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Abstract

Autoregressive language modeling (ALM) has been success-
fully used in self-supervised pre-training in Natural language
processing (NLP). However, this paradigm has not achieved
comparable results with other self-supervised approaches in
computer vision (e.g., contrastive learning, masked image
modeling). In this paper, we try to find the reason why au-
toregressive modeling does not work well on vision tasks. To
tackle this problem, we fully analyze the limitation of visual
autoregressive methods and proposed a novel stochastic au-
toregressive image modeling (named SAIM) by the two simple
designs. First, we serialize the image into patches. Second,
we employ the stochastic permutation strategy to generate an
effective and robust image context which is critical for vision
tasks. To realize this task, we create a parallel encoder-decoder
training process in which the encoder serves a similar role to
the standard vision transformer focusing on learning the whole
contextual information, and meanwhile the decoder predicts
the content of the current position so that the encoder and
decoder can reinforce each other. Our method significantly
improves the performance of autoregressive image modeling
and achieves the best accuracy (83.9%) on the vanilla ViT-
Base model among methods using only ImageNet-1K data.
Transfer performance in downstream tasks also shows that our
model achieves competitive performance. Code is available at
https://github.com/qiy20/SAIM.

Introduction
Un-/Self-supervised representation learning has achieved
great success in natural language processing (NLP) (Yang
et al. 2019; Brown et al. 2020; Devlin et al. 2018; Radford
et al. 2018, 2019). Autoregressive language modeling (ALM)
and masked language modeling (MLM) (e.g., GPT (Radford
et al. 2018, 2019; Brown et al. 2020) BERT (Devlin et al.
2018)), are capable of training large-scale language models
with human-like performances using billions of unlabeled
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training data. Motivated by the success of BERT and the
outstanding performance of Vision Transformers (Dosovit-
skiy et al. 2020), recent works (He et al. 2021; Bao, Dong,
and Wei 2021; Wei et al. 2021; Xie et al. 2021) introduce
BERT-style pretraining by reconstructing the masked patches,
which achieve an overall improvement in downstream tasks
and greatly narrow the gap between vision and language. Ope-
nAI made an attempt to propose an influential work called
iGPT (Chen et al. 2020a), it learns representations by pre-
dicting pixels in raster order but the performances lag behind
other self-supervised learning methods in both capacity and
efficiency.

We ask: what makes autoregressive modeling different
between vision and language tasks? We try to answer this
question from the following aspects:
• Input signal. Different from language which follows the

fixed natural order, images are not sequential signals. The
lack of a well-defined order is the main challenge of apply-
ing autoregressive methods to process images. Previous
methods, such as PixelCNN (Van Oord, Kalchbrenner,
and Kavukcuoglu 2016) and iGPT, just follow the raster
order to generate pixels. Such order is perhaps optimal
for image generation, but it may not be the best order for
visual representation learning. Because when people look
at an image, they first focus on the main object or the ob-
ject they are interested in, which is randomly distributed
in any position instead of fixed in the top left corner. So
we propose to learn representations by predicting the ob-
ject in stochastic order, which can take advantage of the
richness and variety of visual signals.

• Architecture. In vision, convolutional networks have
been the mainstream model until recently, but in the field
of NLP, Transformer was dominant. iGPT firstly trains a
sequence Transformer to auto-regressively predict pixels.
But it can only work with low-resolution images because
the computational complexity of self-attention is quadratic
to image size, which prevents the capabilities and scaling
of such approaches. So we introduce Vision Transformer
as the encoder to solve this problem. As for the decoder,
we design the parallel encoder-decoder architecture which
is inspired by XLNET (Yang et al. 2019) but doesn’t share
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Figure 1: Training pipeline of Stochastic Autoregressive Pretraining. First, we randomly sample a permutation from the
permutation set and generate two masks: content mask and query mask. Second, we employ a parallel encoder-decoder for
autoregressive prediction. The encoder focus on learning contextual information(only the visible positions on the content mask),
and the decoder reconstructs the original image from the latent representation along with position embeddings.

the weights. Benefit from our architecture, the encoder
can focus on learning semantic representations without
participating in pixel prediction.

