original 60.41 65.26 - 0.0232 0.0126 - 41.81 46.74 - 32.01 42.37 -

5 original 59.47 62.97 - 0.0149 0.0076 - 35.21 43.14 - 28.82 45.13 -

Table 1: Quantitative results on different toolkits with k missing parts.

GT Prediction

FiT wo ℒ𝑠𝑠𝑠𝑠𝑠𝑠 FiT

Vanilla GT

Chair

Table

Lamp

𝑘𝑘 = 2

𝑘𝑘 = 3
(a)

(b)

(c)
𝑘𝑘 = 5

Figure 2: Qualitative results. (a) Completion results on the original toolkit. Multi-colored assembly denotes the ground truth and
two-color assemblies denote completion results. Predicted parts are visualized in green. (b) Plausible predictions with wrongly
assembled parts visualized in red. (c) Qualitative analysis of pose concatenation and Lsym.

The overall loss function is defined as a weighted combina-
tion of the translation loss Lt, rotation loss Lr, shape Cham-
fer distance loss Ls, symmetrical transformation loss Lsym

and classification loss Lc:

L = λtLt + λrLr + λsLs + λsymLsym + λcLc, (9)

where λ∗ denote the weights of losses.

Evaluation Metrics
We define match accuracy (MA) as MA = c/k to evaluate
the accuracy of candidate classification, where k denotes the
number of missing parts and c denotes the number of parts
that are correctly matched with the ground-truth parts.

Overall quality of assembly completion can be measured
by shape Chamfer distance (SCD) defined as Eq. 3. Part
accuracy (PA) is defined based on SCD, which indicates
the percentage of parts within a certain Chamfer distance
threshold. Formally,

PA =
1

k

k∑
i=1

(dc (Ti (pi) , T
∗
i (p∗i )) < τp) , (10)

where the threshold τp is set to 0.01.
Following (Zhan et al. 2020), we adopt connectivity ac-

curacy (CA) to evaluate how well the assembled parts are

connected in the assembly. We define connectivity accuracy
as:

CA =
1

|C|
∑

{cij ,cji∈C}

(∥Ti(cij)− Tj(cji)∥22 < τc), (11)

where cij denotes the point of part pi which is closest to
part pj (i.e., contact point). C is the set of contact point pairs
between incomplete shape and candidate parts. The threshold
τc is set to 0.01.

Experiments
Dataset
We evaluate the proposed method on the PartNet (Mo et al.
2019) dataset, a large-scale synthetic dataset of 3D shapes
annotated with instance-level and hierarchical 3D part infor-
mation. We choose the three largest categories of 6,323 chairs,
8,218 tables, and 2,207 lamps with the most fine-grained level
of segmentation and follow the default train/val/test splits
of 70%/20%/10%. The shapes are filtered with the number
of parts limited to (k, 20], where k is the number of missing
parts. We sample 1,000 points with Furthest Point Sampling
(FPS) for each part component and transform the part point
clouds into canonical space with PCA (Pearson 1901).
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Baseline MA↑ SCD↓ PA↑ CA↑
Complement 77.69 0.0332 14.87 15.21
Single Image 81.75 0.0141 34.72 29.80
DGL 91.05 0.0090 62.13 46.21
PoinTr - 0.0368 - -
AutoSDF - 0.0411 - -
FiT (ours) 92.93 0.0069 70.71 62.22

Table 2: Comparison with baseline methods.

Category Identical MA↑ SCD↓ PA↑ CA↑

Chair
✓ 84.88 0.0176 46.81 21.09
✗ 57.50 0.0154 47.34 49.98

Table
✓ 87.58 0.0093 53.80 19.02
✗ 57.68 0.0077 50.71 42.64

Table 3: Different combinations of missing parts with k = 2.

Implementation Details
We train FiT with the AdamW optimizer with an initial learn-
ing rate of 1.5× 10−4 for 500 epochs on 8 GPUs. Batch size
is set to 64. During training, we randomly sample k parts as
missing parts for each assembly. We adopt a blended toolkit
a with a fixed size of M = 30, where m1 = 10 − k parts
are sampled from the assembly itself and m2 = 20 parts
from the other shapes in the same batch. During evaluation,
we iterate over all possible combinations of k missing parts
(maximum combinations set to 500 when k > 2). We set
the original toolkit with a size of M = 10. For the blended
toolkit, we set M = 30,m1 = 10− k and m2 = 20.

