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Abstract

3D automatic annotation has received increased attention
since manually annotating 3D point clouds is laborious.
However, existing methods are usually complicated, e.g.,
pipelined training for 3D foreground/background segmenta-
tion, cylindrical object proposals, and point completion. Fur-
thermore, they often overlook the inter-object feature rela-
tion that is particularly informative to hard samples for 3D
annotation. To this end, we propose a simple yet effective
end-to-end Context-Aware Transformer (CAT) as an auto-
mated 3D-box labeler to generate precise 3D box annotations
from 2D boxes, trained with a small number of human anno-
tations. We adopt the general encoder-decoder architecture,
where the CAT encoder consists of an intra-object encoder
(local) and an inter-object encoder (global), performing self-
attention along the sequence and batch dimensions, respec-
tively. The former models intra-object interactions among
points, and the latter extracts feature relations among differ-
ent objects, thus boosting scene-level understanding. Via lo-
cal and global encoders, CAT can generate high-quality 3D
box annotations with a streamlined workflow, allowing it to
outperform existing state-of-the-art by up to 1.79% 3D AP on
the hard task of the KITTI test set.

Introduction
3D point cloud has emerged as indispensable sensory data in
3D visual tasks, driven by the ubiquity of the LiDAR sensor
and its widespread applications in autonomous driving and
robotics. Such inherence has led to the rapid development
of 3D object detectors (Shi, Wang, and Li 2019; Lang et al.
2019; Xu et al. 2021) focusing on the problem of identifying
and localizing objects in 3D scenes. Nevertheless, these 3D
object detectors require large amounts of 3D ground truth
for supervision signals. Although 3D data acquisition is ac-
cessible by modern LiDAR scanning devices, it is labori-
ous, error-prone, and even infeasible in some extreme real-
world applications to manually annotate 3D point clouds for
training high-quality 3D object detection models (Wei et al.
2021; Qin, Wang, and Lu 2020; Liu et al. 2022b). The dif-
ficulty, therefore, motivates us to develop 3D automatic an-
notators with human-level labeling performance while only
requiring lightweight human annotations.
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Figure 1: Attention maps directly from a CAT layer. We
compute the attention from the reference point (red star) to
all points of an object and display the points with the top
500 highest attention scores in blue. The attention groups
the points within an object. The attention between the box
and the points is displayed in red to describe the correlations
between the box (in blue) and the points. Verge points in the
background can also provide positive information about the
box size and location, presumably making it easier to gener-
ate the 3D bounding box. Ground truth in green.

Early works on 3D annotation have investigated auto-
matic annotation models with weak annotations, e.g., 2D
bounding boxes (Wei et al. 2021; Qi et al. 2018; Liu et al.
2022b,a), center-clicks (Meng et al. 2020, 2021), or 2D seg-
mentation masks (McCraith et al. 2021; Wilson, Kira, and
Hays 2020). They rely on foreground/background 3D seg-
mentation to preserve high-quality 3D annotations. While
effective, such complicated annotation designs have re-
quired multi-staged training models, additionally processing
point clouds, and designing special 3D operators and ob-
jective functions. 3D annotation in such cascaded pipelines
is prone to be influenced by the failure modes of the early
stages, e.g., the first 3D segmentation is a performance bot-
tleneck for the final boxes regression stage.

Acquiring high-quality 3D annotations is challenging
since 3D point clouds are irregular, sparse, and unstructured,
especially on hard samples with few points. To this end,
multi-modality object detectors take advantage of images
and point clouds, i.e., extracting features from each modality
and fusing them for comprehensive predictions at the final
stage for sparse point cloud tasks (Chen et al. 2017; Huang
et al. 2020; Zhao et al. 2021b; Liu et al. 2022a,b). Although
they have demonstrated a remarkable performance on the
KITTI benchmark, they tend to increase the model com-
plexity and calibration errors to combine multi-modal in-
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Figure 2: CAT is an end-to-end trainable context-aware Transformer-based 3D automatic annotator. It takes the frustum sub-
clouds within 2D boxes as inputs and generates 3D bounding boxes. The local encoder with N1 layers explicitly models
long-range contexts among all pairs of points at an object level, and the global encoder captures contextual interactions across
objects (e.g., car 1, 2, 3, and 4) for point feature learning. A Transformer decoder then takes as input a small fixed number of
box tokens corresponding to 3D box representations, which we call box queries (Q), and attends to point features (K and V )
from the encoder output. We pass the decoder results to regression heads (i.e., MLPs) that regress 3D bounding boxes.

