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Abstract

In this work, we propose a real-time monocular 3D video
reconstruction approach named Flora for reconstructing del-
icate and complete 3D scenes from RGB video sequences
in an end-to-end manner. Specifically, we introduce a novel
method with two main contributions. Firstly, the proposed
feature aggregation module retains both color and relia-
bility in a dual-frequency form. Secondly, the loss com-
pensation module solves missing structure by correcting
losses for falsely pruned voxels. The dual-frequency fea-
ture aggregation module enhances reconstruction quality
in both precision and recall, and the loss compensation
module benefits the recall. Notably, both proposed con-
tributions achieve great results with negligible inferencing
overhead. Our state-of-the-art experimental results on real-
world datasets demonstrate Flora’s leading performance in
both effectiveness and efficiency. The code is available at
https://github.com/NoOneUST/Flora.

1 Introduction

3D dense reconstruction has been one of the most funda-
mental ways to model the real world for the past decades and
is becoming more and more crucial due to its fundamental
place in robotics and virtual reality (VR). As real-life appli-
cations for 3D reconstruction develop, diverse technical re-
quirements for 3D reconstruction emerge. For instance, the
3D reconstruction based on images or videos has become
a mainstream solution for its usage of the most accessible,
low-cost, and convenient sensor, the camera. Furthermore,
the demand for real-time reconstruction was also becoming
intense as many applications such as robotic navigation, vir-
tual reality, and augmented reality(AR) need a real-time re-
sponse. However, achieving real-time performance while re-
taining decent reconstruction quality has been challenging.

1.1 Taxonomy of Reconstruction Methods

Most RGB-based real-time 3D reconstruction methods are
based on deep neural networks (Zeng et al. 2022, 2023;
Zhang et al. 2023; Liang et al. 2022; Liu et al. 2022c) be-
cause of their remarkable success in various tasks, including
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Figure 1: Defects of existing methods. Current SOTA (Neu-
ralRecon by Sun et al.) loses structures, while our method
leads to complete reconstructions. For example, the win-
dows disappear in the current SOTA and even the ground
truth from depth sensors. On the contrary, these windows
are intact in our model.

natural language (Devlin et al. 2019; Brown et al. 2020),
computer vision (Wang and Chen 2023b; Zhang et al. 2022;
Li et al. 2022; Wang et al. 2023), and graph mining (Liu
et al. 2022a,b, 2023d). Specifically, the existing approaches
can generally be divided into depth-map-based and volume-
based. The former genre (e.g., DeepVideoM VS by Duzceker
et al.; Wang and Chen) first predicts depth maps from differ-
ent views and then separately fuses depth predictions to gen-
erate the 3D representation (e.g., meshes and point clouds).
In contrast, the latter (e.g., NeuralRecon by Sun et al.) first
maps feature from different views to a common 3D space,
then based on which a 3D representation is directly pre-
dicted in an end-to-end manner. Typically, the latter is su-
perior in the synthesized quality (F-score) of the final 3D
model (mesh) because it directly optimizes the 3D represen-
tation (e.g., signed distance function).

1.2 Taxonomy of Real-time Reconstruction

Real-time volumetric methods (e.g., NeuralRecon) usually
split video frames into fragments. Afterward, multi-scale
feature maps are extracted from each fragment to enable hi-
erarchical reconstruction. At each scale, the model maps all
the extracted 2D feature maps into a common 3D space and
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Figure 2: Model structure of Flora. Features at multiple resolutions are extracted from the input video sequences. In each scale,
feature volumes from different frames are constructed and then fused by our dual-frequency aggregation module. After that,
an implicit 3D representation is estimated from the sparsified integrated feature. The losses are calculated as the difference
between the 3D prediction and the ground truth and then rectified by the loss compensation module.

then forms a feature volume for each frame. After that, all
the feature volumes are aggregated into one, which is fur-
ther refined to generate a 3D prediction. Then, the scale-wise
loss is calculated as the difference between the prediction
and ground truth. Next, the voxels are pruned according to
the prediction confidence. Finally, the pruned voxels are up-
sampled, then sent to the higher-resolution scales.

