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Abstract

Domain adaptation for Cross-LiDAR 3D detection is chal-
lenging due to the large gap on the raw data representation
with disparate point densities and point arrangements. By
exploring domain-invariant 3D geometric characteristics and
motion patterns, we present an unsupervised domain adapta-
tion method that overcomes above difficulties. First, we pro-
pose the Spatial Geometry Alignment module to extract sim-
ilar 3D shape geometric features of the same object class
to align two domains, while eliminating the effect of dis-
tinct point distributions. Second, we present Temporal Mo-
tion Alignment module to utilize motion features in sequen-
tial frames of data to match two domains. Prototypes gen-
erated from two modules are incorporated into the pseudo-
label reweighting procedure and contribute to our effective
self-training framework for the target domain. Extensive ex-
periments show that our method achieves state-of-the-art per-
formance on cross-device datasets, especially for the datasets
with large gaps captured by mechanical scanning LiDARs
and solid-state LiDARs in various scenes. Project homepage
is at https://github.com/4DVLab/CL3D.git.

Introduction
Due to the advantages of accurately capturing depth in-
formation of large-scale scenes, LiDARs become crucial
sensors for the 3D perception of autonomous driving and
robotics. Boosted by deep learning techniques, LiDAR-
based 3D detection (Yan, Mao, and Li 2018; Zhu et al.
2021; Qi et al. 2019; Zhu et al. 2020; Chen et al. 2020;
Shi and Rajkumar 2020; Zhang, Hu, and Xu 2022; Cong
et al. 2022; Hou et al. 2022) has made great progress and be-
comes the main solution for many autonomous driving com-
panies. However, deep learning-based methods rely heavily
on massive annotated data, which is time-consuming and
expensive, especially for labeling 3D point clouds of large
scenes. Moreover, the domain adaptation for point clouds
gets more challenging compared to image-based adaptation
tasks (Chen et al. 2018; Saito et al. 2019; Zhu et al. 2018;
Cui et al. 2020; Li, Ji, and Qu 2022) where the image-based
domain gap is more about the explicit appearance includ-
ing lighting and weather while the domain gap existing in
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Figure 1: We show several key domain gaps between me-
chanical scanning LiDAR (from nuScenes) and solid-state
LiDAR (from PandaSet). (a) shows the comparison of statis-
tics of point numbers and point densities. (b) describes do-
main gaps of perception range and instance-level point dis-
tribution. Two adjacent frames are shown in green and red.
The geometric structure represented by the black sampling
points in the side-view and the motion pattern in the bird-
eye-view are domain-invariant for cars.

LiDAR is mainly reflected in the raw point representation,
which causes image-based domain adaptation strategies in-
applicable.

Different types of LiDAR have obvious difference on
the point representation. For the widely-used mechanical
scanning LiDARs, they have various beams with different
point densities. Compared with them, solid-state LiDARs
are based on another principle of physics, having disparate
perception ranges, point densities, and point arrangements.
We show the statistics and visualization to describe the do-
main gaps in Figure. 1. Actually, solid-state LiDARs become
more and more popular because it is cheaper and has longer
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perception distance and longer longevity, which makes au-
tonomous vehicles installed with them more feasible for
quantity production. However, most current open large-scale
3D datasets (Geiger, Lenz, and Urtasun 2012; Caesar et al.
2020; Sun et al. 2020) are captured by mechanical LiDARs.
How to solve the domain adaptation problem between these
two distinct LiDARs becomes extremely urgent and signif-
icant. Previous works (Yang et al. 2021; Wang et al. 2020;
Luo et al. 2021; Zhang, Li, and Xu 2021) mainly consider
the consistent objects’ sizes for the domain alignment. Ac-
tually, the more important domain-invariant features in 3D
point cloud are geometric characteristics including shapes,
scales, etc., and temporal motion information. For example,
sedan cars bear resemblance in shape and motion represen-
tation; the poses and actions of pedestrians are also alike.

