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Abstract
Image inpainting aims to fill the missing hole of the input.
It is hard to solve this task efficiently when facing high-
resolution images due to two reasons: (1) Large reception
field needs to be handled for high-resolution image inpaint-
ing. (2) The general encoder and decoder network synthesizes
many background pixels synchronously due to the form of the
image matrix. In this paper, we try to break the above lim-
itations for the first time thanks to the recent development
of continuous implicit representation. In detail, we down-
sample and encode the degraded image to produce the spatial-
adaptive parameters for each spatial patch via an attentional
Fast Fourier Convolution (FFC)-based parameter generation
network. Then, we take these parameters as the weights and
biases of a series of multi-layer perceptron (MLP), where the
input is the encoded continuous coordinates and the output
is the synthesized color value. Thanks to the proposed struc-
ture, we only encode the high-resolution image in a relatively
low resolution for larger reception field capturing. Then, the
continuous position encoding will be helpful to synthesize
the photo-realistic high-frequency textures by re-sampling
the coordinate in a higher resolution. Also, our framework
enables us to query the coordinates of missing pixels only
in parallel, yielding a more efficient solution than the pre-
vious methods. Experiments show that the proposed method
achieves real-time performance on the 2048×2048 images
using a single GTX 2080 Ti GPU and can handle 4096×4096
images, with much better performance than existing state-of-
the-art methods visually and numerically. The code is avail-
able at: https://github.com/NiFangBaAGe/CoordFill.

Introduction
With the rapid development of digital media, the demand
for image editing, for example, filling the given hole accord-
ing to the remaining background pixels or removing the un-
necessary object, also increases a lot. These tasks belong to
image inpainting, which is one of the fundamental image
synthesis tasks, which requires both semantic understanding
and conditional generation.

Convolutional neural network (CNN)-based methods
dominate this field in recent years. For example, coarse-
to-fine network structures and generative adversarial net-
works (Goodfellow et al. 2014) based methods (Yu et al.
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Figure 1: The proposed method only requires 24ms (25×
faster than state-of-the-art method LaMa (Suvorov et al.
2022) in the same resolution) to remove the red masked
regions on the resolution of a 2048×2048 image. Com-
pared with most of the previous methods that synthesize the
full image Y by convolutional neural networks, CoordFill
queries the coordinates (x, y) in the missing mask M of the
input X only and generates the pixel-value by the implicit
representation. Thanks to the proposed decoder, CoordFill
runs faster than previous methods on the high-resolution im-
age inpainting task.

2018, 2019; Iizuka, Simo-Serra, and Ishikawa 2017; Liu
et al. 2018) are used to synthesize the realistic textures.
Other types of image inpainting are inspired by the typical
hints (e.g. edges (Nazeri et al. 2019), semantic maps (Liao
et al. 2021)) from the original background, these methods
guess the hints in the hole region firstly, and then, they syn-
thesize the texture by the guidance of the filled hints. How-
ever, current methods still suffer from many limitations for
real-world applications since casual images are in high reso-
lution and on the mobile platform. We raise a question: What
makes the inpainting hard in efficiently handling the high-
resolution images? and we attempt to answer this question
from the following perspectives:

(i) Learning the larger reception fields is time-consuming
for high-resolution images. A larger reception field is essen-
tial in image inpainting (Suvorov et al. 2022), which means
that we need to feed the full-size images to the inpainting
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network. In general, there are two straightforward ways to
increase speed. We can crop or resize the images to fit the
resolution of the input. However, direct cropping will influ-
ence the semantic guidance from the background region and
hugely reduce the ability of scene understanding. Directly
resizing is another option, it requires preserving the detailed
high-frequency details for upsampling.

(ii) The decoders will also synthesize a lot of unnecessary
pixels. Image inpainting aims to remove a relatively small
hole from the input. Restricted by the form of the image ma-
trix, small irregular holes also need to be synthesized using
a stack of convolutional layers in full image size.

