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Abstract

Recently, transformer architecture has gained great success
in the computer vision community, such as image classifi-
cation, object detection, etc. Nonetheless, its application for
3D vision remains to be explored, given that point cloud is
inherently sparse, irregular, and unordered. Furthermore, ex-
isting point transformer frameworks usually feed raw point
cloud of N × 3 dimension into transformers, which limits
the point processing scale because of their quadratic compu-
tational costs to the input size N . In this paper, we rethink
the structure of point transformer. Instead of directly apply-
ing transformer to points, our network (TransLO) can pro-
cess tens of thousands of points simultaneously by projecting
points onto a 2D surface and then feeding them into a local
transformer with linear complexity. Specifically, it is mainly
composed of two components: Window-based Masked trans-
former with Self Attention (WMSA) to capture long-range
dependencies; Masked Cross-Frame Attention (MCFA) to
associate two frames and predict pose estimation. To deal
with the sparsity issue of point cloud, we propose a bi-
nary mask to remove invalid and dynamic points. To our
knowledge, this is the first transformer-based LiDAR odom-
etry network. The experiment results on the KITTI odom-
etry dataset show that our average rotational and transla-
tional RMSE achieves 0.500 ◦/100m and 0.993 % respec-
tively. The performance of our network surpasses all re-
cent learning-based methods and even outperforms LOAM
on most evaluation sequences. Codes will be released on
https://github.com/IRMVLab/TransLO.

Introduction
LiDAR odometry plays a fundamental role in perceiving the
environment for various applications, including Simultane-
ous Localization and Mapping (SLAM) system (Zhu et al.
2022), robot navigation (Wang et al. 2018), autonomous
driving (Zheng and Zhu 2021), etc. As depicted in Fig. 1,
the target of this task is to estimate pose transformation be-
tween two consecutive point cloud frames (Li et al. 2019).

*These authors contributed equally.
†Corresponding Author.
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Figure 1: The pipeline of our LiDAR odometry. We design a
hierarchical transformer-based odometry network. Pose be-
tween two consecutive point cloud frames is estimated by
the cross-attention mechanism and iterative refinement.

Traditional methods treat LiDAR odometry as a scan reg-
istration problem where the Iterative Closest Point algo-
rithm (ICP) (Besl and McKay 1992) is generally employed
to refine the transformation. Some feature-based methods
(Zheng et al. 2020; Zhou et al. 2022) are also proposed
using point, line, or planar features. Since soft correspon-
dences of point clouds can be learned by convolutional neu-
ral networks (CNNs) in an end-to-end manner, learning-
based methods have attracted increasing attention in recent
years. However, CNNs focus on the interrelation between lo-
cal areas and enlarge the receptive field as the network deep-
ens. This will create a problem: CNN can’t capture relation-
ships between patches that have similar features but locate
over great distances. To overcome this limitation, we further
explore transformer-based LiDAR odometry for long-range
dependencies, based on our observation that global descrip-
tors are helpful for correlating above similar patches.

We observe that some intrinsic qualities of transformer
fit fairly well with the task: 1) Self-attention is naturally
invariant to permutation of input. Point cloud is irregular
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and unordered, which means it also calls for a permutation-
invariant set operator. 2) As mentioned above, CNNs only
focus on local features while transformer architecture can
capture global features. This characteristic is important since
some dynamic objects and invalid points are not suitable for
ego-motion estimation. These outliers can be filtered out by
the global learning of feature maps. 3) Local transformer
methods reduce computational costs to linearity complexity,
which enables the network to process large-scale 3D data.

The aforementioned three aspects support our research
intuition to develop a transformer backbone for LiDAR
odometry. Motivated by the motion information estimation
method from soft correspondences in optical flow (Wang,
Ren, and Wang 2022) and scene flow tasks (Wang et al.
2022a,b, 2021a), we directly estimate pose from conditioned
features after the cross attention. Overall, our contributions
are as follows:

• For the large-scale odometry task, we propose a novel
hierarchical transformer-based network. We rethink the
structure of point transformer. Instead of original point
clouds or their feature embeddings as input, we first
project point clouds on a cylindrical surface to acquire a
pseudo image. This procedure not only solves the irreg-
ularity problem of point clouds but also facilitates sub-
sequent research since existing transformer methods for
images can be extended to the 3D vision community.