formation. Meanwhile, only 5% of camera information will
be matched to the LiDAR point in the camera-to-LiDAR
projection (Liu et al. 2022c). The projection of LiDAR-
to-camera will drop the full-depth information in 3D point
clouds. Such density differences will become more drastic
for sparser point clouds since projections between the cam-
era and LiDAR in the multi-modality information combina-
tion are either semantically lossy or geometrically lossy (Liu
et al. 2022c). Fortunately, we observe that using inter-object
feature relations can conduct effective feature learning on
point clouds by self-attention and avoid the semantic and
geometric losses from multi-modality fusion. For example,
hard samples with sparser point clouds can interact with oth-
ers through inter-object relations and refine object-level fea-
tures instead of using image features to explicitly complete
point clouds. Inter-object feature relations can facilitate the
samples’ interactions, which helps annotate hard samples in
heavily truncated, occluded, or very far instances.

However, such inter-object relations have been largely
overlooked by previous research. In this paper, we lever-
age inter-object relations for 3D automatic annotation. Self-
attention in Transformer is designed to be permutation-
invariant and encompass the dense token-wise relations that
are especially relevant to extracting these inter- and intra-
object relations. We argue that Transformer can solely rely
on 3D point clouds to capture local dependencies among
all-pairs points at an object level (intra-object) and global
context-aware representations among objects at a scene level
(inter-object) for 3D annotation.

To that end, we develop an end-to-end Context-Aware-
Transformer (CAT), a simple-to-implement 3D automatic
annotation method with a neat annotation workflow. We
adopt the general encoder-decoder architecture. For the en-
coder, we make an essential change to adapt it to extract lo-
cal and global contexts, namely, an intra-object encoder (lo-
cal) and an inter-object encoder (global). As shown in Fig-

ure 1, the local encoder allows each point to establish con-
nections within an instance. Moreover, the background can
positively impact the generated box size and location, e.g.,
the generated box should not enclose background points.
Background points can help CAT determine the bounds of
generated boxes. The global encoder provides scene con-
texts and feature relations between different objects. This
way, hard samples with inter-object relations can capture
the semantic patterns and implicitly refine representations
instead of explicit point generation.

CAT removes many cumbersome designs, i.e., 3D seg-
mentation, cylindrical object proposals generation, point
cloud completion, multi-modality information combination,
and complicated loss functions, while being simple to imple-
ment and understand. Unlike (Liu et al. 2022b), CAT does
not need a ConvNet backbone on image features, and solely
relies on 3D point clouds and Transformers trained from
scratch. CAT is not only a conceptual recipe for 3D anno-
tations but also allows us to perform comparatively on the
KITTI dataset. In fact, CAT is empowered by its simplicity
and elegance, and sets the new state-of-the-art on the KITTI
benchmark. We envision this work will serve as a simple
yet effective baseline for future 3D autonomous annotation
and inspire more research on rethinking more straightfor-
ward annotation methods for 3D.

In summary, this paper makes the following contributions:
1. We propose a simple yet effective end-to-end context-

aware Transformer, CAT, that serves as an automated 3D-
box annotator and decreases the heavy 3D human anno-
tation burden.

2. We introduce the local and global encoders to extract
intra-object and inter-object contextual information, per-
forming self-attention along the sequence and batch di-
mensions, respectively. CAT can be local and global
context-aware for hard samples with very few points to
interact with each other and enhance 3D annotation.
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3. We show that CAT achieves new state-of-the-art perfor-
mance compared to existing annotation methods on the
KITTI benchmark, even without 3D segmentation, cylin-
drical object proposals generation or point cloud comple-
tion, and multi-modality information combination.

Related Work

We build upon prior works in 3D point cloud representation
learning and 3D object annotations from weak annotations.