We try to break the above limitations via the implicit
representation from neural rendering community (Sitzmann
et al. 2020; Mildenhall et al. 2020; Shaham et al. 2021).
A typical implicit representation overfits the scene to small
multi-layer perceptrons (MLPs) network, where the input
is the coordinate of the image matrix and the output is the
queried pixels. It is a continuous representation that can
keep the high-frequency details well and can achieve pixel-
wise reconstruction. Inspired by these wonderful features,
we propose a novel framework for efficient high-resolution
image inpainting using implicit representation for the first
time (Figure 1). To make the network related to the specific
input, our method utilize a meta-learning strategy where
the parameters of the pixel-wise query network are spatial-
adaptive (Shaham et al. 2021). In detail, our framework con-
tains two sub-networks for parameter generation and pixel-
wise query. In the parameter generation network, we resize
the high-resolution image and generate the parameters for
each local image patch. This network is built via a series of
the proposed attentional FFC blocks. Then, the pixel-wise
query network reforms the predicted parameters as a series
of the MLP, where the input is the positional embeddings in
the frequency domain and the output is the predicted color
value in the given coordinate. Thanks to the proposed struc-
ture, our method can run faster in the challenge of high-
resolution image inpainting from two aspects. On the one
hand, most of the costly operations are in the low-resolution
parameter generation network, where we can learn larger re-
ception fields. On the other hand, we can decode the masked
regions only since the coordinate can be queried one-by-one
in parallel and the larger size image can be got via the co-
ordinate re-sampling. The detailed experiments show the ef-
ficiency and the power of the proposed method compared
with previous state-of-the-art on several benchmarks.

The contributions of this paper are summarized as fol-
lows:

• We propose CoordFill, a novel framework for efficient
high-resolution image inpainting via parameterized co-
ordinate querying.

• We design an attentional FFC-based block as the basic
block in our parameter generation network. It learns to
focus on the masked region automatically.

• Our method runs faster than previous baselines and
achieves state-of-the-art performance in image inpaint-
ing on multiple datasets.

Related Work
Image Inpainting Traditional image inpainting methods
rely on strong low-level assumptions, for example, local
patches (Barnes et al. 2009) can be used to fill the missing
region. Several recent CNN-based methods (Liu et al. 2020;
Suvorov et al. 2022; Iizuka, Simo-Serra, and Ishikawa 2017;
Yu et al. 2018; Zeng et al. 2021; Yu et al. 2019; Wan et al.
2021; Liu et al. 2018; Yu et al. 2020; Zhang et al. 2018a; Vo,
Duong, and Pérez 2018; Li et al. 2022; Dong, Cao, and Fu
2022) have a similar or a stack of encoder-decoder architec-
tures. More specifically, Iizuka et. al. (Iizuka, Simo-Serra,
and Ishikawa 2017) introduce a GAN-based framework by
the global and local discriminator. Based on the GAN frame-
work, more novel blocks are also introduced through At-
tentions (Yu et al. 2018, 2019; Liu et al. 2020; Zeng et al.
2021), Regional Normalization (Yu et al. 2020) and Re-
gional Convolutions (Liu et al. 2018). Novel structures, like
Vision Transformer (Dosovitskiy et al. 2020), also draw
the attention of the image editing community (Wan et al.
2021). Meaningful priors, such as edge (Nazeri et al. 2019)
and semantic label (Liao et al. 2021) also play an impor-
tant role. For high-resolution image inpainting, a multi-stage
network is a common choice. For example, Yi et. al. (Yi
et al. 2020) refine the low-resolution output via the contex-
tual residual aggregation. Zeng et. al. (Zeng et al. 2020b)
design a multi-scale network structure with guided up-
sampling. MAT (Li et al. 2022) and ZITS (Dong, Cao, and
Fu 2022) are transformer-based image inpainting systems
for high-resolution images. However, the multi-stage net-
work structure is slow for real-world applications. In con-
trast, LaMa (Suvorov et al. 2022) designs a one-stage net-
work by the fusion of the multi-scale reception fields. How-
ever, their speed is also restricted by the normal decoder.