Baseline Methods
We compare FiT with several baseline methods, including
assembly-based (Sung et al. 2017; Li et al. 2020; Zhan et al.
2020) and generation-based (Yu et al. 2021; Mittal et al. 2022)
completion methods described as follows.

• Complement (Sung et al. 2017) learns the partial shape
with components and non-components by contrastive
learning jointly in the embedding space. We reserve the
PointNet-based embedding networks and pose decoder. We
perform contrastive learning by sampling negative parts
from the toolkit and adapt the decoder to select candidates
and predict 6-DoF poses.

• Single Image (Li et al. 2020) focuses on constructing 3D
assembly guided by a single image. We adapt this method
by taking out the image encoders. We model the incomplete
shape as global feature and candidate parts as local feature
with PointNet and concatenate them for prediction.

• DGL (Zhan et al. 2020) takes iterative graph neural net-
work (GNN) as the core for part relation modeling in
3D part assembly. We replace self-attention and decoder-
encoder attention modules in FiT with GNNs. The predic-
tors are adopted from FiT.

• PoinTr (Yu et al. 2021) is a transformer-based framework
designed for point-aware shape completion, which takes
partial point clouds as input and generates missing regions

Encoder Memory MA↑ SCD↓ PA↑ CA↑
88.45 0.0113 52.93 43.27

✓ 90.67 0.0095 62.68 54.24
✓ 92.67 0.0083 65.24 55.04

✓ ✓ 92.93 0.0069 70.71 62.22

Table 4: Importance of pose concatenation.

Lt Lr Ls Lsym MA↑ SCD↓ PA↑ CA↑
✗ 86.16 0.0112 49.34 44.19

✗ 91.03 0.0076 67.56 58.06
✗ 91.52 0.0081 67.95 58.24

✗ 89.63 0.0082 66.96 56.31
✓ ✓ ✓ ✓ 92.93 0.0069 70.71 62.22

Table 5: Effect of loss components.

of points without any toolkits. We test PoinTr with a dense
prediction in our setting.

• AutoSDF (Mittal et al. 2022) uses signed distance field
(SDF) as 3D representation for auto-regressive shape com-
pletion per voxel. We evaluate AutoSDF by transferring
incomplete assembly represented in point clouds to SDFs
and sample the completion results into point clouds to
compute the metrics.

Main Results and Comparison
Table 1 summarizes the results with different numbers of
missing parts and compositions of toolkit. On the original
toolkit, we obtain 92.93% and 91.14% in match accuracy,
and 70.71% and 76.78% in part accuracy on chair and ta-
ble with k = 1. Table performs better in pose prediction.
The blended configuration is more difficult, which contains
more disturbances and has more impact on match accuracy.
On the blended toolkit, we observe a decline of 6.25% in
match accuracy and 2.38% in part accuracy on table. Fig-
ure 2(a) visualizes qualitative results on the original toolkit.
Figure 2(b) provides some wrong completion results which
remain plausible in structure.

Comparison with baselines. We compare FiT with base-
line methods on the original toolkit with k = 1. Results
are summarized in Table 2. As shown, FiT outperforms all
baseline methods by a significant margin in most metrics, es-
pecially in part accuracy. FiT has an improvement of 8.58%
and 1.88% in part accuracy and match accuracy compared
with DGL, indicating the efficiency of transformer in part
relation modeling. Single Image has an obvious decline in
performance without feature augmentation from part segmen-
tation. Complement drops drastically in part accuracy. This
is because geometrically similar parts introduce undiscrim-
inating positive and negative features, which may confuse
contrastive learning. PoinTr tends to learn an interpolation-
like completion prior and can not precisely catch the region of
missing parts. We report more results on the other categories
in supplementary material.

Multiple missing parts. As shown in Table 1, FiT is also
capable of completing assembly with multiple missing parts.
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Part match Pose pred MA↑ SCD↓ PA↑ CA↑
✓ 84.67 - - -

✓ - 0.0139 51.05 42.62
✓ ✓ 92.93 0.0069 70.71 62.22

Table 6: Ablation for multiple tasks.

Encoder Decoder MA↑ SCD↓ PA↑ CA↑
2 2 90.75 0.0080 67.99 57.29
3 3 92.93 0.0069 70.71 62.22
6 6 87.44 0.0086 67.42 57.87

Table 7: Influence of transformer layers.

