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Abstract

As the quality of optical sensors improves, there is a need
for processing large-scale images. In particular, the ability of
devices to capture ultra-high definition (UHD) images and
video places new demands on the image processing pipeline.
In this paper, we consider the task of low-light image enhance-
ment (LLIE) and introduce a large-scale database consisting of
images at 4K and 8K resolution. We conduct systematic bench-
marking studies and provide a comparison of current LLIE
algorithms. As a second contribution, we introduce LLFormer,
a transformer-based low-light enhancement method. The core
components of LLFormer are the axis-based multi-head self-
attention and cross-layer attention fusion block, which sig-
nificantly reduces the linear complexity. Extensive experi-
ments on the new dataset and existing public datasets show
that LLFormer outperforms state-of-the-art methods. We also
show that employing existing LLIE methods trained on our
benchmark as a pre-processing step significantly improves
the performance of downstream tasks, e.g., face detection in
low-light conditions. The source code and pre-trained models
are available at https://github.com/TaoWangzj/LLFormer.

Introduction
Images taken in low-light conditions typically show notice-
able degradation, such as poor visibility, low contrast, and
high noise levels. To alleviate these effects, a number of
low-light image enhancement (LLIE) methods have been
proposed to transform a given low-light image into a high-
quality image with appropriate brightness. Traditional LLIE
methods are mainly based on image priors or physical models
from other tasks, such as histogram equalization-based meth-
ods (Kim 1997; Stark 2000), retinex-based methods (Kimmel
et al. 2003; Wang et al. 2014) and dehazing-based meth-
ods (Dong et al. 2011; Zhang et al. 2012). Recently, many
learning-based LLIE methods have been introduced, making
use of large-scale synthetic datasets and achieving significant
improvements in terms of performance and speed (Wei et al.
2018; Guo et al. 2020; Lim and Kim 2020; Jiang et al. 2021;
Li, Guo, and Loy 2021; Liu et al. 2021b).

Most existing datasets, e.g., LOL (Wei et al. 2018) and
SID (Chen et al. 2018), consist of lower resolution images
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(1K or less). Thus, LLIE methods trained on these datasets
are naturally constrained to low-resolution images. Sensors
on modern mobile devices are able to capture images of reso-
lutions of 4K or 8K, creating a need for algorithms designed
for processing Ultra-High-Definition (UHD) images. It is dif-
ficult for existing LLIE methods to simultaneously reconcile
inference efficiency and visual enhancement on UHD images.
In this paper, we focus on the task of Ultra-High Definition
Low-Light Image Enhancement (UHD-LLIE). We first build
a large-scale benchmark dataset containing UHD images in
LOw-Light conditions (UHD-LOL) to explore and evaluate
image enhancement algorithms. UHD-LOL includes two sub-
sets, UHD-LOL4K and UHD-LOL8K, containing 4K and
8K-resolution images, respectively. The UHD-LOL4K subset
contains 8, 099 image pairs, 5, 999 for training and 2, 100 for
testing. The subset of UHD-LOL8K includes 2, 966 image
pairs, 2, 029 for training and 937 for testing. Example 4K
and 8K low-light images are shown in Fig. 1.

Using this dataset, we conduct extensive benchmarking
studies to compare existing LLIE methods and highlight
some shortcomings in the UHD setting. We propose a novel
transformer-based method named Low-Light Transformer-
based Network (LLFormer) for the UHD-LLIE task. LL-
Former is composed of two basic units, an efficient axis-based
transformer block and a cross-layer attention fusion block.
Within the axis-based transformer block, the axis-based self-
attention unit performs the self-attention mechanism on the
height and width axes of features across the channel dimen-
sion to capture non-local self-similarity and long-range de-
pendencies with less computational complexity. Moreover,
after the axis-based self-attention, we design a novel dual
gated feed-forward network, which employs a dual gated
mechanism to focus on useful features. The cross-layer atten-
tion fusion Block learns attention weights across features in
different layers and adaptively fuses features with the learned
weights to improve feature representation. The LLFormer
adopts a hierarchical structure, which greatly alleviates the
computational bottleneck for the UHD-LLIE task.