• Window attention is applied (WMSA) in each feature ex-
traction layer consuming linear computational costs. Fur-
thermore, a cross-frame transformer module (MCFA) is
designed to associate two consecutive frames. We also
design a projection-aware binary mask in both self and
cross attention modules above to represent whether each
pixel-wise position is invalid in sparse feature maps.

• Extensive experiments carried out on the KITTI odom-
etry dataset (Geiger et al. 2013) indicate our method
outperforms all existing traditional and learning-based
odometry methods. Our performance is even superior to
LOAM with mapping on most sequences. To the best of
our knowledge, this is the first time that transformer ar-
chitecture is employed in the LiDAR odometry task.

Related Work
Traditional LiDAR Odometry
Iterative Closest Point (ICP) (Besl and McKay 1992) is the
most common and popular method to align two point clouds,
which calculates translation and rotation matrix by itera-
tive updates until convergence. After that, two ICP vari-
ants (point-to-line ICP (Censi 2008) and point-to-plane ICP
(Low 2004)) are proposed. As a renowned searching tree-
based method, LOAM (Zhang and Singh 2014) pioneered
a series of research. Edge and planar features are extracted
respectively to estimate motion transformation between two
point cloud frames. However, it doesn’t discern ground and
non-ground points which undermines accuracy and compu-
tational cost. Some subsequent variants (Shan and Englot
2018; Kuettel and Ferrari 2012) employ ground segmenta-
tion or ground-constrained for improving their performance.

Deep LiDAR Odometry
Although deep learning has gained great progress in visual
odometry (Li et al. 2020; Yang et al. 2020), deep LiDAR
odometry is still underdeveloped. Nicolai et al. (Nicolai et al.
2016) first investigate this field by projecting point clouds to
a 2D plane and applying convolution layers to them. How-
ever, their experiment results are undesirable. DeepLO (Cho,
Kim, and Kim 2019) proposes the first unsupervised Li-
DAR odometry framework. LO-Net (Li et al. 2019) presents
a deep convolution network for real-time odometry which
can implicitly exploit the sequential dependencies in the
data. Recently, many works are devoted to learning-based
LiDAR odometry estimation in both supervised (Li et al.
2021; Wang et al. 2022c) and unsupervised (Cho, Kim, and
Kim 2020; Wang et al. 2020) approaches. Among these net-
works, PWCLO-Net (Wang et al. 2021b) designs a hierar-
chical embedding mask optimization pipeline to address 3D
LiDAR odometry and achieves state-of-the-art performance.

Transformer in Computer Vision
Transformer (Vaswani et al. 2017) is proposed to tackle the
machine translation problem and now serves as a main-
stream backbone in NLP. Inspired by its scaling successes
in NLP, more researchers attempt to extend it to various
computer vision tasks, such as semantic segmentation (Xie
et al. 2021; Liu et al. 2022; Zhang et al. 2022), object detec-
tion (Carion et al. 2020; Yin et al. 2021), image classifica-
tion (Dosovitskiy et al. 2021) etc. Nevertheless, transformer
for point cloud processing remains rarely studied, which are
mostly designed for indoor or object-level tasks. Moreover,
existing works (Pan et al. 2021; Zhao et al. 2021; Guo et al.
2021; Fischer et al. 2021) always feed raw points (for ex-
ample, 1024 points) into transformer. It blocks large-scale
applications due to their quadratic complexity.

To achieve the linear complexity (Ren et al. 2022a; Dong
et al. 2022; Ren et al. 2022b), Swin Transformer (Liu et al.
2021) partitions an image into a series of non-overlapped
windows and computes attention within each window. Its
performance surpasses previous pipelines by a large margin.
Inspired by Swin Transformer, we leverage window-based
cross attention modules to associate two frames. Also, our
work is the first to leverage spatial shift on the point cloud
association task. Intuitively, shift operation can capture more
global features, which is significant for learning dynamics
globally and improving accuracy effectively.