• Prediction target. For autoregressive image modeling,
the prediction target is raw pixels containing a lot of
"noise". This is in contrast to language, where the model
predicts words that are high-level concepts generated by
humans. We think that the prediction of low-level sig-
nals will overfit the high-frequency details and textures,
which are not helpful for high-level recognition tasks. To
overcome this problem we employ Gaussian smoothing
to discourage the model from learning high-frequency
details and encourage learning semantic information.

Based on the findings and analysis, we propose the stochastic
autoregressive image modeling (SAIM), as shown in Fig. 1.
First, we generate two masks from a random permutation to
achieve stochastic autoregression, the content mask and the
query mask will apply them to the encoder and the decoder
respectively. With the masks, each query can only hold the
preceding information and the position embedding of itself.
Second, we design the parallel encoder-decoder architecture.
The encoder focus on learning contextual information, and
the decoder reconstructs the original image from the latent
representation along with position embeddings. Coupling
these two designs enables us to realize stochastic sequence
autoregression and achieve good performance. In addition,
applying Gaussian smooth to target images also improves
our performance. We pretrain the model on ImageNet-1K

and then fine-tune on three downstream tasks. For ViT-base,
it achieves 83.9% top-1 fine-tuning accuracy on ImageNet-
1K (Russakovsky et al. 2015), 49.4/43.9 box/mask mAP on
COCO object detection (Lin et al. 2014) and 47.8 mIoU
on ADE20K semantic segmentation (Zhou et al. 2019). Ex-
perimental results indicate that SAIM consistently improves
performance and achieves competitive performance with the
state-of-the-art methods, it proves that the simple Autore-
gressive Image Modeling is also an effective pretext task for
visual representation learning.

Related Work
Autoregressive language modeling (ALM) and masked lan-
guage modeling (MLM) are two main self-supervised learn-
ing approaches in the field of NLP. Given a sequence, BERT
holds out a portion of the input sequence and tries to predict
the missing tokens. GPT, on the hand, predicts all tokens
following the left-to-right natural order of languages. This
series of works have achieved great success in the field of nat-
ural language processing. To leverage the best of both BERT
and GPT, the stochastic autoregressive language modelings
e.g., XLNet (Yang et al. 2019) enables learning bidirectional
contexts by maximizing the expected likelihood over all per-
mutations of the factorization order. This strategy enables the
ALM to acquire contextual information since the predicted
targets can view all parts of the sequence during training. We
mainly take inspiration from the permutation-based autore-
gressive pretraining.
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Self-supervised learning (SSL) aims to learn a general vi-
sual representation from unlabeled data and have good trans-
fer performance in downstream tasks. In the field of computer
vision, researchers proposed a wide range of pretext tasks,
such as image colorization (Zhang, Isola, and Efros 2016),
jigsaw puzzle (Noroozi and Favaro 2016), image inpaint-
ing (Pathak et al. 2016), rotation prediction (Gidaris, Singh,
and Komodakis 2018), and so on. Such self-supervised pre-
training has limited success, but has seen significant interest
in this field. Contrastive learning (He et al. 2020; Chen et al.
2020c; Caron et al. 2021; Chen, Xie, and He 2021; Chen et al.
2020b; Koch et al. 2015; Grill et al. 2020) have dominated
self-supervised pre-training in recent years, which makes
the representations of positive pairs similar while pushing
negative pairs away. While, these methods need to learn rep-
resentation from the object-centered datasets, and have poor
transferability to dense prediction tasks (e.g. object detection
and semantic segmentation).