The contributions of this paper are summarized as fol-
lows. (1) We build a benchmark dataset of 4K and 8K UHD
images, UHD-LOL, to explore and evaluate image enhance-
ment algorithms. To the best of our knowledge, this is the first
large-scale UHD low-light image enhancement dataset in the
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(a) 4K images from UHD-LOL4K subset. (b) 8K images from UHD-LOL8K subset.
Figure 1: Low-light images sampled from the proposed UHD-LOL dataset.

literature. (2) Based on UHD-LOL, we benchmark existing
LLIE algorithms to show the performance and limitations of
these methods, offering new insights. (3) We propose a novel
transformer model, LLFormer, for the UHD-LLIE task. In
both quantitative and qualitative aspects, LLFormer achieves
state-of-the-art performance on the public LOL and MIT-
Adobe FiveK datasets, and our UHD-LOL benchmark.

Related Work
Low-Light Image Datasets. Lore et al. (Lore, Akintayo, and
Sarkar 2017) synthesized 422, 500 low-light image patches
from 169 images. (Shen et al. 2017) created an LLIE dataset
of 10, 000 image pairs. (Chen et al. 2018) built the See-in-
the-Dark (SID) dataset. It contains 5, 094 short-exposure low-
light raw images and their corresponding long-exposure ones.
(Cai, Gu, and Zhang 2018) synthesized the SICE dataset
from 589 image sequences with multi-exposure image fusion
(MEF) or a high dynamic range (HDR) algorithm. (Wei et al.
2018) created the LOw-Light (LOL) dataset, which consists
of 485 image pairs for training and 15 for testing. Based on
the LOL dataset, Liu et al. (Liu et al. 2021a) created VE-LOL-
L for training and evaluating LLIE methods, which includes
2, 100 images for training and 400 for evaluation. MIT-Adobe
FiveK (Bychkovsky et al. 2011) consists of 5, 000 images
captured of various indoor and outdoor scenes.

Low-Light Image Enhancement Methods. Data-driven
methods have been successfully applied to the LLIE task. For
example, RetinexNet in (Wei et al. 2018) combines Retinex
theory and deep CNNs in a unified end-to-end learning frame-
work. Recently, data-driven methods based on transformers
have been applied to low-level tasks: Uformer (Wang et al.
2022) uses a modified Swin transformer block (Liu et al.
2021c) to build a U-shaped network, showing good perfor-
mance in image restoration. Restormer (Zamir et al. 2022) in-
troduces modifications of the transformer block for improved
feature aggregation for image restoration. While transformers
work well in many tasks, their potential for low-light image
enhancement remains unexplored. In this work, we focus on
designing a transformer for UHD LLIE.

Benchmark and Methodology
Benchmark Dataset
We create a new large-scale UHD-LLIE dataset called UHD-
LOL to benchmark the performance of existing LLIE meth-
ods and explore the UHD-LLIE problem. UHD-LOL is com-
posed of 4K images of 3, 840 × 2, 160 resolution and 8K
images of 7, 680× 4, 320 resolution, respectively. To build
this dataset of image pairs, we use normal-light 4K and 8K

images from public data (Zhang et al. 2021). These UHD
images were crawled from the web and captured by vari-
ous devices. Images contain both indoor and outdoor scenes,
including buildings, streets, people, animals, and natural land-
scapes. We synthesize corresponding low-light images fol-
lowing (Wei et al. 2018), which takes both the low-light degra-
dation process and natural image statistics into consideration.
Specifically, we first generate three random variables X , Y ,
Z, uniformly distributed in (0, 1). We use these variables
to generate parameters provided by the Adobe Lightroom
software. The parameters include exposure (−5+5X2), high-
lights (50min{Y, 0.5}+ 75), shadows (−100min{Z, 0.5}),
vibrance (−75 + 75X2), and whites (16(5 − 5X2)). The
synthesized low-light and normal-light images make up our
UHD-LOL, which consists of two subsets: UHD-LOL4K
and UHD-LOL8K. The UHD-LOL4K subset contains 8, 099
pairs of 4K low-light/normal-light images. Among them,
5, 999 pairs of images are used for training and 2, 100 for
testing. The UHD-LOL8K subset includes 2, 966 pairs of
8K low-light/normal-light images, which are split into 2, 029
pairs for training and 937 for testing. Example images are
shown in Fig. 1.