1.3 Problems of Existing Methods

However, these methods usually contain holes and are defec-
tive in delicate structures. We argue that there are two main
reasons listed below:

1.

Unreliable multi-frame aggregation: Given prelimi-
nary feature volumes from different frames, utilization of
the rich information influences the reconstruction qual-
ity significantly. However, aggregating information from
multiple frames can be tricky and easily jeopardized
by environmental flaws such as occlusions and adverse
viewpoint changes.

The existing methods aggregate features from multi-
ple frames considering either color (e.g., Neuralrecon)
or reliability (e.g., DeepVideoMVS). Specifically, Deep-
VideoMVS and IS-MVSNet (Wang et al. 2022) fuse
warped views by computing their correlation and vari-
ance, respectively. The fused feature represents each
depth’s reliability because the correct depth leads to
higher correlation and lower variance among warped
views. However, these operations lose the original color
information inside the RGB inputs. Since color is critical
to semantic understanding and semantics is indispensable
to reconstructing texture-less regions, these methods gen-
erally lead to curved or broken large surfaces.

On the opposite, NeuralRecon and Atlas (Murez et al.
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2020) aggregate views by averaging features from dif-
ferent viewpoints. Averaging helps to retain the original
color information because the correct depth leads to sim-
ilar colors among warped views, and the mean of sim-
ilar colors is close to the input. However, it is hard to
distinguish which color corresponds to the correct depth.
Consequently, these methods result in less reliable depth
predictions and less meticulous details in affluent-texture
areas.

. Radical and incorrect voxel pruning: Volume-based

methods (Sun et al. 2021) generally adopt pruning to
reduce computational overhead and utilize real-world
scenes’ sparse nature. Pruning is almost inevitable due to
the hefty cost of computations on dense volumes; how-
ever, it leads to a new problem: the model tends to pro-
duce radical and incorrect voxel pruning.

To specify, a coarse voxel’s existence may be hard to dis-
tinguish because it covers a large area. Figure 3 shows
that the model is puzzled on coarse voxels, thus assign-
ing them confidence around the pruning threshold. If the
confidence is lower than the threshold, then the voxel is
pruned, thus having no loss contribution in finer stages;
otherwise, the voxel is retained and produces significant
losses in finer stages. In other words, although reducing
the confidence of a coarse voxel, which should be re-
served, slightly increases the low-resolution stage loss;
however, the higher-resolution stage loss gets dramati-
cally reduced. Since the model is optimized toward a
smaller total loss accumulated at all stages, it tends to
falsely and radically prune voxels, resulting in incom-
plete reconstructions.
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Figure 3: Loss compensation. Left (a): Radical and incorrect voxel pruning problem. Give a puzzling voxel; if the confidence
prediction (0.51) is higher than the pruning threshold (0.5), it will be retained and up-sampled to generate descendant voxels. If
the estimation is smaller (0.49), it is pruned and produces no offspring in the finer stages. Since the total loss considers voxels
in all phases, the loss will reduce after pruning positive voxels. Right (b): Our loss compensation module predicts finer stage
losses based on the coarse stage loss for falsely pruned voxels.

1.4 Our Contributions

This paper proposes a real-time monocular 3D video re-
construction method called Flora, the abbreviation of dual-
Frequency LOss-compensated ReAl-time 3D reconstruc-
tion, which addresses the two challenges mentioned above
by two novel contributions below:

1. Dual-frequency aggregation: Considering the first
challenge, we propose considering both color and re-
liability because color is essential to smooth surfaces,
and reliability is crucial in rich-texture regions. Instead
of processing these two modalities separately, we al-
low them to collaborate. To specify, we use multi-layer
CNNss to allow semantic propagation from more reliable
to less reliable areas. This way, both non-textured regions
(walls, grounds) and delicate structures are better recov-
ered.