Proposed Method
Overall Architecture
An overview of our proposed methods is demonstrated in
Fig. 2. Given two consecutive frames of point clouds PC1

and PC2, odometry aims to regress the ego-motion between
two frames. To be specific, we first project point clouds onto
a cylindrical surface to get pseudo images. Then, several
stride-based sampling layers coupled with Window-based
Masked Self Attention (WMSA) are employed to encode
feature embeddings. Additionally, we enlarge the receptive
field through CNNs instead of patch merging methods in the
vanilla Swin Transformer. To regress pose, a Masked Cross
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Figure 2: TransLO. Feature extraction of our TransLO is composed of both CNNs and transformer with Window-based Masked
Self Attention (WMSA). FFN is the abbreviation of a feed-forward network. Masked Cross Frame Attention (MCFA) block
is employed to associate two frames and output initial embeddings in layer 2. Initial embeddings and features of Layer 3 are
input to MLP and Fully Connected (FC) layers for pose generation. This pose will warp features from upper layers through
upsampling. MCFA and MLP layers are then employed again to refine the pose iteratively.

Frame Attention (MCFA) module is designed. Even though
point clouds have an ordered representation after projec-
tion, their sparsity issue is not intuitively solved. Thus, a
projection-aware mask indicating which coordinate has in-
valid points is added to both WMSA and WCFA. Finally,
the pose warping operation in (Wang et al. 2021b) is intro-
duced for iterative pose refinement.

Cylindrical Projection and Feature Extraction
Cylindrical Projection: To obtain the corresponding 2D
structured grid-like coordinates, every raw 3D point cloud
is projected as the following formulas:

u = arctan2(y/x)/∆θ, (1)

v = arcsin(z/
√
x2 + y2 + z2)/∆ϕ, (2)

in which x, y, z represent raw 3D coordinates of point clouds
and ∆θ,∆ϕ are horizontal and vertical resolutions of Li-
DAR sensor. The output u, v are 2D corresponding coordi-
nates. Previous works usually fill 2D coordinate positions
with depth or intensity values and then apply 2D CNNs. To
make the best use of raw geometric information, we directly
fill raw 3D coordinates into their corresponding projected
2D positions instead. This procedure outputs a tensor with
the size of H×W×3, where the last dimension means the
original XY Z coordinates of point clouds.

Efficient Stride-based Sampling and Grouping: Clas-
sic 3D points learning methods (Qi et al. 2017a,b) apply Far-
thest Point Sampling (FPS) and KNN to sample and group
features, which is time-consuming. We propose a stride-
based sampling strategy as introduced in Fig. 4. A series of
fixed-stride indexes are first generated as 2D kernel centers,

and M neighbor points for each kernel are grouped and gath-
ered within a certain radius. This design is more effective
than random sampling because we can compute each kernel
operation in parallel on CUDA. The formula is as follows:

fG
i = MAX

m=1,2,··· ,M
(MLP ((xm

i − xi)⊕ fm
i ⊕ fi)), (3)

where xi is the i-th sampled point (kernel center) and xm
i

represents its m−th neighbor point. fi and fm
i are their fea-

tures. fG
i means the output feature. Operator ⊕ means con-

catenation of vectors. The feature extraction process above
is adopted in every sampling layer coupled with the WMSA
block, which will be illustrated in the next section.

Window-based Masked Self Attention (WMSA)
Validity Argument of Shifted Window: Inspired by Swin
Transformer (Liu et al. 2021), our attention blocks retain
window partition and shift operations, but also possess dif-
ferent characteristics. First of all, our LiDAR covers 360◦ in
the horizontal direction but has a limited field vertically. This
leads to strip-like feature maps where the width is rather
larger than the height. Thus, we need to reason whether win-
dow partition and shift still work in advance.