Masked image modeling (MIM) introduces BERT-
style pretraining into computer vision. ViT (Dosovitskiy
et al. 2020) predicts the mean colors of masked patches.
BEiT (Bao, Dong, and Wei 2021) encodes masked patches
with discrete variational autoencoder (Ramesh et al. 2021)
and uses the visual token as the prediction target. MAE (He
et al. 2021) masks a high proportion of the input image and
just predicts raw pixels. SimMIM (Xie et al. 2021) simply
the pipeline of MIM methods. IBOT (Zhou et al. 2021) and
data2vec (Baevski et al. 2022) perform masked prediction
with an online tokenizer. These methods achieve better trans-
fer performance than supervised learning and contrastive
learning. We observe that on the NLP side, GPT models
also have shown to be powerful, while researchers pay more
attention to BERT-style pre-training in computer vision.

Autoregressive image modeling (AIM) is a classic ap-
proach in computer vision but located in a non-mainstream
position for a long time. PixelCNN (Van den Oord et al. 2016)
and VQ-VAE (Van Den Oord, Vinyals et al. 2017) model
the distribution of natural images and generate new images
based on pre-trained models. Pix2Seq (Chen et al. 2021) uses
autoregressive modelling for object detection. For represen-
tation learning, CPC (Oord, Li, and Vinyals 2018) predicts
patches by learning an autoregressive model in the latent
space. The iGPT (Chen et al. 2020a) serializes pixels in raster
order to make autoregressive predictions on low-resolution
images. The computational complexity of self-attention limits
the extension of this method. Recent advances in vision archi-
tectures, such as ViT, which serializes visual 2D data, provide
an opportunity to apply similar large-scale pre-training in vi-
sion. Our work follows this line, attempting to promote the
development of AIM and bridge the gap between vision and
natural language processing.

Methods
Background
Autoregressive modeling try to learn a good visual represen-
tation by modeling the distribution of natural signals, which
is a landmark problem in SSL (Van Oord, Kalchbrenner, and
Kavukcuoglu 2016).

Specifically, given an unlabeled detaset D consisting of
high dimensional data x = [x1, x2, · · · , xN ], we can pick
a permutation z of the set [1, N ], and we use zi and z<i

to denote the i-th element and the first i-1 elements of the
permutation. Autoregressive methods perform pretraining by
maximizing the likelihood function:

L = − E
x∼D

N∑
i=1

log pθ (xzi | xz<i
) (1)

Where θ is the parameters of the autoregressive model. When
working with images, (Chen et al. 2020a) just flatten the
pixels in fixed raster order, e.g., xi donates a pixel and zi = i
for 1 ≤ i ≤ n. But as we have analyzed before, there are two
main limitations of this method: first, processing the pixel
sequence is particularly time/space consuming (Chen et al.
2020a); second, predicting in raster-order is not consistent
with the human visual mechanisms.

Stochastic Autoregressive Image Modeling
Our proposed SAIM first serializes the image into patches and
then predicts patches in stochastic order, which overcomes
the above limitations.

Image serialization. Following ViT (Dosovitskiy et al.
2020), we first split the 2D image x ∈ D into patches,
and the image patches are flattened into vectors {xi}Ni=1,
where N is the number of patches. Then, the vectors are
linearly projected to obtain patch embeddings Wxi ∈ RD.
Finally, We add 2D sin-cos position embeddings Epos =
[e1, e2, · · · , eN ] to patch embeddings, where Epos ∈ RN×D.
So we get the initialized sequence s = [s1, s2, · · · , sN ] =
[Wx1,Wx2, · · · ,WxN ] +Epos.

Stochastic prediction. Instead of using a fixed permu-
tation as in conventional autoregressive (AR) models. Our
approach borrows ideas from XLNet (Yang et al. 2019), using
all possible permutations as the prediction order. Specifically,
for a sequence of length N , there are N ! different orders
to perform an auto-regressive model. Let ZN be the set of
all possible permutations of the index set {1, 2, · · · , N}. We
predict the target patch depending on the preceding sequence
sz<i and target position embedding ezi and train our model
by minimizing the mean squared error between the recon-
struction and original image pixels:

L = E
x∼D

E
z∼ZN

N∑
i=1

||fθ(sz<i , ezi)− xzi ||2 (2)

where θ is the parameters of the model and fθ(sz<i
, ezi) is

the output of the model.

