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Abstract

Multimodal magnetic resonance imaging (MRI) provides
complementary information for sub-region analysis of brain
tumors. Plenty of methods have been proposed for automatic
brain tumor segmentation using four common MRI modali-
ties and achieved remarkable performance. In practice, how-
ever, it is common to have one or more modalities missing
due to image corruption, artifacts, acquisition protocols, al-
lergy to contrast agents, or simply cost. In this work, we pro-
pose a novel two-stage framework for brain tumor segmenta-
tion with missing modalities. In the first stage, a multimodal
masked autoencoder (M3AE) is proposed, where both ran-
dom modalities (i.e., modality dropout) and random patches
of the remaining modalities are masked for a reconstruc-
tion task, for self-supervised learning of robust multimodal
representations against missing modalities. To this end, we
name our framework M3AE. Meanwhile, we employ model
inversion to optimize a representative full-modal image at
marginal extra cost, which will be used to substitute for the
missing modalities and boost performance during inference.
Then in the second stage, a memory-efficient self distilla-
tion is proposed to distill knowledge between heterogenous
missing-modal situations while fine-tuning the model for su-
pervised segmentation. Our M3AE belongs to the ‘catch-
all’ genre where a single model can be applied to all possi-
ble subsets of modalities, thus is economic for both training
and deployment. Extensive experiments on BraTS 2018 and
2020 datasets demonstrate its superior performance to exist-
ing state-of-the-art methods with missing modalities, as well
as the efficacy of its components. Our code is available at:
https://github.com/ccarliu/m3ae.

Introduction
Segmentation and associated volume quantification of het-
erogeneous histological sub-regions are of great value to
the diagnosis/prognosis, therapy planning, and follow-up of
brain tumors (Bakas et al. 2018). Multi-parametric mag-
netic resonance imaging (MRI) is the current standard of
care for clinical imaging diagnosis of brain tumors (Iv et al.
2018). Specifically, four MRI modalities (in this work, we
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Figure 1: (a) Example images of the four modalities in
BraTS 2018, of which one or more may be missing in
practice (e.g., T1 here in red box). (b) Corresponding tu-
mor regions: blue: edema; yellow: enhancing tumor; green:
necrotic and non-enhancing tumor core. (c) Deployment
model size (in millions with log2 scale) and mean Dice sim-
ilarity scores (DSCs) across all missing-modal situations on
BraTS 2018 test split; circle size indicates GFLOPS. Com-
pared to four up-to-date methods, our M3AE achieves the
best performance with a compact and efficient model.

refer to MRI sequences as modalities) are commonly used to
provide complementary information and support sub-region
analysis: T1-weighted (T1), contrast enhanced T1-weighted
(T1c), T2-weighted (T2), and T2 fluid attenuation inversion
recovery (FLAIR), where the first two highlight tumor core
and the last two highlight peritumoral edema (Figs. 1(a) and
(b)). In recent years, deep learning methods have greatly ad-
vanced the state of the art of brain tumor segmentation with
multimodal MRI (Chen et al. 2020; Chen, Ding, and Liu
2019; Ding et al. 2020; Myronenko 2018; Zhou et al. 2020).
However, these methods were optimized for the ideal sce-
nario where the full set of all modalities are present. While in
practice, scenarios of missing one or more modalities com-
monly occur due to image corruption, artifacts, acquisition
protocols, allergy to contrast agents, or simply cost.

To accommodate the practical scenarios of missing
modalities, lots of efforts have been made. A naive approach
is to train a ‘dedicated’ model for each possible subset of
modalities. For better performance, the co-training strat-
egy (Blum and Mitchell 1998) was often incorporated to dis-
till knowledge from full-modal to missing-modal networks
(Azad, Khosravi, and Merhof 2022; Chen et al. 2021; Hu
et al. 2020; Wang et al. 2021b). Despite their decent perfor-
mance, the dedicated models were time-costly to train and
space-costly to deploy, as 2N − 1 models were needed for
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N modalities. Another approach is to synthesize images of
missing modalities for full-modal segmentation (Lee, Moon,
and Ye 2020; Yu et al. 2019), where generative adversarial
networks (GANs; Goodfellow et al. 2014) were often used.
Notwithstanding, the GANs not only were difficult to train
for 3D image generation, but also incurred extra overhead
for both training and deployment. Currently, the predom-
inant approach is to project the available modalities to a
common latent space, where a shared feature representation
was learned and then projected to the segmentation space
(Havaei et al. 2016; Zhou et al. 2021a,b). This ‘catch-all’ ap-
proach could handle all possible subsets of modalities with
a single model, thus was more economic. However, existing
catch-all methods often adopted complex designs with mul-
tiple encoders (and sometimes multiple decoders, too) and
complicated interactions.