Continuous Image Representation Learning the contin-
uous image representation, i.e, the implicit representation,
are popular recently, due to the success in 3D human dig-
itization (Saito et al. 2019, 2020) and novel view synthe-
sis (Mildenhall et al. 2020). Generally, these methods query
the color of the specific localization using the positional en-
coding in the frequency domain, which can generate more
detailed high-frequency details than other methods. How-
ever, implicit representation is rarely developed in the 2D
image domain. StyleGANv3 (Karras et al. 2021) is built
on implicit representation for alias-free settings of the im-
age generation in the specific domain. InfinityGAN (Lin
et al. 2021) also learns for image synthesis. ASAPNet (Sha-
ham et al. 2021) learns the pixels from the semantic layout.
LIIF (Chen, Liu, and Wang 2021) learns a continuous rep-
resentation for image super-solution. However, how to uti-
lize this technique in image inpainting is still unclear and
we make the first step.

Efficient Network Structure Designing an efficient net-
work structure for the high-resolution image is a more prac-
tical consideration for any deep learning-based method. Sev-
eral attempts have also been made to make the convolutional
network work in mobile applications. For example, the effi-
cient network backbone has been widely explored in image
classification (Howard et al. 2017; Iandola et al. 2016). In
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Figure 2: Overview of the proposed framework.

the image editing and synthesis fields, the models can be dis-
tilled from a trained larger network using knowledge distil-
lation (Li et al. 2020). For the image retouching tasks (Zeng
et al. 2020a; Liang, Cun, and Pun 2021), learning the global-
aware representation is helpful to keep the efficiency in high-
resolution images. As for the high-resolution inpainting, ef-
ficiency is not the concern of the community yet.

Method
Overview Our goal is to synthesize the missing content
for high-resolution images in an efficient manner and hold
a stable performance to diverse resolutions. To this end, our
proposed model, dubbed as CoordFill, solves the inpaint-
ing problem with two phases: (i) restorative feature synthe-
sis, as represented by spatially-adaptive parameters of the
reconstruction function; (ii) individual pixel reconstruction
based on the per-pixel coordinate query. The advantage of
this design is that we can synthesize high-resolution con-
tent efficiently for any specified regions thanks to the coor-
dinate query-based reconstruction scheme. Therefore, on the
one hand, it is allowed to selectively reconstruct the hole re-
gion of the input image. On the other hand, we can resample
the input image with a fixed resolution before being fed to
the network, which enables the contextual feature extraction
under a unified receptive field, yet the image still could be
restored with the original resolution (i.e. by sub-pixel coor-
dinate query).

Specifically, given a high-resolution masked image I ∗
M ∈ RH×W×3 and its mask M ∈ [0, 1]H×W , we first
downsample them by S times to 256× 256. Then, we build
a Parameter Generation Network G to generate the full im-
age representation as a parameter map Φ. Finally, a Pixel-
wise Querying Network Q, parameterized by Φp, generates
pixel values according to the coordinate query p at the cor-
responding patches and finally generates the restored image
Io by pasting back the non-hole content. The overall archi-
tecture is illustrated in Figure 2. Below, we give the details
of each component.

Parameter Generation Network Existing inpainting
models are typically formulated to generate a full image with
hole regions filled but only the hole region pixels are used in
the final results. Obviously, the non-hole pixels are not nec-
essary to be synthesized, as they contribute nothing to the
final visualization. To avoid such unnecessary computation,
we propose to first generate a parameter map from the input
and then reconstruct the pixel values at hole regions individ-
ually. As the inpainting task relies more on the surrounding
context interpretation than texture details, we propose to re-
sample the input with a fixed resolution before feeding it
to our parameter generation network G. This operation not
only promotes computation efficiency, especially for high-
resolution images but also guarantees our network with good
generalization to various input resolutions. Note that, we can
still reconstruct the hole region with the original resolution,
due to the coordinate query-based reconstruction scheme.

We employ a fully convolutional structure for the parame-
ter generation network, composed of the encoder, bottleneck
blocks, and the final layers of our parameter generation net-
work. In detail, we down-sample the input feature via the
convolution layer three times to favor the process of calcu-
lation.

