
Actional Atomic-Concept Learning for Demystifying
Vision-Language Navigation

Bingqian Lin1* , Yi Zhu2, Xiaodan Liang1,3† , Liang Lin4, Jianzhuang Liu2

1Shenzhen Campus of Sun Yat-sen University, Shenzhen
2Huawei Noah’s Ark Lab
3PengCheng Laboratory
4Sun Yat-sen University

linbq6@mail2.sysu.edu.cn, zhuyi36@huawei.com, liangxd9@mail.sysu.edu.cn,
linliang@ieee.org, liu.jianzhuang@huawei.com

Abstract
Vision-Language Navigation (VLN) is a challenging task
which requires an agent to align complex visual observa-
tions to language instructions to reach the goal position. Most
existing VLN agents directly learn to align the raw direc-
tional features and visual features trained using one-hot labels
to linguistic instruction features. However, the big semantic
gap among these multi-modal inputs makes the alignment
difficult and therefore limits the navigation performance. In
this paper, we propose Actional Atomic-Concept Learning
(AACL), which maps visual observations to actional atomic
concepts for facilitating the alignment. Specifically, an ac-
tional atomic concept is a natural language phrase contain-
ing an atomic action and an object, e.g., “go up stairs”. These
actional atomic concepts, which serve as the bridge between
observations and instructions, can effectively mitigate the se-
mantic gap and simplify the alignment. AACL contains three
core components: 1) a concept mapping module to map the
observations to the actional atomic concept representations
through the VLN environment and the recently proposed
Contrastive Language-Image Pretraining (CLIP) model, 2)
a concept refining adapter to encourage more instruction-
oriented object concept extraction by re-ranking the predicted
object concepts by CLIP, and 3) an observation co-embedding
module which utilizes concept representations to regularize
the observation representations. Our AACL establishes new
state-of-the-art results on both fine-grained (R2R) and high-
level (REVERIE and R2R-Last) VLN benchmarks. More-
over, the visualization shows that AACL significantly im-
proves the interpretability in action decision. Code will be
available at https://gitee.com/mindspore/models/tree/master/
research/cv/VLN-AACL.

Introduction
Vision-Language Navigation (VLN) (Anderson et al. 2018;
Ku et al. 2020; Chen et al. 2019; Nguyen and Daumé
2019) has attracted increasing interests in robotic applica-
tions since an instruction-following navigation agent is prac-
tical and flexible in real-world scenarios. For accomplishing
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successful navigation, a VLN agent needs to align compli-
cated visual observations to language instructions to reach
the required target point. For example, when asking to “turn
left to the bathroom”, the agent should choose the right
observation which not only contains the mentioned object
“bathroom” but also indicates the direction “turn left”.

Most of early VLN approaches adopt the LSTM-based
encoder-decoder framework (Fried et al. 2018; Tan, Yu, and
Bansal 2019; Wang et al. 2019; Ma et al. 2019; Zhu et al.
2020), which encodes both the visual observations and lan-
guage instructions and then generates the action sequence.
With the development of large-scale cross-modal pretrain-
ing models in vision-language tasks (Li et al. 2020a,b; Chen
et al. 2020; Lu et al. 2019), emerging works attempt to in-
troduce them into VLN tasks (Hao et al. 2020; Hong et al.
2021; Chen et al. 2021; Moudgil et al. 2021). However, both
the non-pretraining-based or pretraining-based approaches
represent the visual observations by raw directional features
and visual features trained using one-hot labels, which are
difficult to be aligned to the linguistic instruction features
due to the large semantic gap among them. This direct align-
ment process also leads to poor interpretability of action de-
cision and therefore makes the VLN agents unreliable to be
deployed to real environments.

In this work, we aim to mitigate the semantic gap and sim-
plify the alignment in VLN by proposing a new framework,
called Actional Atomic-Concept Learning (AACL). Since
the instructions usually consist of atomic action concepts,
e.g., “turn right”, and object concepts1, e.g., “kitchen”,
in AACL, the visual observations are mapped to actional
atomic concepts, which are natural language phrases each
containing an action and an object. The actions are extracted
from a predefined atomic action set. These actional atomic
concepts, which can be viewed as the bridge between obser-
vations and instructions, effectively facilitate the alignment
as well as provide good interpretability for action decision.