In this work, we propose a novel catch-all framework for
brain tumor segmentation using MRI with missing modal-
ities, which features innovative integration of multimodal
masked autoencoder, model inversion based modal com-
pletion, and memory-efficient self distillation in a single
straightforward encoder-decoder architecture. Above all,
witnessing the recent success of masked autoencoders in
learning rich visual representations (He et al. 2022), we pro-
pose multimodal masked autoencoder (M3AE), where a ran-
dom subset of the modalities and random patches of the re-
maining ones are masked simultaneously. The intuition is
that, to recover the masked content, the model must effec-
tively utilize the inherent inter-modal correlation both glob-
ally and locally, plus the intra-modal local semantics. Ac-
cordingly, we name our framework M3AE. Meanwhile, a
representative full-modal image is learned via model inver-
sion (Wang et al. 2021a), which is served as the substitute for
missing modalities during inference and effective in improv-
ing performance. The substitute image is optimized by back
propagating the self-supervising M3AE loss, incurring only
marginal extra computational cost. To the best of our knowl-
edge, this work is the first attempt to apply model inversion
to modality completion of medical images. Lastly, we pro-
pose a simple yet efficient self distillation (Ge et al. 2021;
Ji et al. 2021) to promote semantic consistency between dif-
ferent modality combinations. To this end, we reduce the
memory footprint of co-training dual networks, while still
able to effectively distill the semantic information between
heterogeneous missing-modal situations. Extensive experi-
ments on two public datasets demonstrate: (1) our frame-
work’s robustness to missing modalities and superiority to
existing catch-all and dedicated methods (Fig. 1(c)), (2) ef-
ficacy of its building components, and (3) competence of its
multimodal representation learning for full modalities.

Related Work
Multimodal Brain Tumor Segmentation with Missing
Modalities: In this work, we roughly divide existing
methods into two categories: dedicated and catch-all. Sev-
eral methods proposed to train a dedicated model for each
targeted missing situation, where the co-training strategy
(Blum and Mitchell 1998) was employed to distill knowl-
edge from full-modal to missing-modal networks. Both

Hu et al. (2020) and Chen et al. (2021) proposed to dis-
till the knowledge from a multimodal teacher network to
monomodal students at the image (i.e., overall seman-
tics) and pixel (i.e., network output) levels. Adversarial co-
training network (ACN; Wang et al. 2021b) enhanced the
full- to missing-modal distillation by entropy and knowledge
adversarial learning for alignment of the latent representa-
tions. Style matching U-Net (SMU-Net; Azad, Khosravi,
and Merhof 2022) decomposed the common latent space of
both full- and missing-modal data into content and style rep-
resentations, and used a content and style-matching mecha-
nism to distill the informative features from the full-modal
network into a missing-modal one. These methods achieved
decent performance especially when more than one modal-
ity was missing, while at significant computation and mem-
ory costs for both training and deployment (2N − 1 mod-
els needed for N modalities). In contrast, our framework
adopts a catch-all design, i.e., a single model applicable to
all missing-modal situations, thus is more economic.

A special group of dedicated methods tackled the problem
by synthesizing the missing modalities with fidelity (Lee,
Moon, and Ye 2020; Yu et al. 2019), where generative ad-
versarial networks (GANs; Goodfellow et al. 2014) were of-
ten used. However, GANs are known to be difficult to train
for 3D image generation and may incur extra overhead for
both training and deployment. Further, as suggested by Lee,
Moon, and Ye (2020), the gadolinium contrast agent was in-
dispensable and the resulting contrast images could not be
completely reproduced by the generative models. Instead of
synthesizing images of missing modalities perfectly for each
subject, we opt to optimize a universal full-modal substitute
image at marginal cost, which boosts missing-modal seg-
mentation but does not necessarily look realistic.

The other category of methods attempted to handle all
missing-modal situations with a single catch-all model,
where modality-specific encoders were commonly em-
ployed to embed the modalities into a shared latent
space, followed by feature fusion and further processing
to yield segmentation (Havaei et al. 2016). On top of
the generic paradigm, hetero-modal variational encoder-
decoder (HVED; Dorent et al. 2019) incorporated multi-
modal variational auto-encoders to reconstruct the modali-
ties from the common latent variable, forcing the formula-
tion of a genuinely shared latent representation; Shen and
Gao (2019) proposed adversarial training to adapt feature
maps of missing modalities to those of full modalities; la-
tent correlation representation learning (Zhou et al. 2021b)
modeled inter-modal correlations to estimate the missing
modalities’ representation in the latent space; Zhou et al.
(2021a) explicitly generated a feature-enhanced image to
provide necessary feature representations of missing modal-
ities; and region-aware fusion network (RFNet; Ding, Yu,
and Yang 2021) relied on a region-aware fusion module to
conduct feature fusion from available image modalities ac-
cording to disparate regions adaptively. All these methods
followed complex designs of multiple encoders (and some-
times multiple decoders, too) with complicated interactions.
Our framework, while also belonging to the catch-all cate-
gory, is distinct in that it enables a succinct single-encoder-
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Figure 2: Overview of the proposed framework.

single-decoder architecture (essentially a 3D U-Net) to learn
rich multimodal representations and deal with heteroge-
neous missing-modal situations simultaneously.