Point Cloud Representation Learning

Unlike 2D images, where pixels are arranged on regular
grids and can be processed by CNNs, 3D point clouds are
inherently sparse, unstructured, and scattered in 3D space:
they are essentially set. These properties make typically con-
volutional architectures hardly applicable. Two ad hoc so-
lutions to consume point clouds are transforming irregu-
lar points into voxels or grids and directly ingesting point
clouds. Voxel-based networks (Maturana and Scherer 2015;
Wu et al. 2015; Xie et al. 2018; Yang et al. 2018) divide point
clouds into volumetric grids and employ 2D/3D CNNs for
predictions. Point-based methods (Qi et al. 2017a,b; Lang
et al. 2019; Shi, Wang, and Li 2019; Qi et al. 2018) directly
consume raw point clouds to preserve more original geomet-
ric information for 3D tasks.

As an alternative, attention-based models have been re-
cently used to represent 3D point clouds for 3D vision tasks,
e.g., retrieval (Zhang and Xiao 2019), indoor and outdoor
segmentation (Zhao et al. 2021a), object classification (Liu
et al. 2020), and 3D object detection (Misra, Girdhar, and
Joulin 2021; Pan et al. 2021), since Transformer and atten-
tion models have revolutionized natural language process-
ing (Devlin et al. 2018; Wolf et al. 2020) and computer
vision (Vaswani et al. 2017; Dosovitskiy et al. 2020; Liu
et al. 2021; Carion et al. 2020). In Point Transformer (Zhao
et al. 2021a), they design a point Transformer layer with
vector self-attention layers and use it for constructing an
Unet-like architecture for 3D point cloud segmentation and
classification. In PCT (Guo et al. 2021), they make several
adjustments on Transformers for 3D and introduce offset-
attention and neighbor embedding to make a point Trans-
former framework suitable for point cloud learning. Adopt-
ing a Transformer encoder-decoder architecture, (Yu et al.
2021) proposes PoinTr to reformulate point cloud comple-
tion as a set-to-set translation problem. By taking advantage
of the solid capability to process long-range token-wise in-
teractions and enhance information communications, Trans-
formers begin their journey in 3D tasks.

However, existing Transformer-based models for 3D
point clouds bring in handcrafted inductive biases (e.g., local
feature aggregation, neighbor grouping, and embeddings)
and usually overlook the inter-object relation for effective
feature learning on 3D tasks. Although the above methods
apply specific 3D properties to modify the Transformer, we
push the limits of the standard Transformer for 3D intra-
object and inter-object feature extractions.

3D Object Annotation from Weak Labels
Human point cloud annotation is laborious (Meng et al.
2021; Wei et al. 2021; Liu et al. 2022a,b), hindering the
training of high-quality 3D object detectors on massive
datasets (Geiger, Lenz, and Urtasun 2012; Caesar et al.
2020; Sun et al. 2020). 2D weak annotations are more easily-
acquired and cheaper compared with 3D labels. 3D object
annotation from weak labels raises ever-growing attention.
To our knowledge, very few works attempt to research 3D
automatic annotation models. Using 2D boxes, FGR (Wei
et al. 2021) proposes a heuristic algorithm to first locate
key points and edges in the sub-point-cloud frustum after
a coarse 3D segmentation and then estimate the 3D box.
SDF (Zakharov et al. 2020) adopts the predefined models
to process 3D segmented point clouds to estimate 3D anno-
tations from 2D bounding boxes. WS3D (Meng et al. 2021,
2020) explores center clicks as weak annotations to gener-
ate cylindrical object proposals on bird’s view (BEV) maps
and refine them to get 3D labels at the second stage. MAP-
Gen (Liu et al. 2022b) designs a 3-stage automated 3D-box
annotation workflow with 2D weak boxes: first foreground
segmentation, point generation, and final 3D box genera-
tions. MTrans (Liu et al. 2022a) leverages both LiDAR scans
and camera images to generate precise 3D labels from weak
2D bounding boxes with a multi-task design of segmenta-
tion, point generation, and box regression.

While they have demonstrated state-of-the-art perfor-
mance on the KITTI benchmark, such complicated anno-
tation designs involve pipelined training models, interme-
diately processing points, designing special loss functions,
and multi-modality information combinations. Compared to
these methods, our model is an end-to-end Transformer-
based 3D annotator ( no convolutional backbone) that can be
trained from scratch. CAT has removed many cumbersome
designs, i.e., 3D segmentation, point completion, and multi-
modality information combination. CAT requires minimal
modifications to the vanilla Transformer layer.