Parallel Encoder and Decoder Architecture
Inspired by (Yang et al. 2019), we don’t permute the input
sequence directly but rely on the two-stream self-attention
with mask to implement SAIM. Based on the analysis in
introduction chapter, the design of decoder is important for
our method. So we design a parallel encoder-decoder archi-
tecture, in which the encoder doesn’t share weights with the
decoder. In the pre-training stage, the encoder focuses on
learning contextual information(only the visible positions on
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the content mask), and the decoder reconstructs the original
image from the latent representation along with position em-
beddings. In the finetune stage, only encoder will be reserved
and no masks will be applied.

Mask generation. For a sequence of length N , we first
randomly generate a vector r = [r1, r2, · · · , rN ], where ri
follows a uniform distribution. So we can get the permutation
z = argsort(r). The content mask can be generated as
follows:

content_maskij =

{
0, ri < rj
1, ri ≥ rj

(3)

Where i, j are the coordinate of attention matrix,
content_maskij = 1 represents the i-th token have access
to the j-th token, content_maskij = 0 just represents the
opposite. The query mask is basically the same shape as the
content mask, except that the diagonal is all zero.

Encoder. The encoder has the same structure as the Vision
Transformer, which consists of M layers of self-attention
blocks, and we apply a content mask to the self-attention
blocks, which makes the current token only gather infor-
mation from the preceding positions. Computationally, we
define h

(m)
i as the output of the m-th encoder layer, where i

is the token index. And we use the initialized sequence s as
the input of the first encoder layer, i.e. h(0)

i = si, the forward
process of the encoder can be described as follows:

h(m)
zt =Attention(Q = h(m−1)

zt ,KV = h(m−1)
z≤t

; θ(m)
e )

where 1 ≤ m ≤ M
(4)

Where θ
(m)
e is the parameters of the m-th encoder layer. We

omit the layer norm, MLP, and residual connection in the
notation.

Decoder. The decoder consists of M layers of cross-
attention blocks and a MLP layer. The cross-attention blocks
reconstruct the original signals, and the MLP layer projects
the signal to the initial dimension. We also apply a query
mask to the cross-attention blocks.

We can define g(m)
i as the output of the m-th decoder layer.

And we use the position embeddings Epos as the input of the
first decoder layer, i.e. g(0)i = ei, the forward process of the
decoder can be described as follows:

g(m)
zt =Attention(Q = g(m−1)

zt ,KV = h(m−1)
z<t

; θ
(m)
d )

where 1 ≤ m ≤ M
(5)

g(m)
zt =MLP(g(m−1)

zt ; θ
(m)
d )

where m = M + 1
(6)

where θ
(m)
d is the parameters of the m-th decoder layer,

which is different from θ
(m)
e . Finally, we can use the out-

put of the last decoder layer g(M+1)
zt to compute loss, e.g.

fθ(sz<i
, ezi) = g

(M+1)
zt in Eq. (2).

Gaussian Smoothing Application
Vision signals are raw and low-level, and high-frequency
details and textures are not helpful for common recognition

tasks. To make the model focus on learning semantic informa-
tion, we construct a two-dimensional Gaussian filter kernel to
reduce the texture detail of the target. The Eq. (2) can update
as:

L = E
x∼D

E
z∼ZN

N∑
i=1

||fθ(sz<i , ezi)− gξ(xzi)||2 (7)

where gξ denotes the Gaussian filter. This simple strategy
works well in our method and the computation is negligible.