Self-Supervised Multimodal Representation Learning
for Medical Image Analysis: While quite a number
of works proposed effective self-supervised representation
learning for monomodal medical images (Taleb et al. 2020;
Zhang, Wang, and Zheng 2017, etc.), researchers have just
began to explore unique pretext tasks based on the ‘multi-
modality’ for multimodal medical images. Recently, Taleb
et al. (2021) introduced a novel cross-modal jigsaw puz-
zle (CMJP) task to learn a modality-agnostic feature em-
bedding. Despite its effectiveness, CMJP was proposed for
2D networks and did not consider the practical situations
of missing modalities, and how to extend it for 3D net-
works or missing-modal situations is not straightforward.
The regularizing modality reconstruction task in HVED
(Dorent et al. 2019) with modality dropout was an effec-
tive self-supervising task in preparing for missing modali-
ties. However, it only focused on global inter-modal correla-
tions but ignored the local structural integrity, which is valu-
able in learning powerful representation for segmentation.
In contrast, our M3AE learns rich multimodal representation
by modeling both global inter-modal correlations and local
intra-modal anatomical integrity, from input with both ran-
domly dropped modalities and randomly masked patches,
respectively. To this end, M3AE is inherently robust to miss-
ing modalities while suited for fine-scale semantic learning.

Knowledge Distillation: Knowledge distillation (KD;
Hinton, Vinyals, and Dean 2015) was originally proposed
to compress knowledge from one or more teacher networks
(often large complex models or model ensemble) to a stu-
dent one (often lightweight models). For multimodal seg-
mentation with missing modalities, several works (Hu et al.
2020; Wang et al. 2021b; Chen et al. 2021; Azad, Khos-
ravi, and Merhof 2022) proposed to transfer the ‘dark knowl-
edge’ of the full-modal network to missing-modal ones via

co-training (Blum and Mitchell 1998). Although achieving
decent performance, the co-training strategy incurred non-
negligible memory cost for training due to the dual-network
architecture. In addition, each pair of co-training networks
only focused on a fixed correlation between the full modali-
ties and a specific type of missing modalities (e.g., full to T1
alone), failing to exploit the common semantics shared by
all different missing-modal situations. Adopting self distil-
lation (Ge et al. 2021; Ji et al. 2021), our framework distills
the shared semantics between heterogeneous missing-modal
situations (including the special case of full-modal) within
a single network, and achieving better performance for both
missing- and full-modal segmentation while consuming less
resources for training than previous methods.

Method
The overview of our framework is shown in Fig. 2, includ-
ing a pretraining and a fine-tuning stage. In the pretraining
stage, a novel multimodal masked autoencoder (M3AE) is
proposed for self-supervised learning of a robust represen-
tation against missing modalities. Meanwhile, a full-modal
substitute for missing modalities is learned by model inver-
sion via back propagating the training loss of the M3AE
(Lmse). Then in the second stage, a memory-efficient self
distillation strategy is proposed to distill the shared seman-
tics between heterogeneous missing-modal situations via a
consistency loss (Lcon), while fine-tuning the network for
brain tumor segmentation using the supervised loss Lseg.
The trained segmentation network serves as a ‘catch-all’
model that can be used for any subset as well as the full set
of the modalities. Next, we first describe the newly proposed
building components of our framework, including M3AE,
model inversion, and self distillation in details, followed by
the training and inference procedures integrating them.

Self-Supervised Multimodal Representation Learning
via M3AE: Masked autoencoders (MAEs) have been
proven successful as scalable self-supervised vision learn-
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ers (He et al. 2022), where the pretext task is to recon-
struct the original signal given its partial observation. Be-
ing inspired, we propose a multimodal masked autoencoder
(M3AE) for medical images. Consider a multimodal image
x ∈ RN×D×H×W , where W , H , and D are the width,
height, and depth of the image, respectively, and N is num-
ber of modalities. In practice, any subset of the N modali-
ties can be missing. Therefore, we sample a random subset
of the modalities for masking to mimic the real situation, in
addition to randomly masking 3D patches of the remaining
modalities as in the original MAE for natural images. Re-
covering the modalities masked as a whole requires the net-
work to exploit the global inter-modal correlation, whereas
recovering the masked patches requires to exploit both intra-
modal structural integrity and local inter-modal correlation.
Thus, our M3AE facilitates self-supervised learning of both
anatomical knowledge and inter-modal correlation at the
same time. The mean squared error between the recon-
structed and original images (x̂ and x in Fig. 2) is used as
the loss function for the M3AE, denoted by Lmse.