Motivated by this, we propose CL3D, an unsupervised
domain adaptation method for LiDAR-based 3D detection,
especially for solving the cross-device setting, via explor-
ing the spatial geometry information and temporal motion
representation. Specifically, we develop a framework con-
sisting of two key components, Spatial Geometry Align-
ment (SGA) and Temporal Motion Alignment (TMA), to
extract the geometric features of both local structure and
global context, and model the motion pattern in consecutive
point clouds, respectively. Based on SGA and TMA, a pro-
totype representation with geometry and motion constraints
for each specific class is proposed, where the similarity be-
tween current sample and average target prototype (updated
via exponential moving average) is used to reweight the
confidence of pseudo labels generated by the self-training
framework. Different from existing rigid pseudo-label selec-
tion process, this proposed soft-selection mechanism could
reduce the effect of incorrect labels and avoid directly dis-
carding correct labels with low confidence. In addition,
we explore several strategies to solve the perception range
gaps between mechanical scanning LiDARs and solid-state
LiDARs and give conclusions to facilitate the data pre-
processing.

We conduct extensive experiments on various cross-
LiDAR and synthetic-to-real domain adaptation tasks, and
all get state-of-the-art performance. We also conduct de-
tailed ablation studies quantitatively and qualitatively to
demonstrate the effectiveness of different modules of our
method. To our knowledge, we are the first to explore the
point cloud-based 3D detection domain adaptation for the
challenging mechanical-to-solid-state cross-LiDAR setting.

Our contributions are summarized as follows.

• We investigate the cross-LiDAR domain gap and propose
an unsupervised domain adaptation method for 3D detec-
tion, especially for the challenging mechanical to solid-
state LiDAR adaptation.

• We propose SGA and TMA to extract similar 3D shape
geometric characteristics and motion patterns belonging
to objects of the same category to align two domains by
reweighting pseudo labels with soft constraints.

• Our method achieves state-of-the-art performance on un-
supervised domain adaptation for cross-LiDAR 3D De-
tection.