Experiments
Pretraing Setup
Dataset and models. Our method is pretrained on the pop-
ular ImageNet-1k (Russakovsky et al. 2015) dataset. The
dataset contains 1.28 million images from the training set of
1000 classes and 50,000 images from the validation set. We
only use the training set during self-supervised learning. Our
default model architecture has the parallel encoder and de-
coder. The encoder keeps the same structure as Vision Trans-
former (Dosovitskiy et al. 2020), and the decoder consists of
cross-attention blocks and a MLP layer. Visual Transformer
will load our trained encoder weights for downstream task
evaluation.

Training configurations. We use AdamW for optimiza-
tion and pretraining for 300/800 epochs with the batch size
being 2048. We set the base learning rate as 2e-4, with co-
sine learning rate decay and a 30-epoch warmup, and set
the weight decay as 0.05. We do not employ drop path and
dropout. A light data augmentation strategy is used: random
resize cropping with a scale range of [0.67, 1] and an aspect
ratio range of [3/4, 4/3], followed by random flipping and
color normalization steps.

Transfer Learning on Downstream Vision Tasks
Image classification on ImageNet-1K. We conduct fine-
tuning and linear probing experiments on ImageNet-1K im-
age classification in Tab. 1. The fine-tuning setting follows
the common practice of supervised ViT (Dosovitskiy et al.
2020) training. Implementation details are in Supplemental.
Our model pretrained with 300 epochs achieves the same ac-
curacy as MAE (He et al. 2021) pretrained with 1600 epochs,
which indicates that our method converges faster in the pre-
training stage. Our hypothesis here is that our method can
straightforwardly model dependencies between any two to-
kens and force the model to pay attention to every token,
which is more efficient for representational learning. Under
the longer training schedule (800 epochs), our model reaches
83.9% accuracy, 0.4% higher than MAE (He et al. 2021) and
0.9% higher than RandSAC (Hua et al. 2022) (a concurrent
autoregressive work of ours).

Though we focus on learning representations that are better
for fine-tuning, we also report the linear probing accuracy in
Tab. 1. For linear probing, we use the feature of the last block
and adopt an extra BatchNorm (Ioffe and Szegedy 2015)
layer before the linear classifier following MAE.

Object detection and instance segmentation on COCO.
We conduct object detection and instance segmentation ex-
periments on the MS COCO dataset (Lin et al. 2014). We
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Method Arch Pretrain epochs Linear Fine-tune
DeiT (Touvron et al. 2021) ViT-B 300 - 81.8

MoCoV3 (Chen, Xie, and He 2021) ViT-B 300 76.2 83.0
DINO (Caron et al. 2021) ViT-B 400 77.3 83.3

BEiT (Bao, Dong, and Wei 2021) ViT-B 800 - 83.2
MAE (He et al. 2021) ViT-B 1600 67.8 83.6
simMIM (Xie et al. 2021) ViT-B 1600 56.7 83.8
CAE (Chen et al. 2022) ViT-B 800 68.3 83.6

iGPT∗ (Chen et al. 2020a) iGPT-L - 65.2 72.6
RandSAC (Hua et al. 2022) ViT-B 1600 68.3 83.0
ViT-iGPT† ViT-B 300 20.4 82.7
SAIM ViT-B 300 58.5 83.6
SAIM ViT-B 800 62.5 83.9

Table 1: Comparison with previous results on ImageNet-1K. ∗: iGPT-L contains 1.36 billion parameters, while others use
ViT-base model. †: combine patch-wise modeling of ViT and raster ordering prediction of iGPT

Method Pretrain data Pretrain epochs COCO-APbb COCO-APmk ADE20K-mIOU
supervised∗ IN1K w/ labels - 47.9 42.9 47.4
MoCoV3∗ (Chen, Xie, and He 2021) IN1K 300 47.9 42.7 47.3
BEiT∗ (Bao, Dong, and Wei 2021) IN1K+DALLE 1600 49.8 44.4 47.1
MAE∗ (He et al. 2021) IN1K 1600 50.3 44.9 48.1