We categorize averaging into low-pass filters and vari-
ance / correlation into high-pass filters because low-pass
filters (e.g., Gaussian) retain the commons and the main
structures of inputs. In contrast, high-pass filters (e.g.,
Sobel 1970, Canny 1986) look for discrepancies and de-
tails. We propose to extract color by low-pass filters and
reliability by high-pass filters, thus calling this module
dual-frequency aggregation.

Although there are many ways (e.g., Fourier, wavelets
transformation) to extract different frequency compo-
nents, most require long signal sequences and high com-
putation demand. However, the number of views is al-
ways minimal (smaller than ten), and the system latency
is crucial to real-time reconstruction. We show that com-
bining the most naive and lightweight filters (averaging
and the L' difference) already leads to significant ef-
fectiveness benefits while retaining state-of-the-art effi-
ciency.

Although averaging and the L' difference are off-the-self
operators, revealing their complemental physical nature
is contributive. Moreover, we provide a highly efficient
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way to decompose multi-view data utilizing geometric
priors. In addition, we suggest a possible direction to
look for better operators by introducing the concept of
low- and high-pass filters.

. Loss compensation: The second challenge significantly
impacts the model training. The difficulty is to efficiently
estimate the losses of all the descendants of each falsely
pruned voxel. However, we cannot directly measure the
loss of a voxel whose ancestor has been pruned. Thus,
we propose to estimate the finer stage losses based on
their ancestors (i.e., the coarse stage loss for each falsely
pruned voxel) using a simple function. We demonstrate
that the mapping function can be accurately regressed
from the data. In this way, falsely pruning voxels be-
comes unfavored to the model because it leads to a higher
coarse stage loss and identical finer stage losses. This
strategy promotes completeness (recall) and is cost-free
in testing.

1.5 Summary
To summarize, we have two contributions:

* We efficiently extract and aggregate two modalities:
color and reliability, from the video sequence. Our
method leads to significant improvements in both preci-
sion and recall while retaining state-of-the-art efficiency.

* We significantly ease the incorrect voxel pruning prob-
lem by estimating the loss of the descendants of each
falsely pruned voxel. Our method greatly improves recall
while retaining state-of-the-art efficiency and precision.

Our method performs better on both precision and recall
while retaining efficiency, equipped with both the dual fre-
quency aggregation module and the loss compensation mod-
ule. Our experiments on real-world datasets corroborate our
strategies’ effectiveness. On ScanNet, we achieve an F-score
of 58.4%, 2.2% higher than the current SOTA (Neuralrecon),
while running in real-time at an FPS of 30 on one single
RTX 2080 Ti GPU.



2 Related Work

This section first discusses multi-view stereo (MVS) be-
cause most monocular reconstruction methods are devel-
oped from MVS. Then, we present state-of-the-art monocu-
lar video reconstruction methods. Finally, we discuss neural
radiance fields because they also construct implicit represen-
tations.

2.1 Multi-view Stereo (MVS)

Most MVS methods focus on offline reconstruction from
multiple views. The first learning-based MVS approach is
SurfaceNet (2017), a divide-and-conquer framework based
on 3D convolutional networks. MVSNet (2018) eases the
spatial demand by first predicting depth maps in a differ-
entiable way and then fusing them into 3D point clouds.
MVSNet aggregates view images using their variance, and
many follow-up works (Wang et al. 2022; Gu et al. 2020;
Zhang et al. 2020) adopt the same or similar solutions (e.g.,
correlation). This strategy works well as a reliability extrac-
tion backbone in our model, although our reliability branch
adopts the L' difference in default for simplicity and higher
efficiency.

2.2 Monocular Video Reconstruction

Instead of images captured from multiple views (Liu et al.
2023a,b), monocular video reconstruction takes temporally
continuous video frames (Liu et al. 2023c) as input. There
are mainly two technical streams: depth-map-based and
volume-based.

Volumetric: As a volume-based method, Atlas (Murez
et al. 2020) fuses features from the entire video into a vol-
ume, which is further decoded to recover the whole sce-
nario. VORTX (Stier et al. 2021) models temporal relation-
ship with transformer. TransformerFusion (Prakash, Chitta,
and Geiger 2021) uses transformers to select frames. Neu-
ralRecon (Sun et al. 2021) converts Atlas into a real-time
approach by incrementally processing video frames within a
sliding window and sparsification.