A notable difference between the original MAE for natu-
ral images and our M3AE is that, masked patches of the for-
mer can only be inferred from surrounding context, whereas
those of the latter can be additionally inferred from other
modalities and thus expected to be easier. Therefore, we em-
pirically set an even higher combined masking rate of 87.5%
(compared to 75% used by He et al. (2022)) in our M3AE to
make the self-supervising task nontrivial.

Model Inversion based Modality Completion: Most ex-
isting approaches to modality completion resorted to GANs
to synthesize images of the missing modalities (Lee, Moon,
and Ye 2020; Yu et al. 2019), resulting in an extra model
and associated training and deployment overheads in addi-
tion to the segmentation networks. Via model inversion, we
in this work propose space- and time-efficient synthesis of a
full-modal substitute image from the M3AE training process
at a marginal cost. Model inversion has long been used for
explainable deep learning, to synthesize images most repre-
sentative of certain network predictions, e.g., saliency maps
for classification (Simonyan, Vedaldi, and Zisserman 2014).
Specifically, we optimize an image xsub ∈ RN×D×H×W

that can lead to smaller reconstruction errors when used to
substitute for the masked content (both the whole modalities
and intramodal patches) of x:

x̂sub = argmin
xsub

Lmse(x, F (S(x,xsub)))+γR(xsub), (1)

where S(x,xsub) is the operation of replacing the masked
content of x with the location-corresponding content in
xsub, F is the reconstruction function cascading the back-
bone network f and a regression head, R is a regularization
term, and γ is a weight. Following Nguyen et al. (2016),
we use a small amount of L2 regularization for R with
γ = 0.005. Here, we make a modification to the original
MAE (He et al. 2022) by replacing the masked contents with
xsub and processing them in the same way as non-masked
ones, instead of discarding them. The intuition is that, in
order to yield better reconstruction, the optimal substitute
must capture most representative modality-specific patterns,

Figure 3: Example full-modal substitute image x̂sub opti-
mized via model inversion on the BraTS 2018 dataset.

which are expected to help with the target task of multimodal
segmentation, too. For implementation, xsub is updated by
back propagation, along with the update to the network pa-
rameters. In this way, there is no need to introduce any extra
module, and the optimization of xsub only incurs marginal
cost. An example of optimized x̂sub is shown in Fig. 3. Note
that only one x̂sub is learned for a given training dataset,
which can be considered as a form of multimodal represen-
tation of the training data and is applicable to all subjects.

Fine-Tune with Heterogeneous Missing-Modal Self Dis-
tillation for Tumor Segmentation: Implemented via co-
training, knowledge distillation from the full-modal to the
missing-modal network has proven effective in multimodal
segmentation with missing modalities (Hu et al. 2020; Wang
et al. 2021b; Chen et al. 2021; Azad, Khosravi, and Mer-
hof 2022), although at the great cost of substantial computa-
tional overhead due to the pairing network. Inspired by the
self distillation strategy (Ge et al. 2021; Ji et al. 2021), we
propose a memory-efficient self distillation strategy to dis-
till knowledge between heterogeneous missing-modal situ-
ations within a single network. Specifically, in each batch,
we randomly sample two different missing-modal situations
(including the special case of full-modal) of one subject via
modality dropout as the network input, and encourage con-
sistent semantic features between them with a consistency
loss Lcon:

Lcon(x0,x1, x̂
sub) = Lmse(f0, f1), (2)

where x0 and x1 are the two random missing-modal in-
stantiations of x; f0 and f1 ∈ RC×D′×H′×W ′

are the cor-
responding feature maps extracted from S(x0, x̂

sub) and
S(x1, x̂

sub), respectively; and C, D′, H ′, and W ′ are the
channel number, depth, height, and width of the feature
maps, respectively. The mutual knowledge transfer via Eqn.
(2) is two-way beneficial: the knowledge transfer from the
more to less modalities encourages recovery of the lost in-
formation of the missing modalities, and that in the reverse
direction (especially from monomodal to multimodal) en-
hances modality-specific features. In addition, as x0 and x1

are obtained by random modality dropout in each epoch, our
self distillation transfers knowledge between heterogeneous
missing-modal situations, instead of between fixed ones as
in paired co-training. Following Hu et al. (2020) and Wang
et al. (2021b), we distill in the latent space at the bottleneck
of the network (see Fig. 2 bottom).