Related Work
LiDAR-based 3D Object Detection Due to the advan-
tages of capturing depth information in large-scale scenes,
more and more LiDAR-based methods for 3D object de-
tection are proposed in recent years. These methods can be
divided into point-based methods and grid-based methods.
The former (Yang et al. 2020b; Qi et al. 2019; Chen et al.
2020; Shi and Rajkumar 2020; He et al. 2022) directly ex-
tracts the features from unordered raw point clouds data with
PointNet (Qi et al. 2017a) or PointNet++ (Qi et al. 2017b)
to generate 3D proposals. These methods preserve the orig-
inal geometric features of point cloud but become time-
consuming for processing large-scale outdoor data. The lat-
ter (He et al. 2020; Shi et al. 2020b,a; Yan, Mao, and Li
2018; Zhu et al. 2021, 2020; Hu et al. 2022; Zhang, Hu, and
Xu 2022) utilizes structured representation to quantize the
LiDAR data into the fix-sized voxel or pillar grids and then
use this representation to further extract semantic features
for 3D object detection. Such methods perform well in effi-
ciency and are usually adopted in autonomous driving sce-
narios. In our work, we chose the state-of-the-art grid-based
3D detector CenterPoint (Yin, Zhou, and Krahenbuhl 2021)
as base network, which is a one-stage anchor-free method
with high efficiency and accuracy. Instead of generating a
new detector, we aim at adding new modules to basic detec-
tor to adapt it to the unsupervised domain adaptation task.
Domain Adaptation for 2D image There are already a
lot of investigations (Hoffman et al. 2018; Chen et al. 2018;
Saito et al. 2019; Zhu et al. 2018; Li, Ji, and Qu 2022;
Yu et al. 2022) about domain adaptation for various 2D
computer vision tasks such as image-based detection and
segmentation. Many domain adaptation methods (Hoffman
et al. 2016; Ganin et al. 2016; Bousmalis, Trigeorgis, and
etc. 2016; Cui et al. 2020; Hu et al. 2020; Yang et al.
2020a) use adversarial learning to align feature distributions
across different domains inspired by GANs (Goodfellow
et al. 2014), while some statistic-based methods (Mancini
et al. 2018; Maria Carlucci et al. 2017; Long et al. 2017;
Sun and etc. 2016; Xu et al. 2020; Long et al. 2015) em-
ploy the statistic-based metrics to the domain gap between
two different data distributions. Moreover, pseudo-label-
based self-training is becoming a more and more popular
approach (Khodabandeh et al. 2019; RoyChowdhury et al.
2019; Seibold et al. 2022; Yao, Hu, and Li 2022) for unsu-
pervised domain adaptation, which is easier to implement
compared with previous two kinds of methods. Our method
also adopts such self-training mechanism for the target do-
main. However, unlike images with unchanged regular pixel
representations for different environments and devices, Li-
DAR point cloud is changing apparently on the raw data
representation with diverse point densities and distributions,
which is not applicable to directly extend the image-based
adaptation methods to LiDAR point cloud. Our method fully
explores the specific properties of 3D data and achieves su-
perior performance.
Domain Adaptation for 3D point cloud To bridge the
domain gap on point clouds captured in various environ-
ments and by different LiDAR sensors, some works appear
recently for shape classification (Qin et al. 2019), semantic
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segmentation (Wu et al. 2018; Yi, Gong, and Funkhouser
2021; Jaritz et al. 2020; Xiao et al. 2022; He, Yang, and
Qi 2021) and 3D detection (Hegde and Patel 2021; Luo
et al. 2021; Xu et al. 2021; You et al. 2022). We focus on
the 3D detection task. To align geometry features, (Yihan
et al. 2021) transforms the 3D feature to the bird’s eye view
with regular structures as images. However, dimensionality
reduction usually misses detailed 3D geometry characteris-
tics and is not friendly for small objects. (Wang et al. 2020)
utilizes the object size statistics of two domains to narrow
the gap, but the performance relies on the source and target
data distributions. SRDN (Zhang, Li, and Xu 2021) aligns
the features according to the instance sizes and distances
to the LiDAR sensor. It is reasonable for the data captured
by the same LiDAR, but not applicable for the cross-device
data, where even the same object at the same location will
be presented differently with different densities and arrange-
ments. Compared with these works using the object size, our
work considers a more important geometric characteristic,
the shape, consisting of both the size and structure informa-
tion, as well as the temporal features to pull two domains
closer. ST3D (Yang et al. 2021) generates pseudo labels of
the target domain by the model trained on source domain and
then selects high-quality pseudo labels for self-supervision.
However, the threshold-based method for pseudo-label se-
lection usually leads to involving incorrect labels that have
high confidence and discarding correct labels with low con-
fidence in the self-training procedure, which may mislead
the network. Our method uses a soft-selection mechanism
for pseudo labels by reweighting the confidence, which can
alleviate above situations to a certain extent.

Methodology
Problem Statement
Given the source domain, denoted as DS = {PS , LS} with
point cloud data PS and labeled samples LS , and the tar-
get domain DT = {PT } without any annotation, our task
is to train a 3D detector that can generalize well to the tar-
get domain, utilizing the data in both domains. Specifically,
PS and PT are captured by different types of LiDAR in
various environments with different numbers, densities, ar-
rangements, and ranges of points.

Framework Overview
To align two distinct point cloud domains, we fully explore
the domain-invariant features existing in raw data represen-
tations, including the geometric characteristics and motion
patterns. We design two important modules in CL3D. The
first is Spatial Geometry Alignment (SGA), which extracts
geometric features of both local structure and global context
for objects. The second is Temporal Motion Alignment
(TMA), which aims at learning the motion features of the
same kind of objects from consecutive data. Then, we gen-
erate a feature-fusion prototype representation based on
SGA and TMA to align the source domain and target do-
main with geometry and motion constraints. Specifically, the
target prototype is updated via exponential moving average

(EMA) and the similarity between current sample and pro-
totype is used to reweight the confidence of pseudo labels to
optimize the detection results via this soft-selection mech-
anism. In particular, the perception range also differs a lot
for mechanical scanning LiDAR and solid-state LiDAR. We
further propose an effective strategy of range normaliza-
tion for better pre-processing. The pipeline of our method,
CL3D, is illustrated in Figure 2.