AACL consists of three main components. Firstly, a con-
cept mapping module is constructed to map each sin-
gle view observation to the actional atomic concept. For
deriving the object concept, we resort to the recently

1In this work, we also treat the scene concept, e.g., “bathroom”,
as the object concept.
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Figure 1: Comparison between existing VLN agents and the proposed AACL. Through mapping the visual observations to
actional atomic concepts, AACL can simplify the multi-modal alignment and distinguish different observation candidates easily
to make accurate action decision.

proposed Contrastive Language-Image Pretraining (CLIP)
model (Radford et al. 2021) rather than image classifica-
tion or object detection models pretrained on a fixed cat-
egory set. Benefiting from the powerful open-world object
recognition ability of CLIP, AACL can better generalize
to diverse navigation scenarios. And we map the sequen-
tial direction information in VLN environments during nav-
igation to the action concept. Secondly, to encourage more
instruction-oriented object concept extraction for facilitat-
ing the multi-modal alignment, a concept refining adapter
is further introduced to re-rank the predicted object con-
cepts of CLIP according to the instruction. Lastly, an ob-
servation co-embedding module embeds each observation
and its paired actional atomic concept, and then uses con-
cept representations to regularize the observation represen-
tations through an observation contrast strategy. Figure 1
presents an action selection comparison between existing
VLN agents and our AACL. Through mapping visual ob-
servations to actional atomic concepts formed by language,
AACL can simplify the modality alignment and distinguish
different action candidates easier to make correct actions.

We conduct experiments on several popular VLN
benchmarks, including one with fine-grained instructions
(R2R (Anderson et al. 2018)) and two with high-level in-
structions (REVERIE (Qi et al. 2020) and R2R-Last (Chen
et al. 2021)). Experimental results show that our AACL out-
performs the state-of-the-art approaches on all benchmarks.
Moreover, benefiting from these actional atomic concepts,
AACL shows excellent interpretability in making action de-
cision, which is a step closer towards developing reliable
VLN agents in real-world applications.

Related Work
Vision-Language Navigation. Developing navigation
agents which can follow natural language instructions has
attracted increasingly research interests in recent years (An-
derson et al. 2018; Ku et al. 2020; Chen et al. 2019;
Nguyen and Daumé 2019; Qi et al. 2020). Most of early

Vision-Language Navigation (VLN) approaches employ the
LSTM-based encoder-decoder framework (Fried et al. 2018;
Tan, Yu, and Bansal 2019; Wang et al. 2019; Ma et al. 2019;
Zhu et al. 2020; Wang, Wu, and Shen 2020; Qi et al. 2020;
Fu et al. 2020). Due to the success of Transformer-based
cross-modal pretraining (Li et al. 2020a,b; Chen et al. 2020;
Lu et al. 2019; Li et al. 2019), recent works have explored
transformer architectures into VLN tasks (Hao et al. 2020;
Hong et al. 2021; Chen et al. 2021; Moudgil et al. 2021;
Qi et al. 2021; Lin et al. 2022). HAMT (Chen et al. 2021)
develops a history aware multimodal transformer to better
encode the long-horizon navigation history. DUET (Chen
et al. 2022) constructs a dual-scale graph transformer for
joint long-term action planning and fine-grained cross-
modal understanding. However, these pretraining-based
methods still learn to align the raw directional features and
visual features trained using one-hot labels to the linguistic
instruction features, leading to limited performance due to
the large semantic gap among these multi-modal inputs.

In contrast to the above mentioned VLN approaches,
in this work, we build a bridge among multi-modal in-
puts for facilitating the alignment by introducing actional
atomic concepts formed by language. Through these ac-
tional atomic concepts, the alignment can be significantly
simplified and good interpretability can be provided.