Training and Inference Procedures: A two-stage (pre-
training and fine-tuning) training scheme is employed. In the
first stage, the M3AE is trained with both random modal-
ity and random patch replacement, with the substitute image
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xsub optimized at the same time. The optimization problem
can be formulated as:

min
F,xsub

Lmse(x, F (S(x,xsub))) + γR(xsub). (3)

This stage serves as self-supervised pretraining in which the
inherent inter-modal correlation and anatomical integrity are
learned along with the full-modal substitute image. Then in
the second stage, two missing-modal volumes x0 and x1

are instantiated for each case by randomly dropping zero to
three modalities. Also, the regression head used in the first
stage is replaced with a randomly initialized segmentation
head fs. The optimization problem now becomes:

min
f,fs,{fd}

λLcon(x0,x1, x̂
sub) +

∑1

i=0
Lseg(s

gt,xi, x̂
sub), (4)

where λ is a weight, Lseg is the segmentation loss with deep
supervision (Lee et al. 2015):

Lseg(s
gt,xi, x̂

sub) =
∑

α∈{1, 1
2
, 1
4
}
L(sgt, ŝαi ), i ∈ {0, 1}, (5)

where L is the Dice loss (Milletari, Navab, and Ahmadi
2016) plus cross entropy loss commonly used for medical
image segmentation, sgt is the segmentation ground truth,
and ŝαi is the network prediction for S(xi, x̂

sub) at a specific
scale α with respect to the input size, which is upsampled (if
needed) to match the size of sgt. Specifically, a 1×1×1 con-
volution (denoted by fα

d ) followed by trilinear upsampling
is used to yield the intermediate prediction for α = 1

2 and
1
4 . Therefore, the second stage tunes the network for the tar-
get task of multimodal segmentation with missing modal-
ities, with the help of the self distilling consistency loss.
As to inference, we simply substitute x̂sub for the missing
modalities (if any), feed the resulting image to the trained
model, and obtain the segmentation by fs. Pseudo code of
the above-described procedures (assuming each minibatch
consisting of a single subject) is shown in Algorithm S1.

Experiments and Results
Datasets and Evaluation Metrics: We evaluate the pro-
posed framework with two widely used multimodal Brain
Tumor Segmentation (BraTS) datasets: BraTS 2018 and
2020 (Bakas et al. 2018). The BraTS datasets comprise
multi-contrast MRI exams with four sequences: T1, T1c, T2,
and FLAIR. The scans were preprocessed by the organisers,
including skull-stripping, re-sampling to a unified resolution
(1 mm3), and co-registration to the same template. Follow-
ing the challenge, four intra-tumor structures (edema, en-
hancing tumor, necrotic and non-enhancing tumor core) are
grouped into three tumor regions for evaluation: (1) whole
tumor, including all tumor tissues, (2) tumor core, com-
posed of the enhancing tumor, necrotic and non-enhancing
tumor core, and (3) enhancing tumor. The BraTS 2018
and 2020 datasets include 285 and 369 training cases with
ground truth publicly available, respectively, for which we
follow the splits of 199:29:57 (training:validation:testing)
and 219:50:100 cases in (Ding, Yu, and Yang 2021), respec-
tively. The model is trained on the training splits and tuned
(including hyperparameters and other settings) according to

the performance on the validation splits, whereas the test-
ing splits are only used for final model evaluation. Follow-
ing the BraTS challenge, we use the Dice similarity coeffi-
cient (DSC) and the 95th percentile of the Hausdorff distance
(HD95) for performance quantification.

Implementation: The PyTorch framework (1.7.1; Paszke
et al. 2019) is used for experiments. We use the same back-
bone network as Wang et al. (2021b), which is essentially a
3D U-Net comprising a single encoder and a single decoder
employing residual blocks (He et al. 2016) and group nor-
malization (Wu and He 2018) (more details provided in the
supplement). As to the regression (for pretraining) and seg-
mentation heads, 1×1×1 convolutions without and with sig-
moid are used, respectively. No additional post-processing
is conducted. We use two NVIDIA RTX 2080 Ti GPUs for
training, with a batch size of two volumes, i.e., two volumes
of two subjects for pretraining, and two random missing-
modal instantiations of a subject for fine-tuning. The Adam
(Kingma and Ba 2014) optimizer is employed with an ini-
tial learning rate of 0.0003 and a cosine decay scheduler
(Loshchilov and Hutter 2016), for both pretraining (600
epochs) and fine-tuning (300 epochs). To standardize all vol-
umes, we clip the volumes to the [1st, 99th] percentiles of the
intensity values followed by min-max scaling, and randomly
crop them to a fixed size of 128×128×128 voxels for train-
ing. Side length of the random 3D patches is set to 16 voxels
following He et al. (2022). xsub is initialized to Gaussian
noise. Common data augmentation is conducted for train-
ing, including: random cropping (from 240×240×155 to
128×128×128 voxels); random intensity shift within [−0.1,
0.1] and scaling within [0.9, 1.1]; and random flipping along
the axial, coronal, and sagittal axes with a probability of 0.5.
The weight λ and masking ratio are empirically set to 0.1
and 0.875, respectively, based on experimental results on the
validation split of BraTS 2018 (see the sensitivity analyses
in supplementary Fig. S2).