When k = 2, we obtains a match accuracy of 61.36% and part
accuracy of 44.14% on chair with original toolkit. We observe
a relatively robust performance while increasing the number
of missing parts by k = 3, 5. It is rather challenging since
each assembly of chair/table/lamp has 10.2/9.1/4.6 parts in
average. For chair and table, k = 5 means approximately half
of the assembly components are taken away. In this case, the
incomplete assembly provides less information and it remains
a larger solution space. This may be destructive for lamp with
an average number of parts less than 5. We also explore the
combination of two missing parts in Table 3, where identical
denotes a pair of geometrically identical parts, prop. denotes
the proportion of identical combination. We report the results
on chair and table, which contains more identical parts. As
shown, an identical combination tends to be easier to select
but more difficult to assemble.

Ablation Study
Pose concatenation. We first study the effect of pose con-
catenation at different stages of transformer. The results are
reported in Table 4. Encoder denotes concatenation at the
input of each self-attention layer in encoder. Memory denotes
concatenation with the memories (i.e., the output of encoder).
As shown, pose concatenation in both encoder and memory
gives the best result. It serves as a direct and effective strategy,
which largely facilitates pose prediction with an improvement
over 17% on part accuracy compared with no concatenation.

Loss components. We evaluate the influence of loss func-
tions by removing each loss component individually. Table 5
summarizes the results. Each component contributes to im-
provement in performance. Especially, translation loss Lt is
dominant in the supervision of pose prediction. We obtain
quite a bit of improvement with Lsym, which indicates that
the designed symmetrical transformation consistency is ef-
fective in guiding the completion of assembly. Figure 2(c)
visualizes an example, where Vanilla denotes FiT without
pose concatenation and Lsym. As shown, the result of vanilla
has a large deviation in pose estimation, and pose concate-
nation alleviates this issue to some extent. The result can be
further polished with Lsym, indicating its effectiveness.

Multi-task learning. 3D assembly completion naturally
forms a multi-task learning setup. We compare multi-task
learning with single-task learning in Table 6. Part match

assembled between legs by FiT, which follows a similar design prior to assembly (b) (i.e. any leg46

should be connected with its neighbors by a bar).47
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Symmetrical transformation consistency. We also provide more qualitative analysis for the48

ablation study of main components. Figure 3 visualizes an example, where Vanilla denotes FiT49

without pose concatenation and Lsym and FiT wo Lsym denotes FiT without Lsym. As shown, the50

result of vanilla has a large deviation in pose estimation, and pose concatenation alleviates this issue51

to some extent. In comparison, the result can be further polished with symmetrical transformation52

consistency’s constraint, indicating its effectiveness.53

Results of different semantic classes. We also explore the learning results of parts with different54

semantic classes. Figure 4 shows the variation of match accuracy and part accuracy of four semantic55

classes in chair. Leg and arm tend to converge more quickly and obtain more accurate results, while56

the center components back and seat remain a gap of nearly 6% in match accuracy and 25% in part57

accuracy.58
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Figure 3: Exploration of (a) self-attention in decoder and (b)
different semantic classes.

denotes the task of candidate classification, where only Lc is
enabled. Pose pred denotes the task of pose prediction and
the ground-truth missing parts are assumed to be known. As
shown, multi-task learning obtains better results compared
with single-task learning, which indicates that the two tasks
have a mutually reinforcing effect rather than conflict.

Encoder-decoder layers. We also examine the influence of
encoder-decoder layers in Table 7. A 3-layer structure gives
the best result. Stacking more layers does not work well in our
task and on the contrary, may increase time consumption in
training and inference. We choose a 3-layer configuration as
default, considering both performance and inference speed.

Self-attention of queries. We further explore the function
of self-attention mechanism adopted for candidate parts in
the decoder. We achieve this by varying m2, the number of
parts that are sampled from another shape in blended toolkit.
We set m2 = 0, 10, 20. The results are demonstrated in Fig-
ure 3(a). Compared on any configuration, the transformer
with self-attention (w for short in figure) generally has ad-
vantages in pose prediction. When m2 varies from 0 to 20,
decoder without self-attention (wo for short in figure) has a
sharper decline in both metrics than that with self-attention.
This indicates that the transformer with self-attention in de-
coder obtains a more robust performance with more candi-
dates added to the toolkit, in terms of both tasks.

Different semantic classes. We also explore the learning
results of parts with different semantic classes. Figure 3(b)
shows the variation of part accuracy of four semantic classes
on chair during training. Leg and arm tend to converge more
quickly and obtain more accurate results, while the center
components back and seat remain a gap of nearly 25%.