Spatial Geometry Alignment
Different from the dense and regular representation of image
pixels, points captured by LiDARs appear sparsity-varying
and unordered distributions in 3D space. For various kinds
of LiDAR, like widely-used mechanical scanning LiDARs
with 32, 63, and 128 beams and solid-state LiDARs, there
exist obvious differences in the raw data representations,
leading to huge domain gaps. However, the object’s geomet-
ric structure is invariant even in diverse environments and
captured by disparate devices, which inspires us to extract
the essential geometry features from arbitrary point cloud
representations. By the 3D detection backbone trained on
the source domain, we can obtain pseudo labels to local-
ize potential objects of the target domain. To eliminate the
influence brought by diverse densities and arrangements of
points and make the shape feature more robust, we adopt
the farthest point sampling (FPS) method to uniformly col-
lect 16 points from the point cloud belonging to each ob-
ject as the shape representation. After that, we normalize
these points by transforming the coordinates from the Li-
DAR coordinate system to the self-coordinate system. A
two-layer multi-layer perceptron (MLP) is attached to ex-
tract the point-wise geometry feature, flocal, for the local
structure of objects. Considering that feature map generated
by the detection backbone involves the features of the global
context, which contains high-level geometry information,
we sample on the feature map by interpolation to get the
fglobal. Then we obtain the final geometric feature fgeo for
each object by fgeo = concat{flocal, fglobal}, which con-
tains both local structure and global context information.

Temporal Motion Alignment
Additionally, the dynamic properties in objects’ movement
are also invariant across various domains, which can benefit
the domain alignment as well. First, we input two consecu-
tive frames of LiDAR point cloud to acquire dynamic infor-
mation. Then, we add an extra motion head for the backbone
network to extract the temporal feature and get the motion
feature map. Finally, we conduct the feature sampling on the
motion map according to the pseudo label to obtain the cor-
responding motion feature fmo of each object. Both of the
features obtained by SGA and TMA will be used to generate
prototype to align two domains by prototype learning.

Prototype Learning
In previous works, rigid filtering methods (Khodabandeh
et al. 2019; RoyChowdhury et al. 2019; Yang et al. 2021) are
popular for the pseudo-label-based self-supervised frame-
works. Commonly, rigid filtering methods are used by set-
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Figure 2: The pipeline of our method CL3D. Firstly, a 3D detection network is trained on source data to generate the pseudo
label on target domain. During re-training on target domain, Spatial Geometry Alignment and Temporal Motion Alignment are
used to extract the domain-invariant geometry-aware and motion-aware features, which are used to generate prototype for the
soft selection of pseudo labels. Moreover, Range Normalization is designed to ease the range gap for better pre-processing.

ting different confidence thresholds to filter prediction re-
sults, but it may mistakenly exclude some correct but low-
confidence predictions. Therefore, we hope to calculate and
learn the corresponding prototype representation for each
specific class in the re-training process, then reweight the
information from each pseudo-label by comparing the cor-
responding feature of pseudo-label with the prototype rep-
resentation, in order to achieve a soft limitation effect for
incorrect pseudo labels in the re-training process.

Usually, the quality of pseudo label on target data would
dominate the effectiveness of the network on the target
domain in the self-supervised framework. Particularly, al-
though there exist large variances between different types of
LiDARs, these instance-level geometry structure and tem-
poral motion information are consistent. To this end, we
employ the spatial geometry alignment and temporal mo-
tion alignment acting as a soft selection mechanism for the
pseudo labels as shown in the half bottom of Figure 2. In this
way, only pseudo labels with high similarity between proto-
types (current labels and template prototypes) are remained.
Feature Fusion for Prototype. In the traditional 2D ob-
ject detection (Jiang et al. 2018; Yang et al. 2018), it is
considered that the extracted semantic features of specific
class from the backbone network are similar, which can be
used to compute the prototype representation. However, for
LiDAR-based 3D target detection, the input data is point
cloud, where no texture and color information exists but the
shape-aware geometric representation and dynamic motion
information are presented. Therefore, we process and obtain

the underlying consistent shape information and temporal
motion pattern for each object to match different domains.