Comparison with State of the Art (SOTA): Table 1 and
Table 2 compare the performance of our framework on the
BraTS 2018 and 2020 datasets, respectively, with that of
four up-to-date approaches to brain tumor segmentation with
missing modalities1: U-Net based HVED (HVED; Dorent
et al. 2019), ACN (Wang et al. 2021b), SMU-Net (Azad,
Khosravi, and Merhof 2022), and RFNet (Ding, Yu, and
Yang 2021), with ACN and SMU-Net being dedicated and
the other two being catch-all. We reproduce the results of
HVED, ACN, and SMU-Net on our data splits by running
the authors’ codes, and those of RFNet by using the model
checkpoint provided by the authors2.

As we can see, the proposed M3AE yields the strongest
performance for all the three evaluated tumor regions and

1We also compare to general-purpose multimodal pretraining
methods (Geng et al. 2022; Poklukar et al. 2022) in the supplement.

2As we use the data splits in (Ding, Yu, and Yang 2021), it is
valid to directly use the authors’ checkpoints. Meanwhile, since we
would like to compare the results without post-processing—to be
fair to all compared methods, we reproduce the results instead of
directly reporting the numbers with post-processing in (Ding, Yu,
and Yang 2021).
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Modality Whole tumor Tumor core Enhancing tumor
FLAIR T1 T1c T2 HVED ACN SMU-Net RFNet M3AE HVED ACN SMU-Net RFNet M3AE HVED ACN SMU-Net RFNet M3AE

◦ ◦ ◦ • 77.5∗ 84.8 84.3 85.1 84.8 45.0∗ 70.4 70.8 66.9 69.4 18.7∗ 42.6 43.4 43.0 47.6
◦ ◦ • ◦ 57.9∗ 75.7 77.0∗ 73.6 75.8 62.7∗ 81.7 82.5 80.3 82.9 55.5∗ 69.6 69.8 67.7 73.7
◦ • ◦ ◦ 56.9∗ 75.1∗ 74.9 74.8 74.4 40.7∗ 65.2 63.9 65.2 66.1 8.9∗ 37.1 38.8 32.3 37.1
• ◦ ◦ ◦ 77.0∗ 86.1∗ 86.4∗ 85.8∗ 88.7 41.3∗ 67.9 61.6∗ 62.6∗ 66.4 17.8∗ 38.2 36.1 35.5 35.6
◦ ◦ • • 81.7∗ 84.2∗ 85.6 85.6 86.3 74.4∗ 78.9∗ 82.3 82.4 84.2 63.3∗ 67.8 70.6 70.6 75.3
◦ • • ◦ 65.8∗ 75.7 77.7∗ 77.5 77.2 68.9∗ 79.8 80.4∗ 81.3 83.4 59.5∗ 68.6 70.5 68.5 74.7
• • ◦ ◦ 83.7∗ 85.4∗ 84.9∗ 89.0 89.0 51.7∗ 60.6∗ 61.0∗ 72.2 70.8 16.3∗ 35.0∗ 36.1∗ 38.5 41.2
◦ • ◦ • 80.5∗ 84.0 85.1 85.4 86.7 52.9∗ 69.7 70.8 71.1 71.8 19.3∗ 42.0 43.3 42.9 48.7
• ◦ ◦ • 85.2∗ 85.8∗ 86.3∗ 89.3 89.9 51.4∗ 66.8 66.9 71.8 70.9 22.1∗ 40.1 41.5 45.4 45.4
• ◦ • ◦ 84.0∗ 85.5∗ 86.7∗ 89.4 89.7 71.5∗ 77.3∗ 74.8∗ 81.6∗ 84.4 61.4∗ 67.2 68.2 72.5 75.0
• • • ◦ 85.9∗ 85.5∗ 84.4∗ 89.9 88.9 74.1∗ 78.9∗ 76.8∗ 82.3∗ 84.1 61.9∗ 65.8∗ 66.2 71.1 74.0
• • ◦ • 86.5 84.2∗ 83.8∗ 90.0 89.9 56.1∗ 63.9∗ 60.4∗ 74.0 72.7 22.6∗ 38.3∗ 35.5∗ 46.0 44.8
• ◦ • • 87.6∗ 85.6∗ 84.4∗ 90.4 90.2 75.1∗ 79.6∗ 75.4∗ 82.6 84.6 62.9∗ 66.1∗ 67.2∗ 73.1 73.8
◦ • • • 82.5∗ 84.9∗ 83.2∗ 86.1 85.7 75.8∗ 81.3∗ 78.8∗ 82.9 84.4 63.6∗ 67.5 70.4 70.9 75.4
• • • • 88.0∗ 86.2∗ 85.4∗ 90.6∗ 90.1 76.2∗ 79.3∗ 78.3∗ 82.9 84.5 63.0∗ 67.4 68.1 71.4 75.5

Mean 78.7∗ 83.2∗ 83.3∗ 85.5 85.8 61.2∗ 73.4∗ 72.3∗ 76.0∗ 77.4 41.1∗ 54.2∗ 55.0∗ 56.6∗ 59.9

Table 1: Performance comparison (DSC % in mean.) with SOTA methods, including HVED (Dorent et al. 2019), ACN (Wang
et al. 2021b), SMU-Net (Azad, Khosravi, and Merhof 2022), and RFNet (Ding, Yu, and Yang 2021), on the testing split of
BraTS 2018. Present and missing modalities are denoted by • and ◦, respectively. ∗: p < 0.05 by Wilcoxon signed rank test for
pairwise comparison with our method.