In bottleneck blocks, inspired by recently popular Fast
Fourier Convolution (FFC) (Chi, Jiang, and Mu 2020; Su-
vorov et al. 2022) blocks, we propose an FFC-based frame-
work also. This block captures the global reception fields
of the input in the frequency domain, yet a better perfor-
mance in image inpainting which needs larger reception
fields. Please refer to the previous works (Chi, Jiang, and
Mu 2020; Suvorov et al. 2022) for more details.

However, the global receptive field in FFC is only limited
in the frequency domain, which lacks representation in the
spatial space. To alleviate this problem, we propose a spatial-
aware attention block based on FFC (AttFFC). The proposed
block contains −/+ operations to remove the spatial noise
and enhance the features (Zheng et al. 2019). Given a fea-
ture map F ∈ RH×W×C , AttFFC first computes the spa-
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tial attention map Fdm through a FFC Block and a Sigmoid
function σ:

Fdm = σ(FFC(F)). (1)

where Fdm are the one channel spatial confidential map au-
tomatically. Next, we use this spatial prior and the original
feature to get the spatial noise:

Fd = FFC (concat (F,Fdm)) . (2)

Then, we remove the spatial noise, and enhance the features
by learning the residual with an FFC block:

F′ = F− Fd + FFC(F− Fd). (3)

We stack six AttFFCs in our parameter generation net-
work as the bottleneck.

Notice that, since we use the encoder to reduce the feature
space, the learned spatial feature is also in a small resolution.
To this end, we build the pixel-wise parameters via selec-
tion, mapping, and upsampling. In detail, we first select the
masked region features by the corresponding coordinates,
and then, for each spatial feature, we generate the required
number of the parameters by the linear mapping function f .
In addition, to make the parameter generation network sensi-
tive to the target resolution r, we inject the target resolution
as a conditional input to f :

ϕm = f(cat[Fm, r]), (4)

where Fm is the features in the masked region only, and
cat[· · · ] denotes the concatenation operation. Finally, the
spatial-adaptive patch ϕm will be upsampled to the required
resolution with nearest-neighbor interpolation. Hence, we
obtain a series of parameter vectors with channels corre-
sponding to the weights (and the biases) of the MLPs, and
the heavy computation is performed at low resolution.

Pixel-wise Querying Network As mentioned above, we
adopt a coordinate query-based pixel reconstruction scheme
by utilizing the spatially-adaptive parameters. In particular,
inspired by the efficiency of implicit representation (Shaham
et al. 2021), we employ a Multi-Layer Perception (MLP) for
per-pixel reconstruction, i.e. the Pixel-wise Querying Net-
work Q, which is parameterized by the spatial-adaptive con-
textual information embedded parameters, as extracted by
G. Note that, Q is just a function form and its expressive
capability mainly inherits from those deeply extracted pa-
rameters Φ. Formally, Q takes the pixel’s coordinate p as
input and outputs the color values:

yp = Q(p;Φp), (5)

To boost high-frequency details, we encode each component
of the 2D pixel position p = (Px, Py) as a vector of sinu-
soids (Vaswani et al. 2017). Additionally, we normalize the
positional encoding system and sample positional encoding
within a fixed range. Thus, the pixels in the high-resolution
images can be synthesized by changing the interval of the
positional encoding. For example, given an input image I
and its hole mask M of resolution H × W , our parameter
generation network generates the spatially-adaptive parame-
ter map Φ of resolution h×w from the downsampled input

{Ĩ, M̃}. Then, we feed the coordinate query:

p = (sin (2πpx/Ex) , cos (2πpx/Ex) ,

sin (2πpy/Ey) , cos (2πpy/Ey))
(6)

at expected interval Ex, Ey , where Ex = H
h and Ey = W

w
, and then synthesize the hole-region content of the original
resolution.