Depth-based: As for the depth-map-based method,
MVDepthNet (Wang and Shen 2018) constructs 2D cost vol-
umes and then processes them with 2D convolutions. CNM-
Net (Long et al. 2020) considers planar information to make
depth smooth. DeepvideoMVS (Duzceker et al. 2021) tem-
porally propagates information by fusing the warped former
predictions with current features. ESTDepth (Long et al.
2021) models spatial and temporal correlation with trans-
formers. 3DVNet(Rich et al. 2021) utilizes 3D CNNss to pro-
cess depth maps jointly.

Real-time: Among all the mentioned methods, only Neu-
ralRecon and DeepVideoM VS infer in real-time (more than
30 fps) on typical GPUs (e.g., RTX 2080 Ti) while archiv-
ing relatively high effectiveness. Considering NeuralRe-
con’s advantages on the final 3D model’s quality, we inherit
the coarse-to-fine pipeline of NeuralRecon. However, we are
significantly different in integrating the back-projected view
features and calculating the loss function.
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2.3 Neural Radiance Fields

Since the proposal of NeRF (Mildenhall et al. 2020), neu-
ral radiance fields have gained tremendous success in recent
two years. Like the volumetric reconstruction methods, neu-
ral radiance field methods also learn implicit representations
from data. The significant difference is that neural radiance
field methods (Saito et al. 2019) use coordinates to query the
network for results, while volumetric reconstruction meth-
ods predict truncated signed distance function (TSDF) rep-
resentations.

3 Methodology

Our macro pipeline is inherited from NeuralRecon; thus, we
first describe the latter in Section 3.1. Afterward, Sections
3.2 and 3.3 propose our main contributions: novel loss recti-
fication and feature aggregation strategies.

Inputs:

1. Temporally continuous images {I;} extracted from a
video sequence, where ¢ € N denotes the current times-
tamp.

. The corresponding camera poses {{;} estimated by
an off-the-shelf simultaneous localization and mapping
(SLAM) solution.

Goal: Recover the 3D representation of the scenario de-
scribed by the input video sequence.

31

Following NeuralRecon, our model reconstructs in a coarse-
to-fine manner. We temporally divide video frames into non-
overlapped fragments and process them one by one. All im-
ages within the current fragment are sent to a feature pyra-
mid network (FPN) (Lin et al. 2017) for multi-scale repre-
sentation extraction. In each scale, the 2D features from each
view are first back-projected into 3D by the 2D-to-3D pro-
Jjection module, then fused into a feature volume by the fea-
ture aggregation module. After that, the GRU fusion module
is applied to keep consistent along the temporal and spatial
dimensions. Next, we sparsify the voxels with the pruning
module. Finally, the error is back-propagated based on the
loss function module.

Macro Pipeline Inherited from NeuralRecon

Coarse-to-fine: We form a voxel volume in the coarsest
stage s = 0 by sampling from a uniform 3D grid, deter-
mined by the field of view of all the frames within the input
fragment. In the finer stages s > 1, we up-sample eight new
voxels around each voxel that survived after pruning. The
number is eight because we have three dimensions total, and
each dimension is up-sampled by two times. For each up-
sampled voxel at stage s + 1, its updated feature F, | is the
concatenation of the back-projected feature Fis 1, the signed
distance function (SDF), and the occupancy. We maintain
a global SDF volume and replace the corresponding areas
using the sparsified SDF and occupancy predictions at the
finest stage s = 2.
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Figure 4: Our dual-frequency feature aggregation module. We first integrate the color information by averaging the neighboring
frames and then extract the reliability information by differencing. Finally, the color and reliability information get fused by

concatenation.

2D-to-3D projection: Given a voxel in the 3D space, if
it is visible in one view, its projection is the intersection of
this view’s image plane and the line determined by the voxel
and the camera’s optical center. Since we have no idea in
which views the voxel is visible, we collect pixel features
from all the views. After operating on all the sampled vox-
els, we form n,, feature volumes, where n,, is the number of
views.