Method HVED ACN SMU-Net RFNet M3AE
Whole tumor 80.7∗ 85.4∗ 85.3∗ 86.7 86.9
Tumor core 66.5∗ 77.9 77.7 78.2∗ 79.1

Enhancing tumor 46.7∗ 59.9∗ 59.7∗ 59.7∗ 61.7

Table 2: Performance comparison with SOTA methods (see
Table 1 for references) on the testing split of BraTS 2020.
The mean performance (DSC % in mean.) of all modal com-
binations is shown here (due to space limit the detailed per-
formance of each modal combination is given in supplemen-
tary Table S3). ∗: p < 0.05 by Wilcoxon signed rank test for
pairwise comparison with our method.

on both datasets, with the highest mean DSCs averaged
over all modal combinations. It is worth mentioning that
as a catch-all method, our M3AE substantially outperforms
the two dedicated methods (ACN and SMU-Net), while us-
ing only a single trained model. In contrast, the latter two
require 15 models for all the modal combinations. This
makes M3AE more efficient to both train and deploy in
practice, in addition to being superior in performance. We
conjecture that two important facts play key roles here: (1)
the co-training strategies employed in the dedicated meth-
ods only modelled the one-to-one correlation between the
full modalities and each missing-modal situation, whereas
our self distillation implicitly models the versatile correla-
tions between all heterogeneous missing-modal situations;
and (2) the random modality dropout and patch masking
in M3AE are likely to serve as effective data augmentation
that helps model training, which is unavailable in paired
co-training where the absent modalities are fixed. Mean-
while, our M3AE outperforms RFNet, too, which is the pre-
vious best performing method and also a catch-all method.
Taking BraTS 2018 for example, compared with RFNet,
the mean DSCs of M3AE are slightly higher in whole tu-

FLAIR T1 T1c T2 Full GT

Figure 4: Example segmentation results of the proposed
M3AE framework on BraTS 2018 using four individual
modalities and all of them. Blue: edema; yellow: enhancing
tumor; and green: necrotic and non-enhancing tumor core.

mor (85.8% versus 85.5%), apparently higher in tumor core
(77.4% versus 76.0%), and substantially higher in enhanc-
ing tumor (59.9% versus 56.6%). Besides, using a vanilla
encoder-decoder architecture, our M3AE framework is also
more memory-economic and computation-efficient to de-
ploy than RFNet, which employed multiple encoders with
substantially more parameters and GFLOPS (Fig. 1(c)). In
conclusion, the M3AE framework sets a new SOTA for mul-
timodal brain tumor segmentation with missing modalities,
while at the same time using an efficient and economic ar-
chitecture for deployment. Figure 4 shows example segmen-
tation results by M3AE.

Full-Modal Performance: To objectively assess the per-
formance of our framework on full modalities, we also eval-
uate it on the official validation sets of BraTS 2018 and 2020
online (https://ipp.cbica.upenn.edu/). The models are trained
with the same setting as the offline missing-modal evalua-
tion, except that all the cases with public ground truth are
used for training without further split (note that the official
validation data are kept from training to avoid leakage). The
comparison with other methods on BraTS 2018 is shown in
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Ablation Pretrain Completion Self DSC (%) ↑ HD95 (mm) ↓
config. Mod.Drop M3AE Mean Zero Mod.Inv. distil. Whole Core Enhancing Mean Whole Core Enhancing Mean

(a) × × × × ✓ ✓ 85.7∗ 79.9∗ 53.1∗ 72.9∗ 7.4 9.5∗ 7.9∗ 8.2∗

(b) ✓ × × × ✓ ✓ 86.8∗ 80.8∗ 56.8∗ 74.8∗ 7.1 9.1∗ 5.9 7.4
(c) × ✓ × ✓ × ✓ 86.6 80.8∗ 55.9∗ 74.4∗ 6.7 8.5 6.4 7.2
(d) × ✓ ✓ × × ✓ 48.6∗ 47.9∗ 39.3∗ 45.2∗ 36.0∗ 36.9∗ 12.4∗ 28.4∗

(e) × ✓ × × ✓ × 86.3 80.8 58.2∗ 75.1∗ 7.5∗ 9.2∗ 6.3 7.6∗

Full × ✓ × × ✓ ✓ 86.5 81.4 59.7 75.9 6.9 8.4 5.8 7.0

Table 3: Ablation studies on effectiveness of our framework’s newly proposed components on the validation split of BraTS
2018, by removing or replacing each component from the ‘Full’ model at a time, including: M3AE self-supervised pretraining,
model inversion (Mod.Inv.) based modal completion, and self distillation between heterogeneous missing modalities. The mean
performance of all modal combinations is used. The ‘Mod.Drop’ pretraining refers to removing the patch masking from our
M3AE, i.e., using modality dropout (Shen and Gao 2019) alone. ∗: p < 0.05 by Wilcoxon signed rank test for pairwise
comparison with the full model.