LLFormer Architecture

As illustrated in Fig. 2, the overall architecture of LLFormer
is a hierarchical encoder-decoder structure. Given a low-
light image I ∈ RH×W×3, LLFormer first employs a 3× 3
convolution as a projection layer to extract shallow feature
F0 ∈ RH×W×C . Next, F0 is fed into three sequential trans-
former blocks to extract deeper features. More specifically,
intermediate features outputted from transformer blocks
are denoted as F1,F2,F3 ∈ RH×W×C . These features
F1,F2,F3 pass through the proposed cross-layer attention
fusion block to be aggregated and transformed into the en-
hanced image features F4. Second, four stages in an encoder
are used for deep feature extraction on F4. To be specific,
each stage contains one downsampling layer and multiple
transformer blocks. From top to bottom stages, the number
of transformer blocks increases. We use the pixel-unshuffle
operation (Shi et al. 2016) to downscale the spatial size and
double the channel number. Therefore, features in the i-th
stage of the encoder can be denoted as Xi ∈ R

H

2i
×W

2i
×2iC

and i = 0, 1, 2, 3 corresponding to the four stages. Subse-
quently, the low-resolution latent feature X3 passes through
a decoder which contains three stages and takes X3 as input
and progressively restores the high-resolution representations.
Each stage is composed of an upsampling layer and multiple
transformer blocks. Features in the i-th stage of decoder are
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Figure 2: LLFormer architecture. The core design of LLFormer includes an axis-based transformer block and a cross-layer
attention fusion block. In the former, axis-based multi-head self-attention performs self-attention on the height and width axis
across the channel dimension sequentially to reduce the computational complexity, and a dual gated feed-forward network
employs a gated mechanism to focus more on useful features. The cross-layer attention fusion block learns the attention weights
of features in different layers when fusing them.

denoted as X′
i ∈ R

H

2i
× H

2i
×2i+1C , i = 0, 1, 2. We apply the

pixel-shuffle operation (Shi et al. 2016) for upsampling. To
alleviate the information loss in the encoder and for features
to be well recovered in the decoder, we use the weighted
skip connection with a 1× 1 convolution for feature fusion
between the encoder and decoder, which can flexibly adjust
the contributions of the features from encoder and decoder.
Third, after the decoder, the deep feature F in turn passes
through three transformer blocks and a cross-layer attention
fusion block to generate the enhanced features for image re-
construction. Finally, LLFormer applies a 3× 3 convolution
on the enhanced features to yield the enhanced images Î . We
optimize LLFormer using a smooth L1 loss (Girshick 2015).

Axis-Based Transformer Block
Transformers were shown to have advantages in modeling
non-local self-similarity and long-range dependencies com-
pared to CNNs. However, as discussed in (Vaswani et al.
2017; Liu et al. 2021c), the computational cost of the stan-
dard transformer is quadratic with respect to the spatial size
of input feature maps (H ×W ). Moreover, it often becomes
infeasible to apply transformers to high-resolution images
especially UHD images. To address this problem, we propose
an axis-based multi-head self-attention (A-MSA) mechanism
in the transformer block. The computational complexity of
A-MSA is linear in spatial size, which greatly reduces the
computational complexity. Further, we introduce a dual gated
mechanism in the plain transformer feed-forward network
and propose the dual gated feed-forward network (DGFN)
to capture more important information in features. We inte-
grate our A-MSA and DGFN with the plain transformer units

to build the axis-based transformer block (ATB). As shown
in Fig. 2, an ATB contains an A-MSA, a DGFN, and two
normalization layers. The formula of ATB is:

F′ = A-MSA (LN (Fin)) + Fin,

Fout = DGFN (LN (F′)) + F′,
(1)

where Fin denotes the input of ATB. F′ and Fout are the
outputs of A-MSA and DGFN, respectively. LN is the layer
normalization (Ba, Kiros, and Hinton 2016). In the following,
we provide details of A-MSA and DGFN.

Axis-Based Multi-head Self-Attention. The computa-
tional complexity of the standard self-attention is quadratic
with the resolution of input, i.e., O

(
W 2H2

)
for H × W

feature maps. Instead of computing self-attention globally,
we propose A-MSA, as illustrated in Fig. 2, to compute self-
attention on the height and width axes across the channel
dimension sequentially. Thanks to this operation, the com-
plexity of our A-MSA is reduced to linear. Moreover, to
alleviate the limitation of transformers in capturing local
dependencies, we employ depth-wise convolutions to help
A-MSA focus on the local context before computing a feature
attention map (Zamir et al. 2022; Wang et al. 2022). Since
the mechanisms of height and width axis multi-head self-
attention are similar, we thus only introduce the details of
height axis multi-head self-attention for ease of illustration.