The visualization result is displayed in Fig. 3, we set the
window size as 4 and shift size as 2. The scale of the in-
put feature map is 4×16. Upper figure in Fig. 3 shows how
cyclic shift works toward the top-left direction. Then, shifted
feature map is divided into four windows. There are sev-
eral sub-windows in each partitioned window that are origi-
nally far apart before shift, eg. B and C in window 3. In this
case, the masking process is used for preventing cross-sub-
window attention computation in each window. As in Fig. 3,
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Figure 3: Cyclic shift and window partition. Upper figure
shows how cyclic shift works and blue dotted lines indicate
unshifted feature maps. Then, shifted feature map is divided
into four 4×4 windows. The masking process is utilized to
prevent calculating attention among different sub-windows.

we visualize how masking process works, where tensors of
each window are flattened and attention weights will be only
calculated within the same sub-window (colored yellow).

Binary Mask and Window-based Point Transformer:
Our proposed point transformer is built by replacing the
standard self-attention module with a window-based masked
self-attention (WMSA) block as described in Fig. 4. Due
to the inherent sparsity of point clouds, our projected fea-
ture maps are filled with many invalid pixels. Therefore, a
projection-aware binary mask is designed as:

mask =

{
0, X = 0, Y = 0, Z = 0

1, otherwise .
(4)

Note that this binary mask is different from the aforemen-
tioned masking mechanism for cutting the cross-subwindow
connection. This mask is introduced due to the sparsity char-
acteristic of point clouds and pixel-corresponding to pro-
jected feature maps. Though it is simple, further studies car-
ried out in the experiment section prove its significance. Fol-
lowing vanilla transformer architecture, one complete trans-
former stage in Fig. 2 can be described as:

F̂ l = WMSA(LN(F l−1)) + F l−1; (5)

F l = MLP (LN(F̂ l)) + F̂ l; (6)

F̂ l+1 = sWMSA(LN(F l)) + F l; (7)

F l+1 = MLP (LN(F̂ l+1)) + F̂ l+1; (8)
where WMSA (sWMSA) represents (shifted) Window-
based Masked Self Attention. F l−1 and F l+1 are input
and output features for stage l. MLP denotes the feed-
forward network (FFN) with GELU non-linearity. Also,

Figure 4: Window-based masked self attention (WMSA).
Our attention block modifies the classic multi-head self-
attention with shifted windows and a projection-aware bi-
nary mask. ws means window size. After partitioning, ten-
sors within each window (ws× ws) will be flattened to N .

LayerNorm (LN) and residual connections are applied re-
spectively before and after each module. For feature F l ={
fk|fk ∈ Rd

}N

k=1
, WMSA (sWMSA) can be calculated as:

WMSA(F l) = (Head1 ⊕ · · · ⊕HeadH)WO, (9)

Headh = Attn(F l ×WQ
h , F l ×WK

h , F l ×WV
h )

= Attn(Qh,Kh, V h) (10)

= softmax(
QhKh

√
dhead

+ attn mask +Bias)V h,

where Head1 · · ·HeadH represent the output of H heads
in Multi-head self-attention. WQ

h ∈ Rd×dhead , WK
h ∈

Rd×dhead , WV
h ∈ Rd×dhead , WO ∈ RHdhead×d are learned

projected functions. Bias is the relative position encoding
operation. And attn mask is the attention mask generated
by the binary mask as illustrated in Fig. 4:

attn mask =

{
1× e−10, where mask = 0

0, otherwise .
(11)

Masked Cross Frame Attention (MCFA)
The masked cross-frame transformer is built for estimating
ego-motion in both the initial pose generation and pose re-
finement module. Similar to WMSA, shifted window and
binary masks are also used in our Masked Cross Frame At-
tention (MCFA) as shown in Algorithm 1.

1686



Take the first frame for example, F s
1 and Ms

1 are first
fed into a WMSA module, which enables points to inter-
act with other points in the same frame. Qs

1, Ks
1 , and V s

1
in WMSA are all from the same input frame through three
independent learnable projection matrices just like the for-
mula (10). Then, output features of WMSA F I

1 will at-
tend to F I

2 for ego-motion estimation. Specifically, F I
1 is

linearly projected as query (QI
1), F

I
2 is linearly projected

as key (KI
2 ) and value (V I

2 ), and we calculate attention
weights by entering them into the same (s)WMSA block.
This step enables the network to learn relative position trans-
formation between two frames. Finally, we reverse window
partition and shift and output transformed correlated fea-
tures FLs