RandSAC (Hua et al. 2022) IN1K 1600 - - 47.3
ViT-iGPT IN1K 300 45.5 41.2 42.0
SAIM IN1K 300 47.4 42.8 46.1
SAIM IN1K 800 49.4 44.0 47.8

Table 2: Comparison with previous on COCO and ADE20K. ∗: the result is taken from (Li et al. 2021), in which a grid-search
was done to find the best hyperparameters for each method.

adopt ViT (Dosovitskiy et al. 2020) as the backbone of Mask-
RCNN (He et al. 2017), following the architecture of ViT
Benchmarking (Li et al. 2021). Implementation details are in
Supplemental. In Tab. 2, we show the performance of repre-
sentations learned through different self-supervised methods
and supervised training. We report box AP for object detec-
tion and mask AP for instance segmentation. We observe
that our method achieves 49.4 bbox mAP and 44.0 mask
mAP. The result is better than supervised learning and con-
trastive learning but lags behind MIM methods. We note that
BEIT and MAE are pretrained with 1600 epochs and use
grid-search to find the best hyperparameters, while we only
pretrain 800 epochs and don’t tune any parameters in the
fine-tune stage due to limited access to computation.

Semantic segmentation on ADE20K. We conduct se-
mantic segmentation experiments on ADE20K dataset (Zhou
et al. 2019). We adopt ViT (Dosovitskiy et al. 2020) as the
backbone of UperNet (Xiao et al. 2018), following the im-
plementation of BEiT (Bao, Dong, and Wei 2021). Imple-
mentation details are in Supplemental. In Tab. 2, we show
the performance of our method. We report mIoU for seman-
tic segmentation. We observe that our method achieves 47.8
mIoU, which is slightly lower than MAE by 0.3, but higher
than all others.

In all tasks, our method surpasses the supervised results by
large margins and achieves competitive performance with
masked image modeling methods. Compared to the ViT-
iGPT, our method improves 0.94%, on Imagenet-1k, 4.07
mIOU on ADE20K and 1.9/1.6 mAP on COCO. All these
results indicate that our method can learn high-quality rep-
resentations, and bridge the gap between MIM and AIM
methods for unsupervised representation learning.

Ablation Study
Tokenization. We first compare two different tokenization
strategies introduced by iGPT (Chen et al. 2020a) and
ViT (Dosovitskiy et al. 2020), i.e., pixel-level modeling
and patch-level modeling. ViT-style tokenization greatly im-
proves the performance of the visual auto-aggressive method.
The patch-based iGPT achieves 82.70 Top1 accuracy, which
is higher than DeiT-base (Touvron et al. 2021)(81.8) but still
lags behind the MIM method (e.g. 83.6 for MAE).

Prediction order. We compare the influence of differ-
ent prediction orders. Our stochastic-order strategy (83.40)
outperforms raster-order (82.70) 0.7% in accuracy, which
indicates that the stochastic-order strategy plays a key role
in our method. Our explanation here is that it leverages the
richness and diversity of the visual signal and models full
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Perform order Decoder design Gaussian smoothing Tokenization Fine-tuneraster stochastic shared weight depth kernel size sigma pixel patch

Ablation of tokenization:
! - 0 - - ! 72.90∗

! - 0 - - ! 82.70
Ablation of prediction order:
! - 0 - - ! 82.70
! % 12 - - ! 82.76

! % 12 - - ! 83.40
Ablation of decoder design:

! % 12 - - ! 83.40
! ! 12 - - ! 83.02
! % 6 - - ! 83.01
! % 1 - - ! 82.76

Ablation of Gaussian smoothing:
! % 12 - - ! 83.40
! % 12 3 1 ! 83.52
! % 12 9 1 ! 83.64
! % 12 9 1.5 ! 83.45

Table 3: Ablation study on tokenization strategies, prediction order, decoder design, and Gaussian smoothing experiments by
SAIM. ∗: the result is taken from (Chen et al. 2020a).

dependencies between all patches.
Decoder design. We first try to verify the effect of apply-

ing parallel architecture, in which the decoder doesn’t share
weights with the encoder. As is shown in the result, the par-
allel architecture gets a higher accuracy than the coupling
architecture 0.4%. By this design, the encoder can focus on
learning semantic representations without participating in
image generation. We also vary the decoder depth to quantify
its influence and find a sufficiently deep decoder performs
better.