Contrastive Language-Image Pretraining (CLIP).
CLIP (Radford et al. 2021) is a cross-modal pretrained
model using 400 million image and text pairs collected from
the web. Through natural language supervision (Jia et al.
2021; Sariyildiz, Perez, and Larlus 2020; Desai and John-
son 2021) rather than one-hot labels of fixed size of object
categories, CLIP has shown great potential in open-world
object recognition. Recently, many works have attempted to
introduce CLIP into various computer vision (CV) or vision-
language (V&L) tasks to improve the generalization abil-
ity of the downstream models (Song et al. 2022; Subrama-
nian et al. 2022; Khandelwal et al. 2022; Shen et al. 2022;
Rao et al. 2022; Dai et al. 2022; Liang et al. 2022). Dense-
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CLIP (Rao et al. 2022) introduces CLIP into dense pre-
diction tasks, e.g., semantic segmentation, through convert-
ing the original image-text matching in CLIP to the pixel-
text matching. (Dai et al. 2022) distills the vision-language
knowledge learned in CLIP to enhance the multimodal gen-
eration models. EmbCLIP (Khandelwal et al. 2022) investi-
gates the ability of CLIP’s visual representations in improv-
ing embodied AI tasks. Some works have also tried to apply
CLIP into VLN tasks (Liang et al. 2022; Shen et al. 2022).
ProbES (Liang et al. 2022) utilizes the knowledge learned
from CLIP to build an in-domain dataset by self-exploration
for pretraining. (Shen et al. 2022) replaces the ResNet visual
encoder pretrained on ImageNet in the conventional VLN
models with the pretrained CLIP visual encoder.

In this paper, we resort to the powerful object recognition
ability of CLIP to provide object concepts for each single-
view observation. To encourage instruction-oriented object
concept extraction for better alignment, a concept refining
adapter is further introduced beyond CLIP to re-rank its pre-
dicted object concepts according to the instruction.

Preliminaries
VLN Problem Setup
Given a natural language instruction I = {w1, ..., wl} with
l words, a VLN agent is asked to navigate from a start view-
point S to the goal viewpoint G. At each timestep t, the
agent receives a panoramic observation, containing No im-
age views Ot = {Ot,n}No

n=1. Each Ot,n contains the im-
age Bt,n and the attached direction information At,n. The
visual feature vt,n for Bt,n is obtained by a pretrained
ResNet (He et al. 2016) or ViT (Dosovitskiy et al. 2021).
At,n is usually composed of the heading ψt,n and the ele-
vation θt,n. Each panoramic observation contains d naviga-
ble viewpoints Ct = {Ct,i}di=1 as the action candidates. At
timestep t, the agent predicts an action at from Ct based on
the instruction I and current visual observations Ot.

Baseline Agents
Our AACL can be applied to many previous VLN models.
In this work, two strong baseline agents HAMT (Chen et al.
2021) and DUET (Chen et al. 2022) are selected. In this sec-
tion, we briefly describe one baseline HAMT. In HAMT, the
agent receives the instruction I , the panoramic observation
Ot, and the navigation history Ht at each timestep t. Ht

is a sequence of historical visual observations. A standard
BERT (Devlin et al. 2019) is used to obtain the instruction
feature fI for I . For each view n with the angle informa-
tion < ψt,n, θt,n > in Ot, the direction feature is defined by
eAt,n = (sinψt,n, cosψt,n, sinθt,n, cosθt,n). With the visual
feature vt,n and the direction feature eAt,n , the observation
embedding ot,n for each view n is calculated by:

ot,n = Dr(LN(LN(Wvvt,n) + LN(WaeAt,n
)

+ eNt,n + eTv )),
(1)

where LN(·) and Dr(·) denote layer normalization (Ba,
Kiros, and Hinton 2016) and dropout, respectively. Wv

and Wa are learnable weights, and eNt,n and eTv denote the

navigable embedding and the type embedding, respectively
(Chen et al. 2021). The observation feature ot is represented
by ot = [ot,1; ...;ot,No

], where No is the number of views.
And a hierarchical vision transformer (Chen et al. 2021) is
constructed to get the history feature ht = [ht,1; ...;ht,t−1]
for the navigation history Ht.

Then fI , ot, and ht are fed into a cross-modal transformer
encoder Ec(·), resulting in:

f̃ tI , õt, h̃t = Ec(fI , [ot;ht]). (2)

The updated instruction feature f̃ tI and observation feature
õt are used for action prediction:

at = Ea(f̃ tI , õt), (3)

where Ea(·) is a two-layer fully-connected network. For
more model details, refer to (Chen et al. 2021).