For height axis multi-head attention, as shown in Fig. 3 (a),
given feature X ∈ RH×W×C output from the normalization
layer, we at first apply 1×1 convolutions to enhance the input
feature X, and use 3× 3 depth-wise convolutions to obtain
features with enriched local information. Then, the output
features from 3×3 depth-wise convolutions are query Q, key
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Figure 3: The architecture of our axis-based multi-head self-attention and dual gated feed-forward network. From left to right,
the components are height axis multi-head attention, width axis multi-head attention, and dual gated feed-forward network.

K, and value V, as Q = WQ
3×3W

Q
1×1X,K = WK

3×3W
K
1×1X

and V = WV
3×3W

V
1×1X, where W1×1 and W3×3 denote

1 × 1 convolution and 3 × 3 depth-wise convolution, re-
spectively. After that, the query and key are reshaped for
conducting dot-product to generate height axis attention map
A ∈ RH×H×W . To achieve multi-head self-attention, we
split the reshaped Q̂, K̂ and V̂ into k heads along the fea-
ture channel dimension respectively, as Q̂ = [q̂1, . . . , q̂k],
K̂ =

[
k̂1, . . . , k̂k

]
, V̂ = [v̂1, . . . , v̂k], where the dimension

of each head is dk = C/k. The height axis multi-head self-
attention for the j-th head can be formulated as:

SA
(
q̂j , k̂j , v̂j

)
= v̂jsoftmax

(
q̂j k̂j/α

)
, (2)

where q̂j ∈ RH×dk×W , k̂j ∈ Rdk×H×W and v̂j ∈
Rdk×H×W denote the j-th head of Q̂, K̂ and V̂, respectively.
α is a scale factor. The output feature X′ can be obtained by:

X′ = W1×1Concatkj=0

(
SA

(
q̂j , k̂j , v̂j

))
, (3)

where Concat represents the concatenation operation. Fi-
nally, we reshape X′ to obtain the output feature Xout ∈
RH×W×C of height axis multi-head attention. Xout is for-
warded to the width axis multi-head attention (see Fig. 3 (b))
to compute self-attention along the width axis.

Dual Gated Feed-Forward Network. Previous work sug-
gests that Feed-Forward Networks (FFN) demonstrate a limi-
tation in capturing local context (Vaswani et al. 2017; Doso-
vitskiy et al. 2021). For efficient feature transformations,
we introduce a dual gated mechanism and local information
enhancement in FFN, and propose a novel dual gated feed-
forward network (DGFN). As shown in Fig. 3 (c), for the dual
gated mechanism, we first apply dual GELU and element-
wise product in two parallel paths to filter the less informative
features and then fuse useful information from two paths with
an element-wise sum. Further, we apply a 1× 1 convolution
(W1×1) and a 3× 3 depth-wise convolution (W3×3) in each
path to enrich the local information. Given Y ∈ RH×W×C

as input, the complete DGFN is formulated as:

DG = ϕ
(
W 1

3×3W
1
1×1Y

)
⊙ (W 2

3×3W
2
1×1Y)

+ (W 1
3×3W

1
1×1Y)⊙ ϕ

(
W 2

3×3W
2
1×1Y

)
,

Ŷ = W1×1DG(Y) +Y,

(4)

where Ŷ ∈ RH×W×C represents the output features, DG
denotes the dual gated mechanism, ⊙ is the element-wise
multiplication operation, and ϕ is the GELU activation func-
tion.

Cross-Layer Attention Fusion Block

Recent transformer-based methods adopt feature connections
or skip connections to combine features from different lay-
ers (Zamir et al. 2022; Wang et al. 2022). However, these
operations do not fully exploit dependencies across differ-
ent layers, limiting the representation capability. To address
this, we propose a novel cross-layer attention fusion block
(CAFB), which adaptively fuses hierarchical features with
learnable correlations among different layers. The intuition
behind CAFB is that activations at different layers are a re-
sponse to a specific class, and feature correlations can be
adaptively learned using a self-attention mechanism.