Based on the geometry feature fgeo acquired from SGA
and the motion feature fmo obtained from TMA, we can
update the prototype representation in each training itera-
tion. Instead of averaging the fused feature information di-
rectly to obtain the prototype, we adjust the weights of these
fused features by the confidence d corresponding to each
pseudo label as ffusion = 1

N

∑N
i=1 di · concat{f i

geo, f
i
mo},

where N means the number of sampled features. Addition-
ally, the prototype computed in an iteration is combined with
the previous prototype through exponential moving average
(EMA), so the final attentive prototype at each iteration j is
fprototype = αf j−1

prototype+(1−α)f j
fusion, where α = 0.99.

Similarity-based Reweight. Finally, the classification
loss is multiplied by these cosine similarity scores between
each fused feature and the prototype representation. Since
we use CenterPoint (Yin, Zhou, and Krahenbuhl 2021) as
the original detector. It uses the class-balanced focal loss
(Lin, Goyal, and etc. 2017) as the classification loss with the
calculation of classification scores prediction heatmap and
ground truth heatmap. Therefore, the generation of weight
W ∈ [0, 1]w×h×c is similar to the ground truth heatmap
Y ∈ [0, 1]w×h×c, where w, h, c denotes the width, height
and channels of the ground truth heatmap for classification.
We use a modified Gaussian kernel function (Zhou, Wang,
and Krähenbühl 2019) for each pseudo label p as shown in
the function below, where Wxyc denotes the weight value in
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the location (x, y) and channel c for reweighting, px, py de-
note the location of the pseudo label in heatmap, sp denotes
the corresponding cosine similarity score and σ is an object
size-adaptive standard deviation.

Wxyc = sp · exp(−
(x− px)

2 + (y − py)
2

2σ2
)

With this similarity-based reweighting, the losses will pay
more attention to the corresponding regions that have been
identified as correct through prototype matching and there-
fore the pseudo-label selection would bias to these consis-
tent patterns, resulting in the final loss for target domain
Ltarget = W · Lcls

target + Lreg
target, which contains a class-

balanced focal loss Lcls
target for object classification, and

a smooth-L1 loss Lreg
target for bounding box regression. In

this way, a soft-selection-based self-supervised framework
is completed.

Range Normalization
We also observe that mechanical LiDAR and solid-state
LiDAR usually capture the scene with different percep-
tion ranges. Taking the mechanical LiDAR-based nuScenes
dataset (Caesar et al. 2020) and solid-state LiDAR-based
PansaSet dataset (Xiao et al. 2021) for example, the former’s
perception range is [-50m, 50m], and the perspective view is
a 360-degree ring area, while perception range of the latter
is [0m, 100m], and the visual range is only a fan area of 60
degrees straight ahead. This difference in range also leads to
a domain gap.

We propose range normalization (RN) as a data pre-
processing to ease the difference in sensor range from
different datasets. Specifically, we centralize all the non-
centralized point cloud sample data to ensure that the ori-
gin of the point cloud coordinate system is in the center of
the point cloud perception range. In other words, for Pan-
daSet dataset whose original perception range is [0, 100m],
we translate the overall point cloud data and corresponding
annotated bounding box information, so that its perception
range becomes [-50m, 50m] which is consistent with the
data perception range of nuScenes dataset. It is a simple yet
efficient normalization approach and considerable improve-
ment can be observed in the 3D detection domain adaption
task as shown in the ablation studies.

Experiment
We first introduce all datasets and evaluation metrics used
in the experiments and implementation details. After that,
we explore cross-LiDAR domain shift scenarios and show
compared 3D detection results to demonstrate the state-of-
the-art performance of CL3D. Finally, we conduct extensive
ablation studies to give a comprehensive assessment of sub-
modules of CL3D.