Loss Function Since image inpainting only needs to mea-
sure the realism of the content, we train our model with
different perception losses, including the differences in the
pre-trained AlexNet domain (Zhang et al. 2018b; Jo, Yang,
and Kim 2020), adversarial loss (Goodfellow et al. 2014),
and feature matching loss (Suvorov et al. 2022; Wang et al.
2018).

For the perceptual loss on the pre-trained ImageNet clas-
sification domain, the loss function is defined as:

Lper =
∑
k

τk (Ek (Io)− Ek (Igt)) , (7)

where E is an AlexNet feature extractor, τ calculates the
differences in the feature domain via L1 loss, and then, we
compute and average the losses from k layers.

Then, the adversarial loss is used to encourage the model
to generate more realistic details, which can be written as:

Ladv = E[log(1−D(Io)] + E[logD(Igt)]. (8)

where E denotes expectation values over the training batch.
Next, the feature matching loss is adopted for stabilizing

the GAN training (Wang et al. 2018; Suvorov et al. 2022):

Lfm =
∑
i

(
Di (Igt) , D

i (Io)
)
, (9)

where Di denotes the activations from the i-th layer of the
discriminator D.

Finally, the total loss of our model can be written as:

Ltotal = λperLper + λadvLadv + λfmLfm. (10)

where we empirically set λper = 10, λadv = 1 and λfm =
100 respectively.

Experiments
Implementation Details
We evaluate our method on the widely-used Places2 (Zhou
et al. 2017) dataset, as well as two high-resolution image
datasets, CelebA-HQ (Karras et al. 2018) and Unsplash (Un-
splash 2021). We use the irregular mask from the previous
method (Liu et al. 2018) for mask generation with holes up
to 25% following HiFill (Yi et al. 2020). Our model is op-
timized by the Adam optimizer with a learning rate of 1e-4
and trained with 100 epochs. All the training experiments
are conducted on 8 Tesla A100 GPUs with a batch size of
128. All the images are randomly resized from 256×256 to
512×512 during training, then, we test them in the range of
512, 1024, 2048, and 4096. Following previous methods (Yi
et al. 2020; Zeng et al. 2022), we use the PSNR, SSIM, and
LPIPS (Zhang et al. 2018b) for performance comparison.
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Figure 3: Qualitative comparisons of the proposed CoordFill and other methods. The top two examples are 512×512 images
from the Places2 dataset while the bottom two images are 1024×1024 images from the Unsplash dataset.

Resolution 512×512 1024×1024 2048×2048 4096×4096
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DeepFillv2 23.973 0.902 0.080 22.695 0.908 0.092 - - - - - -
HiFill 23.375 0.883 0.097 23.456 0.894 0.096 23.643 0.915 0.087 23.634 0.933 0.077
RN 22.562 0.880 0.116 19.587 0.879 0.139 18.843 0.908 0.143 - - -
CR-Fill 24.216 0.893 0.086 22.881 0.890 0.108 22.056 0.908 0.122 - - -
LaMa 26.203 0.914 0.067 26.154 0.924 0.076 25.688 0.939 0.078 - - -
MAT 24.169 0.900 0.076 23.751 0.908 0.082 - - - - - -
ZITS 26.349 0.911 0.068 26.389 0.913 0.073 - - - - - -
CoordFill 26.365 0.912 0.068 26.322 0.920 0.075 26.322 0.932 0.077 26.175 0.943 0.075

Table 1: Comparison with state-of-the-art methods on Places2 Dataset on different resolutions. “-” means these methods cause
the out-of-memory issue in the given resolutions.

Comparisons with Prior Arts
Our method is compared against the existing state-of-the-
art image inpainting algorithms including the general im-
age inpainting models (DeepFillv2 (Yu et al. 2019), RN (Yu
et al. 2020) and CR-Fill (Zeng et al. 2021)), and the high-
resolution image inpainting models (HiFill (Yi et al. 2020),
LaMa (Suvorov et al. 2022), MAT (Li et al. 2022), and
ZITS (Dong, Cao, and Fu 2022)) using their official pre-
trained models. As shown in Table 1, our CoordFill achieves
competitive performance at all resolutions on the Places2
validation set. Compared with the common image inpaint-
ing methods (DeepFillv2, RN, and CR-Fill) on the 512×512
images, the proposed method achieves the best performance.
Compared with the existing high-resolution image inpaint-
ing methods (HiFill, LaMa, MAT, and ZITS) on various res-
olutions, the proposed method also shows more stable re-
sults when the resolution increases thanks to the robust reso-
lution and continuous pixel-wise query. For visual compari-
son, we also compare our methods with other state-of-the-art
methods in Figure 3. According to the figure, the proposed
method shows more visual-please results than the previous

methods with stable reception fields and pixel-wise query-
ing.