Methodology
This section describes CAT, simplifications in 3D point
cloud autonomous annotation, and objective function.

Data Preparation
Our goal is to generate 3D pseudo labels that can be used
to train any off-the-shelf 3D object detector (e.g., PointR-
CNN). Given LiDAR point clouds and weak 2D boxes, we
first extract the frustum area tightly fitted with 2D bound-
ing boxes, following (Qi et al. 2018; Wei et al. 2021; Liu
et al. 2022a,b). With a known LiDAR-to-Image calibra-
tion matrix, a 3D point cloud in the form of (x, y, z) can
be projected onto its 2D image plane (h,w) by the map-
ping function fcal. Therefore, the 2D projected sub-cloud
P2D ∈ RN×2 within a 2D box can be defined as:

P2D = {(h,w) | (h,w) = fcal(x, y, z), (h,w) ∈ B}. (1)

Therefore, the frustum sub-cloud PF ∈ RN×3 within its 2D
bounding box can be extracted as:

PF = {(x, y, z) | fcal(x, y, z) ∈ P2D}, (2)
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where (x, y, z) is the point coordinate, and B is the 2D re-
gion in the 2D box. We use N to represent input frustum
sub-cloud size (i.e., the number of points).

CAT: Context-Aware Transformer
CAT takes as input B frustum sub-clouds PF ∈ RN×3

within 2D boxes, and generates 3D labels in the form of 3D
bounding boxes Box3D ∈ RB×7, where batch size is de-
noted as B. An input point sub-cloud is an unordered set of
points associated with 3-dimensional coordinates (x, y, z).
The number of points varies from individual to individual.
Some are very large when LiDAR scans are complete, but
some are small due to occlusion, truncation, limited sensor
resolution, light reflection, etc. We use the random sampling
from (Qi et al. 2018; Wei et al. 2021; Liu et al. 2022a,b) to
keep the same size (i.e., N = 1024 points) of each sample
and project them to d = 512 dimensional point embeddings
through a multilayer perceptron (MLP). The resulting point
embeddings are passed through the CAT encoder to obtain
a set of features. The additional box tokens are taken as box
representations along with point embeddings in the encoder,
inspired by the class token in ViT (Dosovitskiy et al. 2020).
A decoder takes as input box tokens as queries, points fea-
tures as keys, and values from encoder output and predicts
3D bounding boxes.

Both encoder and decoder employ standard Transformer
layers with the pre-norm, self-attention, and MLP. We refer
the readers to (Vaswani et al. 2017; Carion et al. 2020) for
more details on the Transformer encoder and decoder. Fig-
ure 2 illustrates our CAT model for 3D automatic annotation.

Encoder for Point Cloud Representation
CAT encoder comprises an intra-object encoder (local) and
an inter-object encoder (global) to perform self-attention
along the sequence and batch dimensions. The local encoder
explicitly models local contexts among all-pairs points at an
object level. The resulting features are then fed to the global
encoder to capture the contextual interactions at a scene level
for further point feature learning.

Local Encoder The input projection step provides a set of
N features of d = 512 dimensions using an MLP with two
hidden layers as point embeddings. These 512-d point em-
beddings associated with 7 box tokens are then passed to an
intra-object encoder (local) to produce N+7 features of 512
dimensions. The 7 box tokens represent the 3D bounding
box in the form of (x, y, z, width, length, height, yaw).
The local encoder applies N1 Transformer layers com-
posed of multiheaded self-attentions and non-linear channel
MLPs. We use the standard dot-product self-attention for-
mulation in (Yu et al. 2021) to extract the feature relations
between all pairs of input points and box tokens.

By leveraging messages passing among all pairs of points,
all points of an object can be equally considered since rele-
vant contextual information can be anywhere. Furthermore,
the object’s background points also participate in the mes-
sage communication and provide positive information for
the final box generation. Figure 1 shows the background

points can contribute to positive supervision of the bounds
of 3D-generated boxes.