Experimental Setup
Datasets We consider five widely-used large-scale au-
tonomous driving datasets to simulate the various domain
shifts, which are Waymo (Sun et al. 2020), nuScenes (Cae-
sar et al. 2020), KITTI (Geiger, Lenz, and Urtasun 2012),

PandaSet (Xiao et al. 2021), and PreSIL (Hurl, Czarnecki,
and Waslander 2019). Among them, Waymo is the largest
dataset with more than 230K annotated 64-beam mechanical
lidar frames collected across six US cities. nuScenes con-
sists of 28130 training samples and 6019 validation samples
collected by the 32-beam mechanical LiDAR and KITTI
consists of 7,481 annotated lidar frames collected by the
64-beam mechanical LiDAR. PandaSet is the only dataset
whose data is captured by solid-state LiDAR, including
5520 training samples and 2720 validation samples. Particu-
larly, the synthetic dataset PreSIL contains 51075 synthetic
LiDAR data generated from the Grand Theft Auto V (GTA
V) game. Note that KITTI and PreSIL do not contain con-
secutive frames of data, so we will delete our TMA module
for related experiments.
Evaluation metric We adopt the nuScenes evaluation
metric for evaluating our methods on the commonly used car
category in most of our experiments. The Average Precision
(AP) is used as the metric and a match is defined by thresh-
olding the 2D center distance d on the ground plane, then we
average over matching thresholds of d = {0.5, 1, 2, 4} me-
ters and get the mean Average Precision (mAP). As for the
synthetic-to-real domain adaptation from PreSIL to KITTI,
we use the KITTI evaluation metric of intersection over
union (IOU) of 0.7 in order to align other methods’ per-
formance. Refer to (Yang et al. 2021), we use closed gap
= APmodel−APDT

APOracle−APDT
to report how much the performance gap

between Direct Transfer(DT) to Oracle is closed.
3D detection network We use the CenterPoint detec-
tor (Yin, Zhou, and Krahenbuhl 2021) as the base network,
which is a one-stage anchor-free 3D object detector. A mo-
tion head is attached for extracting motion features by the
supervision of object velocities (position offset between two
adjacent frames) during the training on the source domain.
The classification loss is reweighed during the computation
in the domain adaptation process.
Implementation details As for the implementation, we
use the public pyTorch (Paszke, Gross, and Massa 2019)
repository MMDetection3D (Contributors 2020) and we
perform experiments with a 24GB GeForce RTX 3090 GPU.
During both the pre-training and self-training processes, we
adopt the widely adopted data augmentation, including ran-
dom flipping, scaling, and rotation. The source data in pre-
training process are trained for 20 epoch and target data in
self-training process are trained for 1 epoch. Other settings
are the same as official implementation of CenterPoint.

Performance
We mainly demonstrate the performance on cross-LiDAR
3D detection domain adaptation tasks. We compare with
several approaches, including Direct Transfer (DT), Self-
Training (ST), and current published SOTA ST3D (Yang
et al. 2021) by running its released code on our experimen-
tal settings. As for another SOTA work SRDAN (Zhang, Li,
and Xu 2021), we compare with it by aligning the perfor-
mance on synthetic-to-real domain adaptation task accord-
ing to its reported results for fair comparison. In particu-
lar, Direct Transfer(DT) indicates directly evaluating pre-
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Source Target Method mAP Closed Gap
nuScenes PandaSet DT 0.363 -

ST 0.379 2.60%
ST3D 0.617 57.21%
CL3D 0.705 77.03%
Oracle 0.807 -

PandaSet nuScenes DT 0.089 -
ST 0.244 27.63%

ST3D 0.349 46.35%
CL3D 0.467 68.98%
Oracle 0.650 -

Waymo PandaSet DT 0.272 -
ST 0.383 20.75%

ST3D 0.704 80.75%
CL3D 0.729 86.42%
Oracle 0.807 -

PandaSet Waymo DT 0.115 -
ST 0.312 37.10%

ST3D 0.423 58.00%
CL3D 0.492 71.00%
Oracle 0.646 -

Table 1: Comparison on 3D car detection adaptation task
between mechanical LiDAR dataset (nuScenes and Waymo)
and solid-state LiDAR dataset (PandaSet). Oracle indicates
the fully supervised model trained on the target dataset
standing for upper bound of performance after adaptation.

