
FSR: A General Frequency-Oriented Framework to Accelerate
Image Super-resolution Networks

Jinmin Li1,2, Tao Dai2*, Mingyan Zhu1,4, Bin Chen3,4, Zhi Wang1, Shu-Tao Xia1,4

1 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

3 Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
4 Research Center of Artificial Intelligence, Peng Cheng Laboratory

{ljm22,zmy20}@mails.tsinghua.edu.cn, daitao.edu@gmail.com, chenbin2021@hit.edu.cn,
{wangzhi,xiast}@sz.tsinghua.edu.cn

Abstract

Deep neural networks (DNNs) have witnessed remarkable
achievement in image super-resolution (SR), and plenty of
DNN-based SR models with elaborated network designs have
recently been proposed. However, existing methods usually
require substantial computations by operating in spatial do-
main. To address this issue, we propose a general frequency-
oriented framework (FSR) to accelerate SR networks by con-
sidering data characteristics in frequency domain. Our FSR
mainly contains dual feature aggregation module (DFAM)
to extract informative features in both spatial and transform
domains, followed by a four-path SR-Module with different
capacities to super-resolve in the frequency domain. Specif-
ically, DFAM further consists of a transform attention block
(TABlock) and a spatial context block (SCBlock) to extract
global spectral information and local spatial information, re-
spectively, while SR-Module is a parallel network container
that contains four to-be-accelerated branches. Furthermore,
we propose an adaptive weight strategy for a trade-off be-
tween image details recovery and visual quality. Extensive
experiments show that our FSR can save FLOPs by almost
40% while reducing inference time by 50% for other SR
methods (e.g., FSRCNN, CARN, SRResNet and RCAN).
Code is available at https://github.com/THU-Kingmin/FSR.

Introduction
Image super-resolution (SR), which pursues to recon-
struct high-resolution images from their corresponding low-
resolution versions, has been widely applied in various
computer vision tasks like medical diagnostic imaging and
object recognition. Recently, deep neural network (DNN)
based SR methods have received much attention, and dif-
ferent advanced deep SR models with elaborated network
designs have been proposed.

Generally, most existing DNN-based SR methods focus
on deeper architecture design to achieve better performance.
For example, Dong et al. (2014) first designed a shallow-
three-layer convolutional network (SRCNN) for SR. Later,
deeper VDSR (Kim, Lee, and Lee 2016) with more than
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Figure 1: Comparison of PSNR results and computations of
ClassSR (Kong et al. 2021) and our FSR over other SR net-
works on DIV8K dataset in ×4 SR. ClassSR can acceler-
ate other SR networks with fewer FLOPs, while it requires
higher inference time. By contrast, our FSR succeeds in not
only reducing both FLOPs and inference time, but obtaining
better performance.

16 layers is developed based on residual learning. To fur-
ther improve the performance, Lim et al. (2017) designed
a very deep and wide network EDSR (Lim et al. 2017)
with more than 60 layers. More recently, more advanced
SR networks like RCAN (Zhang et al. 2018) and SAN (Dai
et al. 2019) contain hundreds of layers and obtain impres-
sive performance by considering feature correlation. Despite
the remarkable performance, these methods usually suffer
from heavy computational costs in practice (see Fig. 1),
which hinders the applications of SR models in resource-
constrained devices. For example, as shown in Fig. 1, RCAN
requires high computational costs of 32.6G FLOPs for input
images with 32× 32 cropped from DIV8K dataset.

To accelerate SR networks, ClassSR (Kong et al. 2021)
has been recently developed based on the observation that
different image regions contain different reconstruction dif-
ficulties. In this way, SR networks can be accelerated by
handling image regions with different capacities. Although
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Figure 2: The overall framework of the proposed FSR. WT: Wavelet transform. IWT: Inverse wavelet transform. SR-Net:
Existing SR networks. [A, H, V, D]: Wavelet coefficients of four sub-bands. Fagg: Aggregation features. Lfre: Frequency
reconstruction loss. Lspa: Spatial reconstruction loss. WT(Bicubic(LR)): Upscale and then wavelet transform. A’: Ŷ A. H’: Ŷ H .
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reducing FLOPs, ClassSR still suffers from high inference
time by performing classification of numerous image re-
gions in the spatial domain (see Fig. 1), which limits its
usage in real-world applications. On the other hand, it is
well-known that natural images can be sparsely represented
in a frequency domain. Specifically, smooth image contents
would lie in low-frequency spectra, while those edge and
texture structures would correspond to high-frequency spec-
tra. Surprisingly, we can roughly classify image structures
by converting the spatial images into the frequency domain.

The above observations naturally motivate us to handle
different frequency spectra with different capacities. To this
end, in this paper, we propose a general frequency-oriented
framework (FSR) to accelerate SR networks by operating in
the frequency domain. As shown in Fig. 2, our FSR mainly
consists of a dual feature aggregation module (DFAM) and
a four-path SR-Module. Our FSR first converts input images
into different frequency sub-bands through DFAM, followed
by SR networks with different capacities to process. Specif-
ically, DFAM is composed of a transform attention block
(TABlock) and a spatial context block (SCBlock) to capture
frequency global features and spatial local features. In this
way, DFAM can produce more semantic features by fus-
ing complementary frequency global and spatial local fea-
tures. After that, SR-Module with different capacities is used
to handle different frequency sub-bands to accelerate SR
networks. Besides, to achieve a trade-off between the tex-

tures and pixel-wise reconstruction, we propose an adaptive
weight strategy for network training to control the recovery
of image structures.