1 , FLs
2 for generating the initial motion embedding

E1 = {ei|ei ∈ RC}Ni=1 as illustrated in Fig. 2. Then, a
weighting parameter is calculated as:

W = softmax(MLP (E1⊕ F 3
1 )), (12)

where W = {wi|wi ∈ RC}Ni=1. The initial pose is then
generated by:

q3 =

FC(
n∑

i=1

ei ⊙ wi)

|FC(
n∑

i=1

ei ⊙ wi)|
, (13)

t3 = FC(
n∑

i=1

ei ⊙ wi), (14)

where FC denotes the fully connected layer. The quaternion
q3 ∈ R4 and translation vector t3 ∈ R3 are refined from
coarse to fine as in (Wang et al. 2021b).

Loss Function
Our network outputs the poses from four layers and adopts
a multi-scale supervised loss. Ll = Ll

t + λLl
r denotes the

training loss of the layer l in our network. Translation error
Ll
t and rotation error Ll

r can be calculated as:

Ll
t = ∥tlgt − tl∥2, (15)

Ll
r = ∥qlgt −

ql

∥ql∥
∥2, (16)

where ql, tl and qlgt, t
l
gt are the predicted and ground truth

poses respectively.

Experiments
Dataset and Implement Details
We evaluate our network performance on the KITTI odome-
try dataset which is widely used in pose estimation and point
cloud registration tasks. We set the number of input points
as 150000 and the initial feature map after cylindrical pro-
jection as 64 (H)×1792 (W ). Note that this feature map size
should be divisible by window size 4. All training and eval-
uation experiments are conducted on a single NVIDIA Ti-
tan RTX GPU with PyTorch 1.10.1. The Adam optimizer is
adopted with β1 = 0.9, β2 = 0.999. The initial learning rate
is 0.001 and exponentially decays every 200000 steps until
0.00001. The batch size is set as 8.

Algorithm 1: MCFA
Input: Uncorrelated point cloud features F s

1 , F s
2 and their

corresponding masks Ms
1 , Ms

2 of two consecutive frames in
stage s.
Parameter: Number of transformer blocks in stage s: Ls.
Output: Correlated point cloud features F1

Ls , F2
Ls .

1: Let i = 0. (Parameter i is used for indicating whether
the cyclic shift is employed in WMSA.)

2: while i <= Ls do
3: Points attend to other points in the same frame.

F I
1 = WMSA(LN(Qs

1,K
s
1 , V

s
1 ),M

s
1 ) + F s

1 .
F I
2 = WMSA(LN(Qs

2,K
s
2 , V

s
2 ),M

s
2 ) + F s

2 .
4: if i%2 == 0 then
5: Points attend to the other frame points (without

shift).
F i
1 = WMSA(LN(QI

1,K
I
2 , V

I
2 ),M

s
1 ) + F I

1 .
F i
2 = WMSA(LN(QI

2,K
I
1 , V

I
1 ),M

s
2 ) + F I

2 .
6: else
7: Points attend to the other frame points (with shift).

F i
1 = sWMSA(LN(QI

1,K
I
2 , V

I
2 ),M

s
1 ) + F I

1 .
F i
2 = sWMSA(LN(QI

2,K
I
1 , V

I
1 ),M

s
2 ) + F I

2 .
8: end if
9: i + = 1.

10: end while
11: return F1

Ls , F2
Ls

Comparison with The State-of-the-Art
We compare our network with the state-of-the-art on KITTI
dataset, including both classic methods and learning-based
ones. Since existing training and testing sequence settings
are inconsistent in different methods, we test and evaluate
our framework accordingly for a fair comparison.