Global Encoder It is valuable to extract global contex-
tual interactions and feature correlations between different
instances for 3D annotations, which are commonly omitted
in other annotation methods. The inter-object relationships
are informative in describing the scenes of point clouds, es-
pecially for hard samples to attend to each other to obtain the
feature patterns and refine 3D representations, enhancing the
3D automatic annotation.

To facilitate the encoder to better communicate among
different objects, we further devise an inter-object encoder
(global) composed of N2 layers to capture global inter-
actions across objects along the batch (B) dimension, in-
stead of the sequence (N + 7) dimension in the local en-
coder. The local encoder provides local feature relations
of (box token, point feature) in the dimension of B ×
(N + 7) × d that is subsequently passed to the global en-
coder. Since the global encoder performs self-attentions in
the batch B dimension, local encoder output should be trans-
posed to (N+7)×B×d before passing it into the batch-wise
global encoder. The global feature can communicate to all
objects and their box tokens in each mini-batch. This way,
each object can connect with all objects during training.

With an inter-object relationships extraction, we can cap-
ture feature relations and promote message passing among
objects for scene-level understanding. Specifically, global
contextual interactions can be constructive for hard sam-
ples where inter-related objects are selected from attention
weights to complete features of hard samples, further im-
proving the quality of generated 3D boxes.

Decoder for 3D Bounding Box Generation
To generate high-quality 3D bounding boxes, CAT should
focus on essential parts of point features for 3D box re-
gression. We introduce a decoder for the box to one-way
attends point features to refine object-level features for
the final box regression. We take box tokens as queries
and point features as contexts from global encoder output
(box tokens, point features) to query point features.

Following (Carion et al. 2020), our decoder op-
erates B objects in parallel using multiheaded self-
and cross-attention mechanisms in one batch B. Box
queries are learned box tokens from global encoder out-
put. Each query has 7 box tokens in the form of
(x, y, z, width, length, height, yaw). The decoder takes
the point features as keys and values (K,V ) and
box tokens as queries (Q). The resulting decoder outputs
are then used to generate boxes, Box3D ∈ RB×7. In our
framework, box queries represent 3D boxes in 3D space
around which our final 3D boxes in B × 7 are generated
by three MLP heads to predict locations in (x, y, z), di-
mensions in (width, length, height) and rotation along the
z-axis yaw, respectively. Each MLP head consists of one
linear layer and leaky ReLU nonlinearity. Thus, the Trans-
former decoder in (Carion et al. 2020) has not many specific
modifications for 3D.

Using self- and cross-attention over the global encoder
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Method Modality Full Supervision AP3D(IoU = 0.7) APBEV (IoU = 0.7)

Easy Moderate Hard Easy Moderate Hard

PointRCNN (Shi, Wang, and Li 2019) LiDAR ✓ 86.96 75.64 70.70 92.13 87.39 82.72
MV3D(Chen et al. 2017) LiDAR ✓ 74.97 63.63 54.00 86.62 78.93 69.80
F-PointNet(Qi et al. 2018) LiDAR ✓ 82.19 69.79 60.59 91.17 84.67 74.77
AVOD(Ku et al. 2018) LiDAR ✓ 83.07 71.76 65.73 90.99 84.82 79.62
SECOND(Yan, Mao, and Li 2018) LiDAR ✓ 83.34 72.55 65.82 89.39 83.77 78.59
PointPillars(Lang et al. 2019) LiDAR ✓ 82.58 74.31 68.99 90.07 86.56 82.81
SegVoxelNet(Yi et al. 2020) LiDAR ✓ 86.04 76.13 70.76 91.62 86.37 83.04
Part-A2(Shi et al. 2020b) LiDAR ✓ 87.81 78.49 73.51 91.70 87.79 84.61
PV-RCNN(Shi et al. 2020a) LiDAR ✓ 90.25 81.43 76.82 94.98 90.65 86.14

WS3D (Meng et al. 2020) LiDAR BEV Centroid 80.15 69.64 63.71 90.11 84.02 76.97
WS3D(2021) (Meng et al. 2021) LiDAR BEV Centroid 80.99 70.59 64.23 90.96 84.93 77.96
FGR (Wei et al. 2021) LiDAR 2D Box 80.26 68.47 61.57 90.64 82.67 75.46
MAP-Gen (Liu et al. 2022b) LiDAR+RGB 2D Box 81.51 74.14 67.55 90.61 85.91 80.58
MTrans (Liu et al. 2022a) LiDAR+RGB 2D Box 83.42 75.07 68.26 91.42 85.96 78.82

CAT (ours) LiDAR 2D Box 84.84 75.22 70.05 91.48 85.97 80.93

Table 1: Results of KITTI official test set, compared to the fully supervised PointRCNN and other weakly supervised baselines.

output, the CAT decoder globally refines B object-level fea-
tures for 3D box regression, while being able to use B ob-
jects’ global point features as contexts.