In Eq. 1, HAMT obtains the observation feature ot,n di-
rectly by the pretrained visual feature vt,n and the raw direc-
tion feature eAt,n . In AACL, we map the observations Ot,n

to actional atomic concepts Ut,n formed by language and
use Ut,n to obtain the new observation feature o′

t,n. In this
way, the gap between Ot and I can be effectively mitigated
to simplify the alignment.

Actional Atomic-Concept Learning
In this section, we describe our AACL in detail, the overview
of which is presented in Figure 2. At timestep t, the agent re-
ceives multi-modal inputs I , Ot, and Ht similar to HAMT.
For each Ot,n in Ot containing the single-view image Bt,n

and the direction At,n, AACL first conducts object concept
mapping and atomic action concept mapping to obtain the
object concept Uobj

t,n and the action concept Uact
t,n . And a con-

cept refining adapter is built to re-rank Uobj
t,n according to the

instruction I for better alignment. The actional atomic con-
cept Ut,n is then obtained by concatenating Uact

t,n and Uobj
t,n ,

and fed to the concept encoder Et(·) to get the concept fea-
ture ũt,n. Finally, an observation co-embedding module is
constructed to use ũt,n for regularizing the visual feature
vt,n and the directional feature eAt,n to get new observa-
tion features o′

t,n. For Ht which contains historical visual
observations, we also use AACL to get the enhanced history
features h′

t like Ot. Then o′
t = {o′

t,n}
No
n=1, h′

t, and the in-
struction features fI are fed to the cross-modal Transformer
encoder Ec(·) for calculating the action predictions a′t.

Actional Atomic-Concept Mapping
Object Concept Mapping. For each observation Ot,n con-
taining the single-view image Bt,n, we map Bt,n to get the
object concept Uobj

t,n based on a pre-built in-domain object
concept repository. Benefiting from large-scale language su-
pervision from 400M image-text pairs, CLIP (Radford et al.
2021) has more powerful open-world object recognition
ability than conventional image classification or object de-
tection models pretrained on a fixed-size object category set.
In this work, we resort to CLIP to conduct the object concept
mapping considering its good generalizability. Concretely,
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Figure 2: Overview of our Actional Atomic-Concept Learning (AACL). At each timestep t, the agent receives the instruction I ,
the observation Ot, and the navigation history Ht. For each Ot,n in Ot containing the single-view image Bt,n and the direction
At,n, object concept mapping and action concept mapping are conducted based on the concept refining adapter to obtain the
actional atomic concept representations ũt,n. Then ũt,n is used to regularize the visual representation vt,n and the directional
representation eAt,n

through the observation co-embedding module for making action selection. For simplicity, we omit the
learning process of navigation histories Ht, which is similar to that of observations Ot.

the object concept repository {Uobj
c }Nc

c=1 is constructed by
extracting object words from the training dataset, where Nc

is the repository size. And we get the image feature fBt,n

through the pretrained CLIP Image Encoder Ev
CLIP(·):

fBt,n
= Ev

CLIP(Bt,n). (4)

For object concept Uobj
c , we construct the text phrase Tc

formed as “a photo of a {Uobj
c }”. Then the text feature fTc

is
derived through the pretrained CLIP Text EncoderEt

CLIP(·):

fTc = Et
CLIP(Tc). (5)

Then the mapping probability of the image Bt,n regarding
the object concept Uobj

c is calculated by:

p(y = Uobj
c |Bt,n) =

exp(sim(fBt,n
, fTc

)/τ)∑Nc

c=1(exp(sim(fBt,n
, fTc

)/τ))
,

(6)
where sim(·, ·) denotes the cosine similarity, τ represents the
temperature parameter. Considering that a single-view im-
age in the observation usually contains more than one salient
object, we extract the top k object concepts (text) having the
maximum mapping probabilities conditioned on Bt,n as its
corresponding object concepts, i.e., Uobj

t,n = {Uobj
t,n,i}ki=1.