The CAFB architecture is shown in Fig. 4. Given concate-
nation features (Fin ∈ RN×H×W×C) from N successive
layers (N = 3 in the experiments), we first reshape Fin into
F̂in with dimensions H ×W ×NC. Like self-attention in
ATB, we employ 1× 1 convolutions to aggregate pixel-wise
cross-channel context followed by 3× 3 depth-wise convolu-
tions to yield Q, K and V. We then reshape the query and
key into 2D matrices of dimensions N × HWC (Q̂) and
HWC ×N (K̂) to calculate the layer correlation attention
matrix A of size N ×N . Finally, we multiply the reshaped
value V̂ ∈ RHWC×N by the attention matrix A with a scale
factor α, and add the input features Fin. The CAFB process
is formulated as:

F̂out = W1×1Layer_Attention (Q̂, K̂, V̂) + F̂in,

Layer_Attention (Q̂, K̂, V̂) = V̂softmax(Q̂K̂/α),
(5)

where F̂out is the output feature that focuses on informative
layers of the network. In practice, we place the proposed
CAFB in the symmetric position of the head and tail in the
network, so that CAFB helps capture long-distance depen-
dencies among hierarchical layers in both feature extraction
and image reconstruction processes.
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Experiments and Analysis
Implementation Details
The LLFormer is trained on 128× 128 patches with a batch
size of 12. For data augmentation, we adopt horizontal and
vertical flips. We use the Adam optimizer with an initial
learning rate of 10−4 and decrease it to 10−6 using cosine
annealing. The numbers of encoder blocks in the LLFormer
from stage 1 to stage 4 are {2, 4, 8, 16}, and the number
of attention heads in A-MSA are {1, 2, 4, 8}. The numbers
corresponding to decoders from stage 1 to 3 are {2, 4, 8}
and {1, 2, 4}. For benchmarking, we compare 16 representa-
tive LLIE methods, including seven traditional non-learning
methods (BIMEF (Ying, Li, and Gao 2017), FEA (Dong
et al. 2011), LIME (Guo, Li, and Ling 2016), MF (Fu et al.
2016a), NPE (Wang et al. 2013), SRIE (Fu et al. 2016b),
MSRCR (Jobson, Rahman, and Woodell 1997)), three super-
vised CNN-based methods (RetinexNet (Wei et al. 2018),
DSLR (Lim and Kim 2020), KinD (Zhang, Zhang, and
Guo 2019)), two unsupervised CNN-based methods (EL-
GAN (Jiang et al. 2021), RUAS (Liu et al. 2021b)), two
zero-shot learning-based methods (Z_DCE (Guo et al. 2020),
Z_DCE++ (Li, Guo, and Loy 2021) ) and two supervised
transformer-based methods (Uformer (Wang et al. 2022),
Restormer (Zamir et al. 2022)). For each method, we use the
publicly available code and train each learning-based method
for 300 epochs. For ELGAN, we directly use its pre-trained
model for testing. Performance is evaluated with the PSNR,
SSIM, LPIPS, and MAE metrics.

Benchmarking Study for UHD-LLIE
UHD-LOL4K Subset. We test 16 different state-of-the-art
LLIE methods and our proposed LLFormer on the UHD-
LOL4K subset. The quantitative results are reported in Table
1. According to Table 1, we can find that traditional LLIE
algorithms (BIMEF, FEA, LIME, MF, NPE, SRIE, MSRCR)
generally do not work well on UHD-LOL4K. Among them,
the quantitative scores (PSNR, SSIM, LPIPS, MAE) of some
methods are even worse than those of unsupervised learn-
ing methods (RUAS, ELGAN). The results of CNN-based
supervised learning methods (see RetiunexNet, DSLR, and
KID) are better than unsupervised learning-based and zero-
shot learning-based methods, which is expected. Among the
CNN-based methods, DSLR obtains the best performance in

terms of PSNR, SSIM, LPIPS, and MAE. Compared with
CNN-based supervised learning methods, the performances
of transformer-based supervised learning methods (Uformer,
Restormer, and LLFormer) are greatly improved. Among
these, the proposed LLFormer obtains the best performance,
achieving a 0.42 dB improvement in PSNR compared to
Restormer. A visual comparison is shown in Fig. 5. The
image recovered by LLFormer contains vivid colors and is
closer to the ground truth.

UHD-LOL8K Subset. We also conduct benchmarking
experiments on the UHD-LOL8K subset by partitioning each
8K image into 4 patches of 4K resolution. The last four
columns of Table 1 show the evaluation results. Deep learn-
ing methods RetinexNet, DSLR, Uformer, Restormer, and
LLFormer achieve better performance on both pixel-wise and
perceptual metrics. Transformer-based methods achieve top
ranks for all evaluation metrics with LLFormer outperform-
ing other methods. As shown in Fig. 5, LLFormer produces
visually pleasing results with more details.