Conclusions
In this paper, we propose a novel task of 3D assembly com-
pletion, which aims to finish an incomplete assembly with
the toolkit. We propose FiT, a transformer-based framework
to tackle this problem. We also design two typical toolkits
which are common cases in practical for reasonable evalu-
ation. Extensive experiments and analysis demonstrate the
effectiveness of FiT in various evaluation configurations and
also set a strong baseline for reference. Further work may
deal with 3D assembly completion with unfixed number of
missing parts and test the model in real environment with
real scanned data.
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Saupe, D.; and Vranić, D. V. 2001. 3D model retrieval with
spherical harmonics and moments. In Joint Pattern Recogni-
tion Symposium, 392–397. Springer.
Stewart, R.; Andriluka, M.; and Ng, A. Y. 2016. End-to-end
people detection in crowded scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
2325–2333.
Sung, M.; Dubrovina, A.; Kim, V. G.; and Guibas, L. 2018.
Learning fuzzy set representations of partial shapes on dual
embedding spaces. In Computer Graphics Forum, volume 37,
71–81. Wiley Online Library.
Sung, M.; Su, H.; Kim, V. G.; Chaudhuri, S.; and Guibas,
L. 2017. ComplementMe: Weakly-supervised component
suggestions for 3D modeling. ACM Transactions on Graphics
(TOG), 36(6): 1–12.
Tchapmi, L. P.; Kosaraju, V.; Rezatofighi, H.; Reid, I.; and
Savarese, S. 2019. Topnet: Structural point cloud decoder.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 383–392.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. Advances in neural information processing
systems, 30.
Vranic, D. V.; and Saupe, D. 2004. 3D model retrieval. Ph.D.
thesis, Citeseer.
Wang, M.; Gao, Y.; Lu, K.; and Rui, Y. 2012. View-based
discriminative probabilistic modeling for 3D object retrieval
and recognition. IEEE Transactions on Image Processing,
22(4): 1395–1407.

2670



Wen, X.; Li, T.; Han, Z.; and Liu, Y.-S. 2020. Point cloud
completion by skip-attention network with hierarchical fold-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 1939–1948.
Wu, R.; Zhuang, Y.; Xu, K.; Zhang, H.; and Chen, B. 2020.
Pq-net: A generative part seq2seq network for 3d shapes.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 829–838.
Xie, X.; Xu, K.; Mitra, N. J.; Cohen-Or, D.; Gong, W.; Su,
Q.; and Chen, B. 2013. Sketch-to-design: Context-based
part assembly. In Computer Graphics Forum, volume 32,
233–245. Wiley Online Library.
Yan, X.; Lin, L.; Mitra, N. J.; Lischinski, D.; Cohen-Or, D.;
and Huang, H. 2022. Shapeformer: Transformer-based shape
completion via sparse representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 6239–6249.
Yin, K.; Chen, Z.; Chaudhuri, S.; Fisher, M.; Kim, V. G.; and
Zhang, H. 2020. Coalesce: Component assembly by learning
to synthesize connections. In 2020 International Conference
on 3D Vision (3DV), 61–70. IEEE.
Yoo, C. H.; and Lee, S. 2011. Stability of structures: princi-
ples and applications. Elsevier.
Yu, X.; Rao, Y.; Wang, Z.; Liu, Z.; Lu, J.; and Zhou, J. 2021.
Pointr: Diverse point cloud completion with geometry-aware
transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, 12498–12507.
Yu, X.; Tang, L.; Rao, Y.; Huang, T.; Zhou, J.; and Lu, J. 2022.
Point-bert: Pre-training 3d point cloud transformers with
masked point modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
19313–19322.
Yuan, W.; Khot, T.; Held, D.; Mertz, C.; and Hebert, M.
2018. Pcn: Point completion network. In 2018 International
Conference on 3D Vision (3DV), 728–737. IEEE.
Zhan, G.; Fan, Q.; Mo, K.; Shao, L.; Chen, B.; Guibas, L. J.;
Dong, H.; et al. 2020. Generative 3d part assembly via
dynamic graph learning. Advances in Neural Information
Processing Systems, 33: 6315–6326.
Zhang, R.; Kong, T.; Wang, W.; Han, X.; and You, M. 2022.
3D Part Assembly Generation with Instance Encoded Trans-
former. IEEE Robotics and Automation Letters.
Zhu, C.; Xu, K.; Chaudhuri, S.; Yi, R.; and Zhang, H. 2018.
SCORES: Shape composition with recursive substructure
priors. ACM Transactions on Graphics (TOG), 37(6): 1–14.

2671