Atomic Action Concept Mapping. The atomic action
concept Uact

t,n for Ot,n can be derived through its directional

information At,n and the directional information Ãt−1 of
the agent’s selected action at timestep t-1. We first use six
basic actions in VLN tasks to build the predefined atomic
action set, i.e., go up, go down, go forward, go back, turn
right, and turn left. Denote At,n =< ψt,n, θt,n >, where
ψt,n ∈ [0, 2π) and θt,n ∈ [−π

2 ,
π
2 ] are the heading and the

elevation, respectively. Similarly, Ãt−1 =< ψ̃t−1, θ̃t−1 >,
where ψ̃t−1 ∈ [0, 2π) and θ̃t−1 ∈ [−π

2 ,
π
2 ]. We calculate the

relative direction of < ψt,n, θt,n > to < ψ̃t−1, θ̃t−1 > by:

ψ̃t,n = ψt,n − ψ̃t−1, θ̃t,n = θt,n − θ̃t−1. (7)

Then we use < ψ̃t,n, θ̃t,n > to obtain Uact
t,n . Following the

direction judgement rule in VLN (Anderson et al. 2018), we
use θ̃t,n first to judge whether Uact

t,n is “go up” or “go down”
by comparing it to zero. Otherwise, Uact

t,n is further deter-
mined through ψ̃t,n. Specifically, if ψ̃t,n is equal to zero,
Uact
t,n is “go forward”. Otherwise, Uact

t,n is further determined
to be “turn right”, “turn left”, or “go back”. The detailed
mapping rule is listed in Table 1.

Concept Refining Adapter
After getting {Uobj

t,n,i}ki=1 and Uact
t,n for each Ot,n, the ac-

tional atomic concept {Ut,n,i}ki=1 can be obtained by di-
rectly concatenating Uact

t,n and each Uobj
t,n,i. A direct way to
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Elevation θ̃t,n
Heading ψ̃t,n

(-2π, -3π/2] (-3π/2, -π/2) [-π/2, 0) 0 (0, π/2] (π/2, 3π/2) [3π/2, 2π)
>0 go up
<0 go down
0 turn right go back turn left go forward turn right go back turn left

Table 1: Atomic Action Concept Mapping.

obtain the actional atomic concept feature ut,n is to feed
each Ut,n,i to the concept encoder Et(·) and get a weighted
sum based on their object prediction probability pi by CLIP:

ut,n =
k∑

i=1

pi · Et(Ut,n,i), (8)

where Et(·) is the BERT-like language encoder. However,
even if CLIP can extract informative object concepts for
each observation, some noisy object concepts may exist
and extracting instruction-oriented object concepts would be
more useful for alignment and making action decisions. In-
spired by (Gao et al. 2021), we propose to construct a con-
cept refining adapter beyond CLIP to refine the object con-
cept under the constraint of the instruction. Given a feature
f , the concept refining adapter is written as:

A(f) = ReLU(fTW1)W2, (9)
where W1 and W2 are learnable parameters, and ReLU(·)
is the rectified linear unit for activation. Denote the instruc-
tion feature as fI = {f clsI , f1I , ...f

l
I}. For the image feature

fBt,n
of the single-view image Bt,n, we obtain the updated

image feature f̃Bt,n by feeding fBt,n and f clsI to A(·):

f̃Bt,n
= α · fBt,n

+ (1− α) ·A([fBt,n
; f clsI ]), (10)

where α servers as the residual ratio to help adjust the de-
gree of maintaining the original knowledge for better perfor-
mance (Gao et al. 2021), and [·; ·] denotes feature concate-
nation. Denote the top k object concept features obtained by
CLIP for the single-view image Bt,n as {fTi

}ki=1. We use
the updated image feature f̃Bt,n

to get the re-ranking object
prediction probability p̃ of {fTi}ki=1:

p̃ = Softmax(sim(f̃Bt,n
, fT1

), ..., sim(f̃Bt,n
, fTk

)). (11)
Then we get the refined concept feature ũt,n by replacing p
in Eq. 8 by p̃.