Improving Downstream Tasks. To verify whether LLIE
is beneficial for downstream tasks, we randomly select
300 images from the DARK FACE dataset (Yang et al.
2020) and pre-process these images using the top three
methods in our benchmark study. We then detect faces us-
ing RetinaFace (Deng et al. 2020). When using the pre-
processing step, the average precision (AP) values for
Uformer, Restormer, and LLFormer improve by 67.06%,
68.11%, and 71.2%, respectively. Visual results are shown
in Fig. 6. Pre-trained LLIE models not only generate im-
ages with adequate color balance, but also help improve the
performance of downstream tasks.

Comparison Results on Public Datasets
We benchmark LLFormer on the LOL (Wei et al. 2018) and
MIT-Adobe FiveK (Bychkovsky et al. 2011) datasets, com-
paring it with 14 methods specifically designed for LLIE and
two transformer-based methods. We use published code to re-
train Uformer and Restormer on these datasets, respectively.
Results are shown in Table 2. LLFormer achieves signifi-
cantly higher performance on the LOL dataset, obtaining
higher PSNR, SSIM, and MAE scores than Restormer. In
terms of LPIPS, LLFormer ranks in second place. On the
MIT-Adobe FiveK dataset, transformer-based methods rank
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Methods UHD-LOL4K UHD-LOL8K
PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓

input images 11.9439 0.5295 0.3125 0.2591 13.7486 0.6415 0.3104 0.2213
BIMEF† (Ying, Li, and Gao 2017) 18.1001 0.8876 0.1323 0.1240 19.5225 0.9099 0.1825 0.1048
FEA† (Dong et al. 2011) 18.3608 0.8161 0.2197 0.0986 15.3301 0.7699 0.3696 0.1700
LIME† (Guo, Li, and Ling 2016) 16.1709 0.8141 0.2064 0.1285 13.5699 0.7684 0.3055 0.2097
MF† (Fu et al. 2016a) 18.8988 0.8631 0.1358 0.1111 18.2474 0.8781 0.2158 0.1258
NPE† (Wang et al. 2013) 17.6399 0.8665 0.1753 0.1125 16.2283 0.7933 0.3214 0.1506
SRIE† (Fu et al. 2016b) 16.7730 0.8365 0.1495 0.1416 19.9637 0.9140 0.1813 0.0975
MSRCR† (Jobson, Rahman, and Woodell 1997) 12.5238 0.8106 0.2136 0.2039 12.5238 0.7201 0.4364 0.2352
RetinexNet‡ (Wei et al. 2018) 21.6702 0.9086 0.1478 0.0690 21.2538 0.9161 0.1792 0.0843
DSLR‡ (Lim and Kim 2020) 27.3361 0.9231 0.1217 0.0341 21.9406 0.8749 0.2661 0.0805
KinD‡ (Zhang, Zhang, and Guo 2019) 18.4638 0.8863 0.1297 0.1060 17.0200 0.7882 0.1739 0.1538
Z_DCE§ (Guo et al. 2020) 17.1873 0.8498 0.1925 0.1465 14.1593 0.8141 0.2847 0.1914
Z_DCE++§ (Li, Guo, and Loy 2021) 15.5793 0.8346 0.2223 0.1701 14.6837 0.8348 0.2466 0.1904
RUAS△ (Liu et al. 2021b) 14.6806 0.7575 0.2736 0.1690 12.2290 0.7903 0.3557 0.2445
ELGAN△ (Jiang et al. 2021) 18.3693 0.8642 0.1967 0.1011 15.2009 0.8376 0.2293 0.1713
Uformer⋆ (Wang et al. 2022) 29.9870 0.9804 0.0342 0.0262 28.9244 0.9747 0.0602 0.0344
Restormer⋆ (Zamir et al. 2022) 36.9094 0.9881 0.0226 0.0117 35.0568 0.9858 0.0331 0.0195
LLFormer⋆ 37.3340 0.9889 0.0200 0.0116 35.4313 0.9861 0.0267 0.0194

Table 1: Benchmarking study on the UHD-LOL4K and UHD-LOL8K subsets. †, ‡, §,△ and ⋆ indicate the traditional methods,
supervised CNN-based methods, unsupervised CNN-based methods, zero-shot methods and transformer-based methods.