Since the previous high-resolution image inpainting
method (Yi et al. 2020) generates the high-resolution sam-
ples (>512) by the bilinear upsampling on Places2, we
use another two high-resolution image datasets to evalu-
ate the performance of each method more accurately, in-
cluding CelebA-HQ and Unsplash. CelebA-HQ is a com-
monly used high-resolution face dataset with a resolution
of 1024×1024, and the model is retrained with its train set
and evaluated on its test set. Unsplash is a real-world high-
resolution dataset collected from Unsplash (Unsplash 2021)
in which the original images are cropped to 1024×1024,
and we use the pre-trained model on Place2 for evaluation.
Table 2 reports the performance of each method on these
datasets, where CoordFill shows competitive performance.
As for the visual comparison, the proposed CoordFill also
generates clear details as in Figure 3.
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Methods PSNR↑ SSIM↑ LPIPS↓

U
ns

pl
as

h
DeepFillv2 24.859 0.914 0.097
HiFill 27.653 0.914 0.082
RN 20.290 0.890 0.162
CR-Fill 28.690 0.923 0.082
LaMa 32.434 0.934 0.055
MAT 29.506 0.923 0.081
ZITS 32.532 0.934 0.053
CoordFill 33.093 0.934 0.080

C
el

eb
A

-H
Q DeepFillv2 23.286 0.916 0.106

LaMa 26.098 0.924 0.080
MAT 25.167 0.917 0.074
CoordFill 28.756 0.934 0.065

Table 2: Comparison with state-of-the-art methods on Un-
splash and CelebA-HQ Datasets (resolution 1024×1024).

512×512 1024×1024 2048×2048 4096×4096
DeepFillv2 398 1002 - -
HiFill 406 423 478 662
RN 17 59 249 -
CR-Fill 46 54 63 -
LaMa 27 142 598 -
MAT 71 133 - -
ZITS 183 462 - -
CoordFill 10 14 26 78

Table 3: Speed comparison (ms) with state-of-the-art meth-
ods on different resolutions. “-” means these methods cause
the out-of-memory issue in the given resolutions.

Masked Decoder Block Resolution PSNR↑ SSIM↑ LPIPS↓Prediction Injection
- DConv ResFFC - 25.5420 0.9074 0.0688
✓ DConv ResFFC - 25.9557 0.9097 0.0679
✓ DMLP ResFFC - 24.6480 0.8995 0.1186
- PQN ResFFC - 26.0434 0.9091 0.0683
✓ PQN ResFFC - 26.2160 0.9109 0.0679
✓ PQN AttFFC - 26.3177 0.9116 0.0679
✓ PQN AttFFC ✓ 26.3653 0.9119 0.0677

Table 4: Ablation study on the components in the proposed
framework. The experiments are conducted on the 512×512
Place2 images.

Efficiency Analysis
We give a detailed efficiency analysis. Firstly, we show the
speed comparison of our method and others in Table 3.
The speed is calculated using the average inference time
on an NVIDIA GTX 2080 Ti GPU. Specifically, the pro-
posed method runs much faster than all the methods under
all the resolutions. On the same experiment platform, nearly
all the methods cause out-of-memory memory issues when
the resolution increases to 4096×4096 except ours and Hi-
Fill. Also, as shown in Table 1, the proposed method shows
a much better performance.

Furthermore, as shown in Figure 4, we give a detailed

Figure 4: The speed comparison of the proposed
method (three different mask ratios) and the base-
line (DownSample + AttFFC + DConv) on the three
different resolutions.