* Feature aggregation: Its input is the output of the 2D-
to-3D module, i.e., a set of feature volumes projected from
different views; its output is the input of the GRU fusion
module, i.e., one single aggregated feature volume. Neural-
Recon calculates the mean of all views as the aggregated fea-
ture of each voxel. We integrate views by considering both
color and reliability and illustrate the detailed approach in
Section 3.2.

GRU fusion: The aggregated feature is first sent to a
sparse 3D UNet (Cicek et al. 2016) for spatial refinement.
After this, we consider temporal consistency by a convolu-
tional GRU module (Shi et al. 2015). In detail, we have a
sparse volume to store the whole scenario’s 3D represen-
tation, from which we extract the voxels within the current
feature volume’s field of vision. Thanks to sparsification, the
volume does not need much space to store. Then, the pre-
vious predictions and current features are fused by a Con-
vGRU. The updated hidden state replaces the corresponding
area within the global volume. The model estimates two vol-
umes at each stage: occupancy and signed distance function
(SDF). Occupancy € [0,1] denotes whether the voxel ex-
ists, and SDF represents the voxel’s distance to the nearest
surface.

Pruning: Increasing the number of voxels to the cube, un-
avoidable for spatial resolution promotion, significantly in-
creases the computation cost. Therefore, we sparsify the fea-
ture volumes and prune the seemingly unreliable voxels at
the end of each stage after loss calculation. If a voxel’s occu-
pancy is estimated to be less than a threshold, it gets pruned.
Otherwise, we retain it. The threshold is set as 0.5 to balance
positive and negative samples.
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* Loss function: Its input is the output of the MLP pre-
diction heads, i.e., a confidence volume representing the
existence of voxels and an SDF volume representing each
voxel’s distance to the nearest surface. We calculate the con-
fidence loss by a binary cross-entropy function and the dis-
tance loss by a L' function. After obtaining losses at all
stages, we sum them up, then use the summed loss to cal-
culate the gradients. NeuralRecon calculates loss only for
the voxels that survived after pruning. We efficiently mea-
sure all voxels’ losses using our novel loss compensation
strategy elaborated in Section 3.3.

3.2

Given a voxel in the feature volume, its representation {V;}
in frame ¢ € [1,n,], n, denoting the number of frames, is
provided by the 2D-to-3D projection. Since color is impor-
tant to plane smoothness and reliability is crucial to distin-
guishing surface and void, we aim to fuse all frame features
{V;} into one single feature F’ containing both color and re-
liability.

As discussed in Section 1, color and reliability can be ex-
tracted using low- and high-pass filters, respectively.

* Dual-frequency Feature Aggregation

Low-pass: We use a low-pass filter to aggregate {V;} for
retaining the color. For computational efficiency, we adopt
averaging as the low-pass filter. Then, the aggregated color
feature C' = % > Vi Since {V;} coincide at the correct
depth, averaging them retains the original color.

High-pass: We use a high-pass filter to aggregate {V;} for
reliability measures. For efficiency, we adopt the L! differ-
ence as the high-pass filter. Then, the aggregated reliability
feature R = n—lv Yoir, |Vi = C|. Suppose the voxel is on a
surface and is visible; then the image colors should be the
same because they are the correct projections of the voxel.
In consequence, the difference between them is small. Oth-
erwise, the difference is large. Thus, this operation estimates
reliability.