Input RetinexNet DSLR ELGAN Uformer Restormer LLFormer GT

Figure 5: Visual results on the UHD-LOL. The top and bottom rows are from the UHD-LOL4K and UHD-LOL4K subsets.

RetinaFace + input image RetinaFace + Uformer

RetinaFace + Restormer RetinaFace + LLFormer

Figure 6: Enhanced visual results and face detection results.

at the top and LLFormer achieves the best results on all met-
rics. Among the best three transformer-based methods, the
overhead (parameters and multiply-accumulate operations)
for Uformer, Restormer and LLFormer are 38.82M/76.67G,
26.10M/140.99G and 24.52M/22.52G (measured on 256×
256 images), respectively. This shows that the proposed LL-
Former achieves the best performance with efficient use of

resources. This is due to the design of LLFormer, where the
axis-based multi-head self-attention and hierarchical struc-
ture help to decrease the computational complexity.

Ablation Studies
We conduct ablation studies by measuring the contributions
of the following factors: (1) Axis-based Multi-head Self At-
tention; (2) Dual Gated Feed-Forward Network; (3) Weighted
skip connection; (4) Cross-layer Attention Fusion Block; (5)
Width and depth of the network. Experiments are performed
on the UHD-LOL4K subset, and models are trained on image
patches of size 128× 128 for 100 epochs.

A. Axis-Based Transformer Block. We measure the im-
pact of the proposed axis-based multi-head self attention and
dual gated feed-forward network (FFN), see Table 3. Com-
pared with the base model using Resblock (Lim et al. 2017),
our A-MSA (either height or width) and DGFN significantly
contribute to the improvements. When using depth-wise con-
volution to enhance locality in self-attention (compare Table
3 (d) and (h) or the feed-forward network (compare Table 3
(f) and (h)), the improvements in terms of PSNR are 0.89,
0.75, respectively. By applying the dual gated mechanism,
PSNR and SSIM are improved by 3.42 and 0.0081 (see Table
3 (g), (h)). Using the dual gated mechanism together with lo-
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Methods LOL MIT-Adobe FiveK
PSNR ↑SSIM ↑LPIPS ↓MAE ↓ PSNR ↑SSIM ↑LPIPS ↓MAE ↓

BIMEF (Ying, Li, and Gao 2017) 13.8752 0.5950 0.3264 0.2063 17.9683 0.7972 0.1398 0.1134
FEA (Dong et al. 2011) 16.7165 0.4784 0.3847 0.1421 15.2342 0.7161 0.1949 0.1512
LIME (Guo, Li, and Ling 2016) 16.7586 0.4449 0.3945 0.1200 13.3031 0.7497 0.1319 0.2044
MF (Fu et al. 2016a) 16.9662 0.5075 0.3796 0.1416 17.6271 0.8143 0.1204 0.1194
NPE (Wang et al. 2013) 16.9697 0.4839 0.4049 0.1290 17.3840 0.7932 0.1320 0.1224
SRIE (Fu et al. 2016b) 11.8552 0.4954 0.3401 0.2571 18.6273 0.8384 0.1047 0.1030
MSRCR (Jobson, Rahman, and Woodell 1997) 13.1728 0.4615 0.4350 0.2067 13.3149 0.7515 0.1767 0.1993
RetinexNet (Wei et al. 2018) 16.7740 0.4250 0.4739 0.1256 12.5146 0.6708 0.2535 0.2068
DSLR (Lim and Kim 2020) 14.9822 0.5964 0.3757 0.1918 20.2435 0.8289 0.1526 0.0880
KinD (Zhang, Zhang, and Guo 2019) 17.6476 0.7715 0.1750 0.1231 16.2032 0.7841 0.1498 0.1379
Z_DCE (Guo et al. 2020) 14.8607 0.5624 0.3352 0.1846 15.9312 0.7668 0.1647 0.1426
Z_DCE++ (Li, Guo, and Loy 2021) 14.7484 0.5176 0.3284 0.1801 14.6111 0.4055 0.2309 0.1539
RUAS (Liu et al. 2021b) 16.4047 0.5034 0.2701 0.1534 15.9953 0.7863 0.1397 0.1426
ELGAN (Jiang et al. 2021) 17.4829 0.6515 0.3223 0.1352 17.9050 0.8361 0.1425 0.1299
Uformer (Wang et al. 2022) 18.5470 0.7212 0.3205 0.1134 21.9171 0.8705 0.0854 0.0702
Restormer (Zamir et al. 2022) 22.3652 0.8157 0.1413 0.0721 24.9228 0.9112 0.0579 0.0556
LLFormer 23.6491 0.8163 0.1692 0.0635 25.7528 0.9231 0.0447 0.0505

Table 2: Comparison results on LOL and MIT-Adobe FiveK datasets.