trained model from the source dataset on the target dataset,
and Self-Training(ST) indicates re-training the object detec-
tor supervised only by the pseudo-label generated by source-
model. For adaptation experiments between mechanical Li-
DAR and solid-state LiDAR, we also apply Range Nor-
malization (RN) to other SOTA methods. For other cross-
domain settings without perception range gap, we will ig-
nore the RN procedure.

Table. 1 shows the adaptation results between solid-state
LiDAR dataset PandaSet and mechanical LiDAR datasets,
including nuScenes and Waymo, and our method attains an
obvious improvement over other methods. ST is superior to
DT because of the retraining under the guidance of pseudo
labels. Our method outperforms ST due to the domain align-
ment process with the assistance of domain-invariant geom-
etry and motion features. ST3D utilizes threshold strategy to
select high-quality pseudo-labels, which may lead to involv-
ing incorrect labels that have high confidence and discarding
correct labels with low confidence in the self-training proce-
dure. Our method is superior to ST3D, which is mainly due
to the soft selection mechanism by reweighting the pseudo
labels via prototypes, which avoids the misjudgement of
pseudo labels by hard constraints and further benefits the
learning of the network. Furthermore, to demonstrate the ef-
fectiveness of our method on the domain shift caused by dif-
ferent beams of mechanical LiDARs, we conduct the exper-
iment between KITTI and nuScenes in Table 2 and also get
the state-of-the-art performance.

Beyond cross-LiDAR domain adaptation problems,

Source Target Method mAP Closed Gap
nuScenes KITTI DT 0.395 -

ST 0.605 47.83%
ST3D 0.625 52.39%
CL3D 0.682 65.38%
Oracle 0.834 -

KITTI nuScenes DT 0.116 -
ST 0.179 11.80%

ST3D 0.289 32.40%
CL3D 0.305 35.39%
Oracle 0.650 -

Table 2: Comparison on 3D car detection adaptation task
between mechanical LiDARs with different beams, where
nuScenes is 32-beam and KITTI is 64-beam.

PreSIL ->KITTI mAP(Car)
Easy Mod. Hard

DABEV - 17.1 -
CDN - 19.0 -

SWDA-3D 22.6 18.7 16.3
SRDAN 25.9 22.1 18.7
CL3D 28.0 25.3 23.4

Table 3: Comparison of different methods under the
synthetic-to-real scenario from PreSIL to KITTI dataset us-
ing the metric mAP adopted by KITTI. ‘-’ indicates the re-
sults are not available in their works.

synthetic-to-real domain adaptation is also significant due
to the difficulty in collecting and annotating large-scale data
in real-world scenarios. Therefore, we further validate our
method under the synthetic-to-real setting using the syn-
thetic PreSIL dataset and real KITTI dataset. We use the
IOU metric of KITTI in order to align other methods’ re-
sults (Zhang, Li, and Xu 2021; Saito et al. 2019; Su et al.
2020; Saleh and Abobakr 2019). The results are shown in
Tabel 3. Our method outperforms all methods by convinc-
ing margins, indicating that our method is also suitable for
bridging the domain gap between the synthetic and real do-
main. That is because, no matter the cross-LiDAR domains
or the synthetic-to-real domains, domain-invariant features
are all about the geometric characteristics and motion pat-
terns and our method exploits the invariant information to
solve the domain gap essentially.

Ablation Studies
To evaluate the effectiveness of submodules of our method,
we conduct ablation studies and analyze their contributions
to the unsupervised domain adaptation task from nuScenes
to PandaSet. We also show the performance of using differ-
ent detector backbones and on other categories of objects to
further illustrate our method’s generalization capability.
Effectiveness of SGA and TMA We first study the ef-
fects of spatial geometry alignment (SGA) and temporal mo-
tion alignment (TMA). Table 5 and Figure. 3 show quanti-
tative and qualitative results, respectively. SGA extracts the
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Method w/o
TMA & SGA

w/o
TMA

w/o
SGA CL3D

mAP 0.641 0.686 0.662 0.705

Table 4: Ablation study for SGA and TMA of our method.