Figure 5: Qualitative comparisons of different supervision
strategies.

explanation of what exactly influences the speed when the
resolution changes. As in Figure 4, our pixel-wise querying
network always runs faster than the normal convolutional
decoder (DConv), On the other hand, the speedup comes
from the stable reception fields where larger feature maps
will speed more time. It is also interesting to see that the run-
ning time of our method is flexible when the hole changes.
It is because our method only needs to predict the masked
region using the pixel-query strategy.
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Figure 6: Qualitative comparisons of decoding using a
shared MLP, CNN, and the pixel-wise querying net-
work (PQN).

Ablation Study
We conduct a detailed ablation study to verify the effi-
ciency of each component in the proposed framework on
the 512×512 Places2 images, and the quantitative results are
shown in Table 4.

Supervision strategy We design a novel framework for
image inpainting, i.e. selective region synthesis based on the
coordinate query. Interestingly, we find that existing meth-
ods still calculate the loss function on the whole image,
which might be biased supervision because we only care
about the hole region accuracy. To verify this speculation,
we calculate the loss function in the masked region only,
called Masked Prediction. As shown in Table 4, calculating
the loss function in the masked region improves the perfor-
mance in both DConv and the proposed pixel-wise querying
network (PQN) structure on both two datasets. It might be
because the original supervision strategy for the full image
synthesis will be influenced by the extra reception fields and
result in color bleeding artifacts as shown in Figure 5.

Importance of the coordinate-query scheme The pro-
posed pixel-wise querying network helps our method to ob-
tain high-resolution and high-quality results, which is the
key to our method. Thus, we compare it with DConv and
DMLP with the same encoder, where DConv uses the origi-
nal convolutional decoder for up-sampling and DMLP feed
the pixel-wise feature to a shared MLP for pixel value de-
coding. As shown in Table 4 and Figure 6, the proposed
pixel-wise querying framework gets much better perfor-
mance and runs faster than the previous, which proves it is
an efficient approach for high-resolution image inpainting.

Advantage of our attentional FFC The proposed atten-
tional FFC (AttFFC) is also an important component. As we
have claimed, in AttFFC, we suppress the spatial noise by
filtering out the distracting features. Compared with the orig-

Figure 7: Qualitative comparisons of CoordFill and super-
resolution methods on real-world high-resolution images.

inal FFC blocks (ResFFC) in LaMa (Suvorov et al. 2022),
AttFFC achieves a better result than ResFFC as shown in
Table 4.

Impact of resolution injection To extract features under
a unified receptive field, the parameter generation network
accepts a fixed low-resolution input. Hence the pixel-wise
querying network generates the same results for different
resolutions, and the high-frequency information can only be
synthesized with the help of the input positional encoding.
By condition on the resolution information, our method got
a better performance as shown in Table 4.

Comparisons with inpainting then super-resolution
Our coordinate query-based decoding network supports
synthesizing the content in arbitrary resolution, and it is
also implicitly required to consider the super-resolution
as post-processing during testing. To check the effective-
ness, we construct a baseline: the decoding network only
generates the output of the same resolution as the down-
sampled input (256×256) and then gets high-resolution im-
age (1024×1024 in our case) by an extra up-sampling or
super-resolution network. We plot the visual results to sup-
port our claim in Figure 7, where the proposed method
shows sharper and visual-friendly results.

Conclusion

We use the continuous coordinate representation for efficient
high-resolution image inpainting. To this end, we propose
CoordFill, a novel framework that contains the parameter
generation network and the pixel-wise querying network fol-
lowing the meta-learning strategy. In detail, in the parame-
ter generation network, we design a novel attention network
based on FFC to produce the parameters in a spatial-adaptive
fashion. In the pixel-wise querying network, we use the gen-
erated parameters from the parameter generation network
and query the masked coordinate by re-sampling the coor-
dinates in the frequency domain. The experiments show the
efficiency of the proposed method on several datasets com-
pared with several state-of-the-art methods.
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