Variant Component MACs Params PSNR/SSIM
Base (a) Resblock 11.90G 13.87M 31.92/0.9771

Multi-head
attention

(b) A-MSA (Height)
+ DGFN 13.60G 14.77M 35.15/0.9836

(c) A-MSA (Width)
+ DGFN 13.60G 14.77M 34.98/0.9832

(d)A-MSA + DGFN 16.26G 19.78M 35.31/0.9843
(e) A-MSA + FFN 18.90G 20.62M 23.33/0.9111

FFN (f) A-MSA + DGFN 21.47G 24.18M 35.83/0.9846
(g)A-MSA + DGFN 25.52G 24.52M 32.78/0.9786

LLFormer (h)A-MSA + DGFN 22.52G 24.52M 36.20/0.9867

Table 3: Ablation study on Transformer Block. (a) refers to
model with Resblock, (d) refers to A-MSA without depth-
wise convolution, (f) is DGFN without depth-wise convolu-
tion, and (g) is DGFN without the dual gated mechanism.

cality yields the best results. In contrast, combining A-MSA
with the conventional FFN (Vaswani et al. 2017), degrades
the performance (Table 3 (e)). This indicates that designing
an appropriate FFN is critical for the transformer block.

B. Skip Connection and Fusion Block. To validate the
weighted connection and cross-layer attention fusion block,
we conduct ablation studies by progressively removing the
corresponding components: (1) skip, (2) 1× 1 convolution,
(3) skip with 1 × 1 convolution, (4) head CAFB, (5) tail
CAFB, (6) all CAFBs. Table 4 shows the results in terms of
PSNR and SSIM, which indicate that each component helps
improve the results. The model improves significantly when
including CAFB and weighted skip connections. We observe
a minor gain when applying 1× 1 convolutions.

C. Wider vs. Deeper. To study the effect of width and
depth in the network, we conduct experiments to increase
the width (channels) and depth (number of encoder stages)
of LLFormer. Table 5 shows the results. The results demon-
strate that LLFormer strikes the best trade off between per-
formance and complexity (36.20/0.9867, 22.52G, 24.52M,

Variant Component MACs Params PSNR/SSIM

Skip
w/o skip 22.52G 24.52M 35.45/0.9844
w/o conv 22.47G 24.50M 35.90/0.9852

w/o skip+conv 22.47G 24.50M 35.12/0.9847

CAFB
w/o head CAFB 21.76G 24.51M 35.57/0.9847
w/o tail CAFB 21.76G 24.51M 35.81/0.9852

w/o CAFB 21.00G 24.50M 35.10/0.9835
LLFormer contain all 22.52G 24.52M 36.20/0.9867

Table 4: Ablation study on connection and fusion.

Variant W/D MACs Params PSNR/SSIM Speed
LLFormer 16/4 22.52G 24.52M 36.20/0.9867 0.063 s

Wider
32/4 81.92G 95.63M 36.91/0.9871 0.120 s
48/4 111.22G 114.49M 37.44/0.9880 0.152 s
64/4 311.16G 377.64M 38.00/0.9881 0.193 s

Deeper
16/3 14.88G 3.51M 20.19/0.9432 0.054s
16/5 29.53G 106.77M 36.09/0.9844 0.142 s
16/6 36.45G 432.25M 35.62/0.9847 0.181 s
16/7 43.32G 1727.08M 35.41/0.9845 0.217 s

Table 5: "Wider vs. Deeper" analysis.

0.063s), compared to its wider or deeper counterparts.

Conclusion
In this paper, we build the first large-scale low-light UHD im-
age enhancement benchmark dataset, which consists of UHD-
LOL4K and UHD-LOL8K subsets. Based on this dataset, we
conduct comprehensive experiments for UHD-LLIE. To the
best of our knowledge, this is the first attempt to specifically
address the UHD-LLIE task. We propose the first transformer-
based baseline network called LLFormer for UHD-LLIE.
Extensive experiments show that LLFormer significantly out-
performs other state-of-the-art methods.
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