00-06 as training sequences and 07-10 as testing se-
quences. For classic odometry, we compare our perfor-
mance with CLS (Velas, Spanel, and Herout 2016), GICP
(Segal, Haehnel, and Thrun 2009), LOAM (Zhang and Singh
2017; Shan and Englot 2018), SUMA (Behley and Stachniss
2018), and (Vizzo et al. 2021). As demonstrated in Table 1,
quantitative results illustrate the rotation RMSE (◦/100m)
and translation error (%) of our network are extremely
smaller than theirs. Compared with full LOAM which dom-
inates the KITTI odometry benchmark for years, our ap-
proach outperforms it on most sequences. For learning-
based odometry SelfVoxeLO (Xu et al. 2020), LO-Net (Li
et al. 2019), SfMLearner (Zhou et al. 2017), and RSLO (Xu
et al. 2022), we observe that our odometry accuracy sur-
passes all of theirs on most sequences. Even though our
methods don’t design an extra mask network, our perfor-
mance is still superior to LO-Net (Li et al. 2019). Compared
with Xu et al. (Xu et al. 2022), our model performance out-
performs theirs without the need for a motion voting mecha-
nism and two-stage estimation. For a fair comparison, we
only assess the odometry part of each network excluding
mapping optimization.

00-08 as training sequences and 09/10 as testing se-
quences. We further compare our networks with three
learning-based methods, namely ConvLSTM (Zou et al.
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07† 08† 09† 10† Mean on 07-10Method
trel rrel trel rrel trel rrel trel rrel trel rrel

ICP-po2po 5.17 3.35 10.04 4.93 6.93 2.89 8.91 4.74 7.359 3.407
ICP-po2pl 1.55 1.42 4.42 2.14 3.95 1.71 6.13 2.60 4.735 1.932
GICP 0.64 0.45 1.58 0.75 1.97 0.77 1.31 0.62 1.921 0.733
CLS 1.04 0.73 2.14 1.05 1.95 0.92 3.46 1.28 2.148 0.995
LOAM w/o mapping 10.87 6.76 12.72 5.77 8.10 4.30 12.67 8.79 10.820 5.426
LOAM with mapping 0.69 0.50 1.18 0.44 1.20 0.48 1.51 0.57 1.278 0.504
LeGO-LOAM 1.12 0.81 1.99 0.94 1.97 0.98 2.21 0.92 2.49 1.00
SuMa 1.75 1.17 2.53 0.96 1.92 0.78 1.81 0.97 2.93 0.92

C
la

ss
ic

Vizzo et al. 0.72 0.55 1.44 0.61 1.51 0.66 1.38 0.84 1.55 0.74
SfMLearner 21.3 6.65 21.9 2.91 18.8 3.21 14.3 3.30 19.1 4.02
LO-Net 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.330 0.688
SelfVoxeLO 2.51 1.15 2.65 1.00 2.86 1.17 3.22 1.26 2.81 1.15
RSLO 2.37 1.15 2.14 0.92 2.61 1.05 2.33 0.94 2.36 1.02

D
L

-b
as

ed

Ours 0.55 0.43 1.29 0.50 0.95 0.46 1.18 0.61 0.993 0.500

Table 1: Comparison with the state-of-the-art. trel, rrel indicate the average translation RMSE (%) and rotation RMSE (◦/100m)
respectively on all subsequences in the length of 100, 200, ..., 800m. ‘†’ means the testing sequences. ‘NG’ means results are
not given. The best result for each sequence is bold, and the second best is underlined.

09 10 Mean
Method

trel rrel trel rrel trel rrel

ConvLSTM 3.49 1.00 5.81 1.80 4.650 1.400
Nubert et al. 1.54 0.68 1.78 0.69 1.660 0.685
Self-VLO 2.58 1.13 2.67 1.28 2.620 1.210
Ours 1.01 0.47 1.41 0.71 1.210 0.590

Table 2: The LiDAR odometry results on sequences 09 and
10 of KITTI odometry dataset.

07 08 Mean
Method

trel rrel trel rrel trel rrel

LodoNet 1.86 1.64 2.04 0.97 1.950 1.305
Ours 0.53 0.22 1.40 0.62 0.965 0.420

Table 3: The LiDAR odometry results on sequences 07 and
08 of KITTI odometry dataset.

2020), (Nubert, Khattak, and Hutter 2021), and SelfVLO
(Li et al. 2021). As illustrated in Table 2, both our trans-
lation and rotation errors are smaller than theirs even with
mapping. SelfVLO is self-supervised visual-LiDAR odom-
etry with flip consistency. Although our method utilizes no
visual information, we still achieve better performance.