Method DSC (%) ↑ HD95 (mm) ↓
Whole Core Enhancing Whole Core Enhancing

HVED† 88.2∗ 76.5∗ 70.9 5.2∗ 10.5∗ 6.7
ACN† 89.9∗ 83.3∗ 77.9 6.5∗ 9.4∗ 4.5

SMU-Net† 90.1 82.3∗ 79.2 6.8 9.5 6.2∗

RFNet† 90.1∗ 84.6 77.2∗ 4.8∗ 6.9 5.3∗

ModGen† 90.2 82.5∗ 77.0∗ 5.6 8.3 4.2
CMJP‡ 89.7 84.5 79.7 NA NA NA
M3AE 90.5 86.1 81.0 4.6 6.9 2.6

Challenge‡ 90.4 86.0 81.5 4.5 8.3 3.8

Table 4: Full-modal performance comparison on the online
validation set of BraTS 2018, including HVED, ACN, SMU-
Net, RFNet (see Table 1 for references), Models Genesis
(ModGen; Zhou et al. 2019), and cross-modal jigsaw puz-
zle (CMJP; Taleb et al. 2021). Single-model performance of
the challenge winner (Myronenko 2018) is also included for
reference. Best numbers (excluding the challenge entry) are
bolded. †: reproduced based on the authors’ codes; ‡: pro-
vided by the authors; ∗: p < 0.05 by Wilcoxon signed rank
test for pairwise comparison with our method; NA: not avail-
able. Format: mean, if available.

Table 4 (that on BraTS 2020 is given in supplementary Table
S1 due to page limit), including: HVED (Dorent et al. 2019),
ACN (Wang et al. 2021b), SMU-Net (Azad, Khosravi, and
Merhof 2022), RFNet (Ding, Yu, and Yang 2021), Mod-
els Genesis (ModGen, a generic self-supervised representa-
tion learning method for medical image analysis; Zhou et al.
2019), and CMJP (Taleb et al. 2021). Performance of the
challenge winners (Isensee et al. 2020; Myronenko 2018) is
included, too, for reference. Table 4 shows that compared
with other non-challenge approaches, our M3AE achieves
the best performance in both evaluation metrics for all three
tumor regions. It is also mostly comparable and sometimes
better than the challenge winner, which involved heavy en-
gineering, e.g., exhaustive parameter tuning. These results
indicate that the multimodal representations learned by our
framework are not only robust against missing modalities,
but also effective with full modalities.

Ablation Study: To validate the efficacy of our frame-
work’s novel building components, we conduct ablative ex-

periments where each component is removed or replaced
from the complete model. The results are shown in Table
3. In rows (a) and (b), both removing the M3AE pretraining
entirely and removing the patch masking (i.e., keeping the
modality dropout alone) result in apparent drops in average
performance, indicating the indispensable effect of M3AE
in learning robust representations of both anatomical and
multimodal information against missing modalities. Com-
pared to row (c), substituting our model inversion optimized
full-modal image for missing modalities brings obvious im-
provements in DSCs upon the zero-filling baseline, whereas
substituting the mean image of the training set deteriorates
the performance sharply (row (d)). These results suggest that
our optimized substitute image captures useful modal pat-
terns that can complement the missing modalities for brain
tumor segmentation, although looks less realistic than the
population mean. Lastly, compared to row (e), the proposed
framework is modestly better in both evaluation metrics and
for all tumor regions, validating the effectiveness of the two-
way hetero-modal knowledge distillation. In addition, the
self distillation strategy saves ∼4.7 million parameters com-
pared to co-training with dual networks.

Conclusion

This work presented M3AE, a new framework for brain
tumor segmentation using MRI with missing modali-
ties. M3AE featured three novel components: multimodal
masked autoencoding for self-supervised learning of robust
representations against missing modalities, model inversion
based modality completion, and memory-efficient self dis-
tillation between heterogeneous missing-modal situations.
As a ‘catch-all’ model, M3AE could accommodate all possi-
ble combinations of missing modalities with a single trained
model. Extensive experiments on two public benchmark
datasets showed that our framework established a new state
of the art for brain tumor segmentation with missing modal-
ities and that it was competent in multimodal representation
learning. In addition, our ablative experiments validated the
efficacy of M3AE’s three novel components. In the future,
we plan to apply M3AE to completely different modalities
(e.g., MRI and CT) and other benchmarks beyond BraTS.
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