Loss Function
To train the model, we use a loss directly on the dIoU
as in (Zheng et al. 2020) for each generated box and its
matched ground truth box denoted as Lbox. Moreover, we
introduce a direction loss Ldir for a binary direction classi-
fication, since the IoU metric is direction-invariant (Liu et al.
2022a). The direction classification is performed by an MLP
where orientation within [−π/2, π/2) is predicted as the
front, and [π/2, π] ∪ [−π,−π/2) as the back. This encour-
ages our model to learn the right box direction, a property
that helps our regression on yaws. We use Cross-Entropy
loss for the direction loss Ldir.

L = λboxLbox + Ldir, (3)

where the λbox is a weight, we empirically set it as 5.
Our loss function is a weighted sum of two terms above.

CAT removes many handcrafted designs on the loss function
while being way simpler to implement and understand.

Position Encoding
Standard positional encoding for vision tasks is crafted man-
ually, e.g., sinusoidal position embedding (Vaswani et al.
2017) based on sine and cosine functions and normalized
range values (Vaswani et al. 2017). In 3D point cloud pro-
cessing, 3D points contain information about (x, y, z) coor-
dinates that are natural positional information. For brevity,
we go beyond this by introducing an MLP for trainable
and parameterized positional embeddings. Trainable posi-
tional embedding on 3D coordinates is essential to adapt the
3D structure for point clouds. Notably, our model’s more

straightforward, parameterized, trainable positional embed-
ding outperforms other position encoding schemes. An MLP
is used to encode the 3D position pos as:

pos = MLP (x, y, z). (4)

We concatenate box tokens and points in our sequence,
concat(box tokens, pos). For dimension consistency, we
manipulate another MLP with one linear layer in pos to de-
scribe the position of each entity in the sequence.

Experiments
Dataset and metrics. We adopt the KITTI Bench-
mark (Geiger, Lenz, and Urtasun 2012) for CAT evaluation.
The KITTI dataset is one of the best-known benchmarks
for 3D detection in autonomous driving (Geiger, Lenz, and
Urtasun 2012). The 3D detection benchmark contains 3712
frames of data with 15,654 vehicle instances on the train
split and 3769 frames on the val split. For a fair comparison,
we used the official split with 500 frames for training and
3769 for evaluation. We use the same dataset pre-process to
extract the objects within 2D bounding boxes in (Wei et al.
2021; Liu et al. 2022a,b). We follow the official evaluation
protocol provided by KITTI. Detection outcomes of CAT-
trained PointRCNN are evaluated on three standard tasks:
Easy, Moderate, and Hard Tasks. We report the detection
performance using the 3D mean Average Precision (mAP)
threshold of 0.7 mean Intersection over Union (mIoU).

Implementation details. We implement CAT using Py-
Torch (Paszke et al. 2019) and employ standard Transformer
layers to implement the CAT encoder and decoder. The lo-
cal encoder has N1 = 8 layers, each using a multiheaded
self-attention with eight heads and an MLP with two linear
layers and one ReLU nonlinearity. The global encoder with
N2 = 3 layers closely follows the local encoder settings ex-
cept that it is implemented to perform self-attention along
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Method Modality Full Supervision AP3D(IoU = 0.7)

Easy Moderate Hard

PointRCNN (Shi, Wang, and Li 2019) LiDAR ✓ 88.88 78.63 77.38

WS3D(Meng et al. 2020) LiDAR BEV Centroid 84.04 75.10 73.29
WS3D(2021)(Meng et al. 2021) LiDAR BEV Centroid 85.04 75.94 74.38
FGR(Wei et al. 2021) LiDAR 2D Box 86.68 73.55 67.91
MAP-Gen (Liu et al. 2022b) LiDAR+RGB 2D Box 87.87 77.98 76.18
MTrans (Liu et al. 2022a) LiDAR+RGB 2D Box 88.72 78.84 77.43