00-06/09/10 as training sequences and 07/08 as test-
ing sequences. LodoNet (Zheng et al. 2020) is a network
with 2d keypoints matching which also transfers the LiDAR
frames to 2D space. As shown in Table 3, our accuracy is
superior to LodoNet on both 07 and 08 sequences. Our trans-
lation error is almost 1 (%) smaller than theirs. Also, we get
0.885 (◦/100m) improvement with respect to rotation error.

Figure 5: Trajectory of TransLO and ground truth. We visu-
alize four 3D trajectory samples on KITTI dataset.

Ablation Study
We conduct ablation studies to assess the effectiveness of
three main components: projection-aware masks, Window-
based Masked Self Attention (WMSA), and Masked Cross
Frame Attention (MCFA). We first compare our model with
the baseline (Wang et al. 2021b) in Table 4 (a), our average
rotation errors are slightly larger (0.01◦/100m). However,
translation errors are reduced by 10% of theirs. Moreover,
our full network runtime has only a linear increase, which
indicates the high efficiency of our TransLO.

Importance of WMSA: Compared with CNNs, trans-
former focuses more on global features and this character-
istic is significant to large-scale localization and navigation.
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Figure 6: Estimated trajectory of LOAM and ours on KITTI 07 sequence with ground truth. Our trajectory is even more accurate
than LOAM with mapping.

07 08 09 10 Mean
Method

trel rrel trel rrel trel rrel trel rrel trel rrel
Runtime(/ms)

Baseline (Wang et al. 2021b) (a) 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490 66.4
Ours w/o mask and MCFA (b) 1.12 0.91 1.78 0.81 1.63 0.74 1.83 0.93 1.590 0.848 57.8
Ours w/o MCFA (c) 0.80 0.54 1.25 0.58 1.11 0.54 1.47 0.78 1.158 0.610 58.0
Ours w/o WMSA (d) 1.12 0.91 1.78 0.81 1.63 0.74 1.83 0.93 1.590 0.848 71.1
Ours (e) 0.55 0.43 1.29 0.50 0.95 0.46 1.18 0.61 0.993 0.500 84.8

Table 4: Ablation study for our proposed model. Notations: The best performance of each sequence is bold.

Overall, the importance of WMSA can be seen when com-
paring results in Table 4 (d) and (e).

Effect of the binary Mask: As mentioned before, a bi-
nary mask is generated simultaneously with the projected
feature map. It can filter outliers that are harmful to odom-
etry accuracy. Comparing Table 4 (b) and (c), the network
accuracy descends when removing this mask.

Significance of MCFA: This module is used to establish
soft correspondences of two frames. By replacing it with the
cost-volume-only methods in our baseline, both translation
and rotation errors are larger as in Table 4 (c).

Visualization

We visualize the trajectory of our network and the benefits
of transformer-based methods in this section.

Trajectory Visualization. We further visualize 3D tra-
jectory based on our estimated pose in Fig. 5. The figure
shows our odometry can track the trajectory of the ground
truth fairly well. Also, we conduct experiments to compare
trajectory and estimation errors between LOAM and ours
in Fig. 6. Although we do not have the mapping procedure,
our odometry accuracy surpasses LOAM with mapping op-
timization as demonstrated in Fig. 6.

Why Transformer? Attention weights are also visualized
as illustrated in Fig. 7. Compared with CNNs, our trans-
former can capture global learning of surroundings. For ex-
ample, trees are allocated similar attention weights even
with great distances. This characteristic is significant for
large-scale 3D scene understanding as global features can be
gathered without the distance constraint in CNN methods.

Figure 7: Visualization of attention weights. Trees both near
and far are allocated similar attention weights.

Conclusion

In this paper, we propose a novel end-to-end window-based
masked point transformer network for large-scale LiDAR
odometry. We combine CNNs and transformers to extract
more global feature embeddings, which facilitate the out-
liers’ rejection. We evaluate our framework on the KITTI
odometry dataset. Experiment results show that our method
achieves state-of-the-art performance.
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