Gaussian kernel parameters. We ablate Gaussian ker-
nel parameters in Tab. 3. We investigate the kernel size and
standard deviation in Gaussian distribution. The larger the
convolution kernel size or standard deviation is, the more
texture will be removed from the target image. We obtain
the best result when the kernel size is 9 and the standard
deviation is 1, and all experiments with Gaussian smooth
outperform those without.

Visualization and Analysis
Autoregressive image modeling attention maps. As shown
in Fig. 2, we observed that the fixed-order autoregressive
model cannot pay attention to the main object of the input
image, and is only concerned with the local area of the im-
age. While, SAIM with stochastic order focuses on the main
information of the image, and obtains human-level attention
representation with unlabeled data. In the field of computer
vision, images are high-dimensional spatial information, and
the main information of the input image is randomly dis-
tributed in tokens. SAIM allows each prediction token can

have the opportunity to see the global context information,
which is crucial for autoregressive image modeling.

The reconstruction of autoregressive and autoencoder.
As shown in Fig. 3, we discovered that MAE masked out 75%
of the image tokens, resulting in blurred reconstruction results
in large masked regions. According to the MAE, reducing the
number of image masks can improve reconstruction results,
but it will decrease model representation due to image local
dependency. While, our proposed stochastic autoregressive
image modeling, SAIM, utilizes all the information of the
image to generate clear images, and achieve better fine-tuning
accuracy than MAE on ImageNet-1K.

For example, the first quadruple in Fig. 3, shows that the
baby in the image is ignored by MAE because it’s totally
masked, but SAIM can efficiently generate the baby in the
image. Therefore, if the subject feature of the image is totally
masked, the model will misunderstand the subject of the im-
age. This problem will be harmful to downstream tasks. We
argue that autoencoder methods introduce independence as-
sumptions in image tasks, e.g., the masked subset of patches
can’t establish decencies with each other. The stochastic au-
toregressive image model enables the model to obtain the
global dependency of the image by establishing the global
context of the image.

Conclusion
In this paper, we fully analyze the differences between autore-
gressive modeling on visual and textual tasks and propose
how to improve the performance of visual autoregressive
models. Therefore, we explore a novel stochastic autore-
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Figure 2: Attention maps of different prediction order. We show example results for ImageNet validation set. Description of
images from left to right: (a) the original image, (b) the attention map of raster-order AIM, (c) the attention map of SAIM, more
examples are in the appendix.

Figure 3: Reconstruction image of different methods. We show example results for ImageNet validation set. Description of
images from left to right: (a) the origin image, (b) the mask map of the MAE, (c) the reconstruction image of MAE, (d) the
reconstruction image of SAIM, more examples are in the appendix.

gressive image modeling (SAIM). By introducing ViT-style
tokenization, stochastic order prediction, and the parallel
encoder-decoder, we significantly improve the performance
of autoregressive image modeling and bridge the gap be-
tween computer vision and NLP. Experiments on downstream
tasks(image classification, object detection, and semantic seg-
mentation) demonstrate the effectiveness of our method. Our
method achieves competitive performance compared with
other self-supervised methods, this proved that the autore-
gressive image modeling is also an effective pretext task for
visual representation learning.

Discussion. The major drawback of this work is that our
approach is time-consuming since our parallel architecture
needs to calculate the self-attention blocks twice. Designing
a lightweight decoder is challenging but worth exploring. We

will conduct future studies on this issue.
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