Observation Co-Embedding
After obtaining the concept feature ũt,n for each single-
view observation Ot,n, we introduce an observation co-
embedding module to use ũt,n for bridging multi-modal in-
puts and calculating the final observation feature o′

t,n. At
first, we separately embed the visual feature vt,n, the di-
rection feature eAt,n

, and the concept feature ũt,n to obtain
ov
t,n, oa

t,n, and ou
t,n, respectively, by:

ov
t,n = Dr(LN(LN(W̃vvt,n) + eNt,n + eTv )),

oa
t,n = Dr(LN(LN(W̃aeAt,n

) + eNt,n + eTv )),

ou
t,n = Dr(LN(LN(W̃uũt,n) + eNt,n + eTv )),

(12)

where W̃v , W̃a and W̃u are learnable weights.
Unlike HAMT that combining different features into one

embedding (Eq. 1), we keep the separate embeddings as in
Eq. 12 such that a new observation contrast strategy can be
performed. Concretely, the view embedding ov

t,n and the di-
rection embedding oa

t,n are summed as the visual embedding
oV
t,n = ov

t,n + oa
t,n. Then oV

t,n in each single-view observa-
tion Ot,n is forced to stay close to the paired concept em-
bedding ou

t,n while staying far away from the concept em-
beddings ou

t,n in other single-view observations in Ot:

Lc =−
∑
t

∑
n

log(esim(oV
t,n,o

u
t,n)/τ/

(esim(oV
t,n,o

u
t,n)/τ +

∑
ou
t,n

esim(oV
t,n,o

u
t,n)/τ )),

(13)

where τ is the temperature parameter. By observation con-
trast, the discrimination of each single-view observation can
be effectively enhanced and the semantic gap between ob-
servations and instructions can be largely mitigated with the
help of the actional atomic concept. To fully merge the in-
formation for each observation, we use o′

t,n = oV
t,n + ou

t,n

to obtain the final observation feature o′
t,n.

Action Prediction
Similar to the observation feature o′

t = {o′
t,n}

No
n=1 (No is

the number of views), the history feature h′
t is obtained for

Ht through AACL. With o′
t, h

′
t, and the instruction fea-

ture fI , the action a′t can be obtained from the cross-modal
transformer encoder Ec(·) and the action prediction module
Ea(·) (see Eq. 2 and Eq. 3). Following most existing VLN
works (Tan, Yu, and Bansal 2019; Hong et al. 2021; Chen
et al. 2021), we combine Imitation Learning (IL) and Rein-
forcement Learning (RL) to train VLN agents. Let the im-
itation learning loss be LIL and the reinforcement learning
loss be LRL. The total training objective of AACL is:

L = LRL + λ1LIL + λ2Lc, (14)

where λ1 and λ2 are balance parameters.

Experiments
Experimental Setup
Datasets. We evaluate AACL on several popular
VLN benchmarks with both fine-grained instructions
(R2R (Anderson et al. 2018)) and high-level instructions
(REVERIE (Qi et al. 2020) and R2R-Last (Chen et al.
2021)). R2R includes 90 indoor scenes with 7189 trajecto-
ries. The dataset is split into train, val seen, val unseen, and
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Method Val Seen Val Unseen Test Unseen
TL NE ↓ SR ↑ SPL ↑ TL NE ↓ SR ↑ SPL ↑ TL NE ↓ SR ↑ SPL ↑

Seq2Seq (Anderson et al. 2018) 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
RCM+SIL(train) (Wang et al. 2019) 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38

EnvDropout (Tan, Yu, and Bansal 2019) 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
PREVALENT (Hao et al. 2020) 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51

ORIST (Qi et al. 2021) - - - - 10.90 4.72 57 51 11.31 5.10 57 52
VLN⟳BERT (Hong et al. 2021) 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57

HAMT (Chen et al. 2021) (baseline) 11.15 2.51 76 72 11.46 3.62 66 61 12.27 3.93 65 60
HAMT+AACL (ours) 11.31 2.53 76 72 12.09 3.41 69 63 12.74 3.71 66 61

DUET (Chen et al. 2022) (baseline) 12.32 2.28 79 73 13.94 3.31 72 60 14.73 3.65 69 59
DUET+AACL (ours) 13.32 2.15 80 72 15.01 3.00 74 61 15.47 3.38 71 59

Table 2: Comparison with the SOTA methods on R2R.