Fuse: Finally, we concatenate the color C' and the reliabil-
ity I? along the channel dimension to obtain the aggregated



Method Abs Rel] Abs Diff] RMSE| Prect Recalll F-scoref Time (ms)|
MVDepthNet (Wang and Shen) 0.10 0.19 0.29 0.208  0.831 0.329 48
GPMYVS (Hou, Kannala, and Solin) 0.13 0.24 0.47 0.188  0.871 0.304 51
DPSNet (Im et al.) 0.09 0.16 0.23 0.223  0.793 0.344 322
COLMAP (Schonberger et al.) 0.14 0.26 0.50 0.505 0.634 0.558 2076
DeepVideoMVS (Duzceker et al.) 0.07 0.12 0.21 0.439 0477 0.450 32
NeuralRecon (Sun et al.) 0.07 0.11 0.20 0.684  0.479 0.562 30
Ours 0.06 0.09 0.19 0.701 0.504 0.584 30

Table 1: Results on ScanNet following the experimental settings of NeuralRecon. The most important metrics are the F-score
and the inference time. The results of MVDepthNet, GPMVS, DPSNet, COLMAP, and NeuralRecon are inherited from the
paper of NeuralRecon. Our method ranks top in efficiency while significantly outperforming existing real-time methods (e.g.,
NeuralRecon, DeepVideoM VS) in effectiveness. Our real-time method is even better than some offline methods (e.g., COLMAP
and DPSNet). The best method in each metric is marked in bold.

feature F' = C||R. Notably, the input frame features {V;}’s
channel number is reduced to half to avoid doubling the ag-
gregated feature F’s size.

In this way, color and reliability can be considered simul-
taneously. The model can utilize color to recover planes and
reliability to tackle rich-texture regions. Further, we argue
that color and reliability remedy defects for each other be-
cause the following multi-layer CNNs (3D UNet by Cigek
et al.) have the potential to propagate color features from
reliable to unreliable regions using its increasing receptive
field.

3.3 * Loss Compensation

As illustrated in Figure 3, sparse pruning strategies lead to
a new problem: a helpful voxel pruned at coarse stages can-
not be recovered at finer stages. Notably, spatial resolution
at coarse stages is relatively low; thus, it may not be infor-
mative and distinguishable enough to identify the existence
of voxels sufficiently. To this end, the model’s completeness
is restricted and cannot work well on delicate structures.

Macro idea: To avoid this problem, we must obtain the
loss for all voxels at all stages. However, directly calculating
all the losses requires dense prediction, which is impossible
due to the high computation cost. To retain the high effi-
ciency of sparsification and the high effectiveness of dense
prediction, we propose to estimate a falsely pruned voxel’s
total loss based on its coarse stage loss.

Mapping function: Given an actually positive voxel p,,
and suppose it has loss [, at stage m and is falsely pruned
at stage m < g, g denoting the total number of stages. Then,
our goal is to estimate the sum of its finer stage losses Ly =

_;I'zm 4145, £; denoting the sum of losses of all voxels p; at
stage j up-sampled from voxel p,,. We assume the mapping
function from [, to Ly is g, i.e., Ly = g(I,,). Then, we
analyze the property of g.

Coefficient estimation: Since voxels € {p,,+1} at stage
m + 1 are uniformly sampled around p,,, each voxel €
{pm+1} has an equal chance to be more distant or closer
to the surface than p,,. This implies that it is reasonable to
assume the average loss of voxels € {p;, 41} close to I,.
Then, we can use a linear function to model g.
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The next task is determining the linear coefficient e, of g.
The compensation for falsely pruned voxels is insufficient
when e is too small. In consequence, the model tends to
wrong good pixels. At the same time, when ¢, is too large,
the model prefers preserving bad pixels to avoid acciden-
tally injuring the good. In other words, both too small and
too large are bad. In practice, we can efficiently use ternary
search to find a good enough e,. We use the F-score on the
validation set to distinguish each e,’s quality. Our strategy
does not impact testing efficiency because it is only related
to loss calculation. Besides, it does not affect the detailed
pruning strategy.

4 Experiments

We first illustrate the experimental settings in Section 4.1
and then show the results in Section 4.2.

4.1 Experimental Settings

Datasets: We test our model on the most popular indoor
video reconstruction dataset: ScanNet (Dai et al. 2017).
ScanNet is a large-scale dataset providing RGB video se-
quences and camera poses on more than 1600 indoor sce-
narios. We split ScanNet following its standard settings.

Model implementation: The model is constructed using
PyTorch (2019), the sparse operations are implemented with
TorchSparse (2022), and the 2D feature extraction module is
a pre-trained MNasNet (2019) model.