CAT (ours) LiDAR 2D Box 89.19 79.02 77.74

Table 2: Results of KITTI val set, compared to the fully supervised PointRCNN and other weakly supervised baselines.

the batch dimension. The decoder has three Transformer de-
coder layers composed of multiheaded self-attentions, cross-
attentions, and MLPs. The prediction heads for box regres-
sion are two-layer MLPs with a hidden size of 1024. CAT is
optimized using the Adam optimizer with the learning rate
of 10−4 decayed by a cosine annealing learning rate sched-
uler and a weight decay of 0.05. We train CAT on a sin-
gle RTX 3090 with a batch size of 24 for 1000 epochs. We
use standard data augmentations of random shifting, scaling,
and flipping. Following (Liu et al. 2022a,b; Wei et al. 2021;
Qi et al. 2018), we filter the objects with at least 30 total
points and 5 foreground points for CAT training since it is
not feasible for 3D annotation on some hard samples with
no foreground LiDAR points. At inference time, our end-to-
end labeling system runs near real-time, with a latency of
28 milliseconds per object, which can be 3-5 times faster
than pipelined annotation models. We use the 3D detector of
PointRCNN for 3D object detection.

CAT on 3D Automatic Annotation
We now evaluate the performance of CAT as an auto labeler
on the KITTI dataset. CAT is trained with 500 frames of
labeled 3D data to generate 3D pseudo labels from weak 2D
boxes of the KITTI dataset. CAT-generated 3D pseudo labels
are used to train the 3D object detector of PointRCNN. We
compare it to other baselines on the KITTI test and val sets,
as shown in Table 1 and Table 2.

Observations On the test set (Table 1), CAT achieves new
state-of-the-art performance, even though we remove 3D
segmentation, point cloud completion, and multi-modality
information combination, compared to baselines (Wei et al.
2021; Meng et al. 2021, 2020; Liu et al. 2022a,b). Only
requiring 500 frames of labeled data, CAT-trained PointR-
CNN can yield 98.63% of the original model supervised
with full human annotations. Compared to the latest multi-
modal MTrans (Liu et al. 2022a), CAT-trained PointRCNN
improves the 3D detection accuracy on AP3D by 1.42%,
0.15%, and 1.79% on Easy, Moderate, and Hard tasks, re-
spectively. The hard task usually suffers more from irreg-
ularity and sparsity issues, since hard samples are usually
much sparser than easy samples. The most significant im-
provement of 1.79% AP3D on the Hard Task benefits from
inter-object feature relations learning on hard samples. In

CAT, the sparsity issue can be mitigated by the scene con-
texts and feature correlations passing between objects.

As shown in Table 2, PointRCNN trained with CAT-
generated pseudo labels yields on-par performance of the
original model under the supervision of ground truth 3D la-
bels on the KITTI val split. CAT-trained PointRCNN out-
performs all existing annotation methods on the KITTI val
set. Experiments on the KITTI val split show consistent im-
provements over state-of-the-art models of AP3D while si-
multaneously simplifying the automatic annotation work-
flow and designs of the model architecture and loss function.

The experiment results validate that a Transformer-based
model is competitive with state-of-the-art baselines tailored
for 3D automatic annotation. Our CAT can be a simple
yet effective automated 3D annotator for high-quality box
generation, decreasing the heavy human annotation bur-
den. The observation aligns with the motivation of applying
Transformer-based models to capture the local and global
contexts and feature relations of irregular and sparse point
clouds for 3D representation learning. CAT can generate
high-quality 3D labels using intra- and inter-object encoders
and a decoder with a streamlined annotation workflow.

Qualitative Results In Figure 3, we visualize a few CAT-
generated pseudo labels and ground truth boxes on hard
samples with few points. CAT can generate high-quality
bounding boxes for hard samples in heavily truncated or oc-
cluded, or very far instances, by attending to other easy sam-
ples (not highly occluded) and using inter-object relations to
refine 3D representations. These qualitative results demon-
strate the effectiveness of CAT and also verify that it is possi-
ble to combine the semantic information (from foregrounds
and backgrounds) within 2D boxes and the 3D geometric
structure of point clouds for 3D automatic annotations.