In summary, the main contributions are as follows:

• We propose FSR, a general and efficient framework, to
accelerate SR networks. To the best of our knowledge, it
is the first frequency-based general framework to accel-
erate existing SR networks.

• We propose dual feature aggregation module to generate
semantic features, which contain complementary global
frequency and local spatial information by a transform
attention block and a spatial context block. Besides, we
propose an adaptive weight strategy to control the image
structure recovery during training.

• Extensive experiments demonstrate the effectiveness of
our FSR in accelerating SR networks by significantly re-
ducing both FLOPs and inference time, while enhancing
the model performance.

Related Works
Deep Image Super-resolution
Deep image SR networks have achieved excellent per-
formance based on deep learning. Among them, SRCNN
(Dong et al. 2014) is the pioneered work that applies con-
volutional neural networks for image SR. Later, deeper net-
works like VDSR (Kim, Lee, and Lee 2016) and SRRes-
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Net (Ledig et al. 2017) stack many convolutional layers with
residual learning to facilitate the network training. Recently,
other advanced methods like RCAN (Zhang et al. 2018)
and SAN (Dai et al. 2019) build very deep networks with
channel attention to enhance the feature expression ability.
More recently, transformer-based SwinIR (Liang et al. 2021)
has obtained remarkable performance for image restoration
by modelling long-range dependency. Despite the impres-
sive performance, these methods suffer from high computa-
tional costs, thus hindering their usage in real applications.
Instead, we propose an efficient frequency-oriented frame-
work (FSR) to accelerate existing SR networks by reducing
FLOPs and inference time.

Lightweight Super-resolution
Recently, a number of lightweight SR works have been pro-
posed to relieve the problem of computational cost (Dong,
Loy, and Tang 2016; Hui et al. 2019; Luo et al. 2020). For
example, FSRCNN (Dong, Loy, and Tang 2016) attempts to
upsample images at the end of the networks to reduce the
size of intermediate layers. Later, CARN (Ahn, Kang, and
Sohn 2018) designs efficient cascading residual block with
group convolution, while IMDN (Hui et al. 2019) utilizes
channel split to learn information in the multi-distillation
network. To further reduce computations, the lightweight
frequency-aware network (FADN) (Xie et al. 2021) is de-
veloped to restore distinct frequency signals with different
operations. Instead of designing a lightweight SR network,
a general framework (ClassSR) (Kong et al. 2021) is devel-
oped to accelerate SR networks. Among them, ClassSR is
most related to our method with the same goal of accelerat-
ing SR networks, but there are distinct differences. Specif-
ically, ClassSR operates in the spatial domain and requires
a pre-trained classification network to realize image region
classification before feeding to SR networks, thus leading to
high inference time (See Fig. 1). By contrast, our method is
more efficient by operating in the frequency domain without
the need of a classification network.

Wavelet-based Super-resolution
Transforming images to the frequency domain has recently
received much attention in various computer vision tasks,
including image SR. Recently, several wavelet-based works
are proposed for image super-resolution. Among them,
Wavelet-SRNet (Huang et al. 2017) learns wavelet coeffi-
cients independently to solve the face SR problem, while
SRCliqueNet (Zhong et al. 2018) studies the relationship
among the four sub-bands of wavelet transform. Unlike
these methods for the purpose of better performance, our
method focuses on designing an efficient and general frame-
work to accelerate SR networks based on 2D fast wavelet
transform (FWT) (see Fig. 3).

Methodology
Observation
It is known that image contents with different characteris-
tics correspond to different frequency spectra. Specifically,
smooth area contents would lie in low-frequency spectra,
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Figure 3: Illustration of 2D fast discrete wavelet transform
(FDWT (Mallat 1989)). We use two Haar-based fillers it-
eratively to compute wavelet coefficients of images, where
Low Pass = (1/2, 1/2), HighPass = (1/2,−1/2).

Model Feature Channels FLOPs PSNR

FSRCNN

NA = 64, N1 = 64 146M 28.91
NA = 64, N1 = 56 144M 28.87
NH = 48, N1 = 64 110M 36.59
NH = 16, N1 = 56 48M 36.59
NV = 48, N1 = 64 110M 35.96
NV = 16, N1 = 56 48M 35.95
ND = 44, N1 = 64 102M 41.57
ND = 14, N1 = 56 44M 41.53
NT = 204, N1 = 64 468M 25.85
NT = 110, N1 = 56 285M 25.83

Table 1: Results of FSRCNN with different capacities on dif-
ferent frequency sub-bands with ×4 SR on TEST2K dataset.
NA, NH , NV , ND: the number of feature channels in the
middle layers for four branches. N1: the number of feature
channels in the first layer for four branches. NT : the total of
feature channels for FSRCNN.

while edge and texture structures would correspond to high-
frequency spectra. Such observations motivate us to handle
different frequency spectra with SR networks with different
capacities.