Method Val Unseen Test Unseen
TL SR ↑ OSR↑ SPL ↑ RGS↑ RGSPL↑ TL SR ↑ OSR↑ SPL ↑ RGS↑ RGSPL↑

RCM (Wang et al. 2019) 11.98 9.29 14.23 6.97 4.89 3.89 10.60 7.84 11.68 6.67 3.67 3.14
SMNA (Ma et al. 2019) 9.07 8.15 11.28 6.44 4.54 3.61 9.23 5.80 8.39 4.53 3.10 2.39

FAST-MATTN (Qi et al. 2020) 45.28 14.40 28.20 7.19 7.84 4.67 39.05 19.88 30.63 11.60 11.28 6.08
SIA (Lin, Li, and Yu 2021) 41.53 31.53 44.67 16.28 22.41 11.56 48.61 30.80 44.56 14.85 19.02 9.20

VLN⟳BERT (Hong et al. 2021) 16.78 30.67 35.02 24.90 18.77 15.27 15.86 29.61 32.91 23.99 16.50 13.51
HAMT (baseline) 14.08 32.95 36.84 30.20 18.92 17.28 13.62 30.40 33.41 26.67 14.88 13.08

HAMT+AACL (ours) 14.08 34.17 38.54 29.70 20.53 17.69 13.30 35.52 39.57 31.34 18.04 15.96
DUET (baseline) 22.11 46.98 51.07 33.73 32.15 23.03 21.30 52.51 56.91 36.06 31.88 22.06

DUET+AACL (ours) 23.77 49.42 53.93 33.54 33.31 22.49 21.88 55.09 59.92 37.08 33.17 22.55

Table 3: Navigation and object grounding performance on REVERIE.

Method Val Seen Val Unseen
SR↑ SPL↑ SR↑ SPL↑

EnvDrop 42.8 38.4 34.3 28.3
VLN⟳BERT 50.2 45.8 41.6 37.3
HAMT (baseline) 53.3 50.3 45.2 41.2
HAMT+AACL (ours) 54.2 51.1 47.2 42.1

Table 4: Comparison on R2R-Last.

test unseen sets with 61, 56, 11, and 18 scenes, respectively.
REVERIE replaces the fine-grained instructions in R2R
with high-level instructions which mainly target at object
localization. R2R-Last only uses the last sentence of the
original R2R instruction as the instruction.

Evaluation Metrics. We adopt the common metrics used
in previous works (Chen et al. 2021; Anderson et al. 2018;
Qi et al. 2020) to evaluate the model performance: 1) Nav-
igation Error (NE) calculates the average distance between
the agent stop position and the target viewpoint, 2) Trajec-
tory Length (TL) is the average path length in meters, 3)
Success Rate (SR) is the ratio of stopping within 3 meters
to the goal, 4) Success rate weighted by Path Length (SPL)
makes the trade-off between SR and TL, 5) Oracle Suc-
cess Rate (OSR) calculates the ratio of containing a view-
point along the path where the target object is visible, 6)
Remote Grounding Success Rate (RGS) is the ratio of per-
forming correct object grounding when stopping, and 7) Re-
mote Grounding Success weighted by Path Length (RGSPL)
weights RGS by TL. 1)–4), 3)–4), and 2)–7) are used for
evaluation on R2R, R2R-Last, and REVERIE, respectively.

Baselines. In this work, we choose two strong baseline
agents, HAMT (Chen et al. 2021) and DUET (Chen et al.
2022) to verify AACL’s effectiveness. In HAMT, a hierar-
chical transformer is adopted for storing historical observa-
tions and actions. In contrast, DUET keeps track of all vis-
ited and navigable locations through a topological map.

Implementation Details. We implement our model using
the MindSpore Lite tool2. The batch size is set to 8, 8, 4 on
R2R, R2R-Last, and REVERIE, respectively. The tempera-
ture parameter τ is set to 0.5. The loss weight λ1 is set to
0.2 on all datasets, and the loss weight λ2 is set to 1, 1, and
0.01 on R2R, REVERIE, and R2R-Last, respectively. The
residual ratio in Eq. 10 is set to 0.8 empirically. During ob-
ject concept mapping, we remain top 5 object predictions for
each observation. The learning rate of the concept refining
adapter is set to 0.1.