Ablations
We conduct a series of experiments to confirm the effec-
tiveness of each module in our proposed model, namely, the
local encoder, global decoder, and decoder. Meanwhile, we
also study the choice of position embedding strategies for
CAT training. The 3D pseudo labels are compared with hu-
man annotations on the metrics of mIoU, recall with IoU
threshold of 0.7, mAP, and mAPR40 over the Car category.

In Table 3, we regard the standard Transformer encoder
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Figure 3: Qualitative annotation results using CAT on the KITTI val split. CAT does not use the image information (here for
visualization) and generates 3D bounding boxes from point clouds. For hard samples with heavily truncated (bottom left),
occluded (top left), and very far instances (bottom right), CAT can generate an amodal box, e.g., the full extent of cars.

Local Global Decoder Pos. Metric

Enc. Enc. Embed. mIoU Recall mAP mAPR40

Model A ✓ 65.01 54.50 56.31 59.24

Model B ✓ ✓ 70.70 65.21 83.20 85.89
Model C ✓ ✓ ✓ 72.88 70.84 85.83 87.72
Model D ✓ ✓ ✓ ✓(Sine) 72.13 69.66 85.21 87.34

Ours(500) ✓ ✓ ✓ ✓(MLP) 73.71 72.78 87.04 89.80
Ours(all) ✓ ✓ ✓ ✓(MLP) 78.91 84.13 91.30 93.38

Table 3: Ablation Results.

(Local Enc.) as a baseline. Model A (Local Enc.) shows
the local encoder extracts intra-object interactions among
points. Model B (Local+Global Enc.) brings a performance
boost of 5.6%, 10.7%, 26.8%, 26.6% on mIou, Recall,
mAP, and mAPR40, demonstrating that global encoder mod-
els inter-object relations and facilitates samples’ interac-
tions, particularly helpful on hard samples. Model C (Lo-
cal+Global Enc.+Decoder) further improves mIoU by up
to 2.31%, clarifying that the decoder helps to refine repre-
sentations for more precise box regression. Model D (Lo-
cal+Global Enc.+Decoder+Pos Embed.) achieves the final
72.78% Recall and 87.04% mAP in an MLP embedding
way, verifying positional encoding on 3D coordinates is es-
sential to adapt to the 3D structure. We can observe that the
more straightforward parameterized and trainable positional
embedding of MLP outperforms other hand-designed posi-
tion encoding schemes in our model. Meanwhile, we evalu-
ate the effectiveness of box tokens in CAT. Seven Box tokens
represent seven box elements (XYZ localization, HWL size,
and yaw orientation), as box representations. Removing box
tokens in the CAT encoder results in a 2.69% IoU drop, sug-

gesting queries from box tokens instead of position encoding
in (Carion et al. 2020) can help to refine object-level features
for the final 3D box generation in the decoder.

Conclusion

We present CAT, a simple yet effective end-to-end Trans-
former model for 3D automatic annotation. CAT directly
consumes LiDAR point clouds as an auto labeler to generate
3D bounding boxes from weak 2D boxes. CAT requires only
a few handcrafted designs tailored for 3D autonomous an-
notation and effectively reduces human annotation burdens.
We adopt the general encoder-decoder architecture, where
the CAT encoder consists of an intra-object encoder (local)
and an inter-object encoder (global). The local encoder ex-
tracts local dependencies among all-pairs points at an object
level. The global one captures global contextual interactions
and scene contexts at a scene level for 3D representation
learning. The decoder refines feature relations between box
representations and point features for 3D box generation. We
show that using both local and global encoders is critical for
high-quality 3D box generation. Endowing such local and
global contextual communications to sparse point clouds,
CAT outperforms existing state-of-the-art baselines on the
KITTI dataset with a streamlined 3D annotation workflow.
We hope this work will serve as a simple baseline to inspire
more research on a simpler annotation model for future 3D
automatic annotation tasks.

This approach for 3D annotation also comes with new
challenges, particularly regarding annotating small objects.
Current 3D automatic annotation models require years of
careful designs to handle similar issues, and we will further
research this for CAT.
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