Hyper-parameter: We adopt MADGRAD (Defazio and
Jelassi 2022) as the optimizer, and the learning rate is set to
10~3. Each feature volume is aggregated from nine views
and is a cubic of sidelength [24, 48, 96] at three stages. Our
hierarchical framework contains three layers in total to bal-
ance efficiency and effectiveness. The finest voxel size is
4cm, and the TSDF truncation distance is 12cm.

Baselines: We compare our method to both online and
offline 3D reconstruction methods to demonstrate our
method’s strength in both effectiveness and efficiency. The
chosen online algorithms cover both depth-map-based meth-
ods, e.g., DeepVideoMVS (Duzceker et al. 2021) (depth
map-based SOTA), MVDepthNet (Wang and Shen 2018)



Method Abs Rel] AbsDiff] RMSE| Prect Recallf F-scoref
Baseline (Re-implementation of NeuralRecon) 0.07 0.10 0.20 0.688  0.472 0.558
Dual Frequency 0.06 0.09 0.19 0.705 0.488 0.574
Dual Frequency + Loss Compensation 0.06 0.09 0.19 0.701  0.504 0.584

Table 2: Impacts of each component. The reported results are measured on the ScanNet dataset. The baseline metrics correspond

to the official weights of NeuralRecon.

and GPMVS (Hou, Kannala, and Solin 2019), and volume-
based SOTA NeuralRecon (Sun et al. 2021). The selected
offline methods include COLMAP (Schonberger et al. 2016)
(one of the most popular) and DPSNet (Im et al. 2019).

Evaluation: We evaluate the 3D meshes following AT-
LAS (Murez et al. 2020) and measure the rendered depth
maps using the 2D metrics introduced by Eigen et al. (2014).
All 3D meshes are of a single layer and are obtained from
the signed distance functions (SDF) by the marching cube
algorithm (Lorensen and Cline 1987). The depth maps of
depth-based algorithms are integrated into SDFs using the
standard TSDF fusion (Zeng et al. 2017). The depth maps of
volumetric algorithms are rendered by projection. Since our
goal is to reconstruct the 3D structure and both precision and
recall are valuable, we treat the F-score of the reconstructed
mesh as the most critical metric.

4.2 Results

ScanNet: Table 1 shows that Flora is significantly bet-
ter than existing real-time SOTAs in most metrics. We per-
form better or equally on all metrics than NeuralRecon, the
most relevant volumetric SOTA method. Compared to Deep-
VideoMVS, the depth map-based SOTA, we also have sig-
nificant superiority in most metrics, especially F-score and
precision-related metrics. Our method is even superior to
offline methods (COLMAP and DPSNet) in effectiveness.
Moreover, the visualizations in Figure 3 further verify our
advantages.

Generalize to unseen datasets: Our method not only
shows advantages in public datasets, but also generalizes
well to new scenarios. We train our model on ScanNet and
then directly apply the trained weights to an unseen outdoor
video sequence (Sun et al. 2021). As shown in Figure 5, our
model correctly recovers the small garden.

5 Ablation Study

Impact of each component: As shown in Table 2, our
dual-frequency feature aggregation benefits both precision
and recall. In addition, our loss compensation module bene-
fits recall.

Limitations: Like most 3D reconstruction methods, our
model requires a large amount of training data. However,
high-quality 3D data with known camera poses is expensive
to acquire.

6 Conclusion

This paper proposes a real-time monocular 3D reconstruc-
tion method that is strong in both efficiency and effective-
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Figure 5: Our method generalizes well in the real world. The
model is trained on ScanNet and tested on a new scenario
captured by smartphones (Sun et al. 2021).

ness. Our contributions can be summarized into two points:

1. We propose a novel and efficient feature aggregation
module considering color and reliability simultaneously.

2. We propose a novel loss compensation module avoiding
false pruning.

These two strategies significantly and costlessly benefit the
reconstruction quality in both precision and recall. Exper-
iments on real-world data demonstrate our method’s state-
of-the-art performance and generalization.
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