Quantitative Results
Comparison with the State-of-the-Arts (SOTAs). Ta-
ble 23, Table 3, and Table 4 present the performance com-
parison between the SOTA methods and AACL, where we
can find that AACL establishes new state-of-the-art results
in most metrics on R2R, REVERIE and R2R-Last. These
results show that AACL is useful not only when the in-
structions are fine-grained but also when the instruction in-
formation is limited, demonstrating that the proposed ac-
tional atomic concepts can effectively enhance the observa-

2https://www.mindspore.cn/
3The original value 2.29 of NE under Val Unseen in HAMT is

a typo, which is actually 3.62 confirmed by the author.
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Figure 3: Visualization examples of action selection ((a) and (b)) and object concept mapping ((c)). In (a) and (b), the baseline
is HAMT (Chen et al. 2021). The green boxes denote the correct actions and the red boxes denote the wrong ones.

Method Val Unseen
NE↓ SR↑ SPL↑

separate embedding 3.66 66.67 61.19
w/o contrast 3.42 67.94 61.48
w/o refine 3.45 67.82 62.33
full model 3.41 68.54 62.96

Table 5: Ablation Study on R2R. The baseline agent we
choose is HAMT (Chen et al. 2021).

tion features, simplify their alignment to the linguistic in-
struction features, and therefore improve the agent perfor-
mance. Moreover, we can find that AACL consistently out-
performs the two strong baselines on these three benchmarks
especially under Unseen scenarios, showing that AACL can
be used as a general tool for the multi-modal alignment.

Ablation Study. Table 5 gives the ablation study of
AACL. “separate embedding” means using the separate em-
bedding scheme (Eq. 12) only for the visual feature and the
directional feature. By comparing the results between “sepa-
rate embedding” and “w/o contrast”, we can find that the di-
rect introduction of actional atomic concepts under the sep-
arate embedding strategy can already improve the naviga-
tion performance (1.27% increase on SR), showing their ef-
fectiveness for enhancing the observation features. By com-
paring the results between “w/o contrast” and “w/o refine”,
we can observe that the proposed observation contrast strat-
egy can effectively regularize the observation representa-
tion and improve the performance (0.85% increase on SPL).
The comparison between “w/o refine” and “full model” fur-
ther shows the effectiveness of the concept refining adapter,
demonstrating that the instruction-oriented object concept
extraction can facilitate better cross-modal alignment.

Qualitative Results
Figure 3 visualizes some results of action decision and ob-
ject concept mapping. We can find that by introducing the
actional atomic concepts, the agent is able to perform bet-
ter cross-modal alignment for improving action decisions.
In Figure 3(a), although the candidate observations do not
contain the visual appearance of “kitchen”, with the help of
the actional atomic concepts, AACL successfully chooses
the right action whose paired action concept matches the one
mentioned in the instruction (“turn right”), while the base-
line selects the wrong one. In Figure 3(b), with the actional
atomic concept, AACL successfully chooses the correct ac-
tion asked in the instruction. In Figure 3(c), we can observe
that the probability of “kitchen” of AACL is higher than that
of CLIP for the GT action (top-1 vs. top-4), showing that the
concept refining adapter enables more instruction-oriented
object concept extraction, which is useful for selecting cor-
rect actions.

Conclusion
In this work, we propose Actional Atomic-Concept Learn-
ing, which helps VLN agents demystify the alignment in
VLN tasks through actional atomic concepts formed by
language. During navigation, each visual observation is
mapped to the specific actional atomic concept through the
VLN environment and CLIP. A concept refining adapter
is constructed to enable the instruction-oriented concept
extraction. An observation co-embedding module is intro-
duced to use concept features to regularize observation fea-
tures. Experiments on public VLN benchmarks show that
AACL achieves new SOTA results. Benefiting from these
human-understandable actional atomic concepts, AACL
shows excellent interpretability in making action decision.
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