Method ST ST+RSym ST+RSp ST+ RN
mAP 0.379 0.361 0.343 0.641

Table 5: Comparison of different solutions for range gap.

domain-invariant geometry-aware features and TMA learns
the motion-aware features for the same kind of objects in dif-
ferent domains, which are all used during the self-training
process to generate prototype representation for specific
class to select high-confidence pseudo labels with soft con-
straints. It is obvious that both of them play critical roles.
Effectiveness of Range Normalization To solve the huge
range gap between mechanical LiDAR and solid-state Li-
DAR, we design RN in data pre-processing for the range
alignment. It’s simple but effective. Actually, we have tested
several solutions to reduce the range gap, as Table. 5 shows.
Range Symmetrization (RSym) copies the fan area of solid-
state LiDARs to complete the symmetrical area as mechan-
ical LiDARs. Range Split (RSp) splits the circular area of
mechanical LiDARs into fans to align solid-state LiDARs.
These intuitive methods do not work and even have negative
effects, while RN produces significant performance gains by
regularizing all point cloud to a general range, which eases
the learning difficulty and has good generalization capability
for current LiDAR categories.
Different detection backbones Additionally, we show
the performance of using different backbones in the Center-
Point detector, namely voxel-based, pillar-based and point-
based backbones, which are three main types of backbones
in 3D perception area, to verify the generalization capa-
bility of CL3D. Voxel-based backbone utilizes the struc-
tured voxel representation to quantize the LiDAR data while
pillar-based backbone utilizes the pillar representation for
efficient point process. Point-based backbone extract fea-
tures from raw point cloud data directly. Results in Table

Figure 3: Visualization of 3D detection for the domain adap-
tation from nuScenes to PandaSet, where red boxes are
ground truth and blue boxes are predictions.

Method
Backbone voxel-based pillar-based point-based

DT 0.363 0.247 0.624
ST 0.379 0.303 0.632

CL3D 0.686 0.445 0.691

Table 6: Ablation study for different backbones of detector.

Source → Target Method mAP(tr.) mAP(pe.)
nuScenes → PandaSet DT 0.000 0.030

ST 0.096 0.086
CL3D 0.131 0.124
Oracle 0.284 0.295

PandaSet → nuScenes DT 0.000 0.003
ST 0.072 0.153

CL3D 0.113 0.294
Oracle 0.275 0.524

Table 7: Results of CL3D on more challenging categories,
where tr. represents the truck category and pe. represents the
pedestrian category.

6 demonstrate that our method can boost the domain adap-
tation performance based on different detector backbones.
Among them, the voxel-based backbone is a good choice
with high-efficient processing for large-scale point cloud
and precise detection performance.
More challenging categories Except for the normal car
category concerned in most 3D detection domain adapta-
tion methods, we also conduct experiments on other two im-
portant types of traffic agents, including trucks and pedes-
trians. Table. 7 shows experimental results. Direct Transfer
can hardly obtain predictions. Our method gets improvement
by a large margin, demonstrating that our method is solid
for different types of detection objects. Specifically, due to
the limited training samples on these challenging categories,
even the result of oracle is not good.

Conclusions
We propose an unsupervised domain adaptation method
to bridge the domain gap for LiDAR-based 3D detection
caused by the differences in perception range, point cloud
density, and point arrangement. In particular, we design Spa-
tial Geometry Alignment to extract similar 3D shape geo-
metric features and Temporal Motion Alignment to extract
similar motion patterns of the same category from distinct
instance-level distributions to align two domains. Extensive
experiments and comprehensive ablation study demonstrate
the effectiveness of our approach for cross-LiDAR 3D ob-
ject detection. Although prototype representation solves the
false classification, the deviation caused by scale and loca-
tion error still exists, which we aim to solve in the future.
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