To investigate the effect of frequency spectra for SR, we
use 2D FWT to transfer the input images into four frequency
sub-bands, followed by FSRCNN with varying capacities
to super-resolve in the frequency domain. The results are
shown in Table 1, from which we can see that FSRCNN
with low capacities (e.g., NH = 16 ) achieves similar per-
formance to the original FSRCNN (e.g., NH = 48), when
performing in the high-frequency sub-bands. In other words,
we can save about 40% FLOPs by processing different sub-
bands for SR networks with different capacities. These ob-
servations inspire us to super-resolve frequency sub-bands
with varying capacities to accelerate SR networks.

Overview of Frequency-oriented Framework
As shown in Fig. 2, our proposed general frequency-oriented
framework (FSR) consists of a dual feature aggregation
module (DFAM) and a SR-Module, where DFAM further
contains transform attention block (TABlock) and spatial
context block (SCBlock). Specifically, given an LR im-
age X , DFAM utilizes TABlock to generate global features
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[a,A,H, V,D] and SCBlock to learn local features S. Then
the aggregated features Fagg are obtained by fusing the cap-
tured global and local features. Then, Fagg is fed into SR-
Module with four SR-Nets (fA

SR, fH
SR, fV

SR, fD
SR), and out-

puts four super-resolved sub-bands features (Ŷ A, Ŷ H , Ŷ V ,
Ŷ D), as shown in Equ. (10). After that, we reshape the four
wavelet sub-bands features and add the wavelet transform
features of X to it: ŶW = Reshape([Ŷ A, Ŷ H , Ŷ V , Ŷ D]) +
WT(Bicubic(X)). Finally, we get the SR image by inverse
wavelet transform (IWT): Ŷ = IWT(ŶW ).

Dual Feature Aggregation Module
DFAM consists of a transform attention block (TABlock)
and spatial context block (SCBlock) to extract the global
spectral information and local spatial information.

Transform Attention Block The architecture of TABlock
is given in Fig. 2. Firstly, we apply a 2D wavelet transform
(WT) as the first layer to generate four wavelet sub-bands
feature, as illustrated in Fig. 3. It can explicitly decompose
LR image X into a low-pass feature: A, horizontal, vertical
and diagonal directions of high-frequency spectra features:
H,V,D. To be specific, WT transforms X with of height
2H , width of 2W and channel of C into a tensor of shape of
(H,W, 4C). The output of WT is denoted as

[A,H, V,D] = WT(X) (1)

Then we compute the attention feature upon four wavelet
sub-band features. To reduce the computations, we adopt ef-
ficient Criss-Cross attention proposed in CcNet (Huang et al.
2019). Specifically, we show how to generate the attention
feature aA of SR-NetA. First, we apply three frequency fea-
ture transform networks (FFT) to generate Q, K and V, as
denoted by

QA = FFT (A)

KA = FFT ([H,V,D])

V A = FFT ([H,V,D])

(2)

where QA,KA, V A ∈ R3×H×W . FFT contains two con-
volutional layers with 1 × 1 filter and one RELU layer.
The QH ,KH , V H , concerning the attention feature aH of
SR-NetH are similarly generated:

QH = FFT (H)

KH = FFT ([A, V,D])

V H = FFT ([A, V,D])

(3)

Likewise, we also generate attention feature of SR-NetV and
SR-NetD. After that, the residual attention operation is de-
fined as:

ai = Attention
(
Qi,Ki, V i

)
+Qi (4)

where i ∈ {A,H, V,D} belongs to four branches, ai ∈
R3×H×W and attention operation is denoted as a :
Attention(Q,K, V ). At each position u in the spatial di-
mension of output feature au, we calculate attention maps
just at the range of criss-cross area. Thus we can obtain

the related Qu ∈ R1×3, Ku ∈ R(H+W−1)×3, Vu ∈
R(H+W−1)×3. Then each position u of attention maps au
can be denoted as

au = Attention(Qu,Ku, Vu)

= (Qu ×KT
u )× Vu +Qu

(5)

where au ∈ R1×3 and T denotes transposition of matrix.

Finally, we aggregate four sub-bands features of WT and
the attention feature to obtain global features, as denoted as

F i
global = Concat(ai, A,H, V,D) (6)

where i ∈ {A,H, V,D} belongs to four branches.

Spatial Context Block As shown in Fig. 2, spatial context
block (SCBlock) is designed as a simple and effective net-
work that contains three small kernel convolutional layers,
three RELU layers and a downscale layer. Three RELU lay-
ers follow three convolutions layers, respectively. We adopt
1∗1, 3∗3, 5∗5 kernel for convolutional layers to extract lo-
cal spatial feature S. Then we downscale S with factors 0.5
to keep the same size as the Fglobal of TABlock. The output
of SCBlock Flocal is obtained as

S =RELU(Conv(X, 1)) + RELU(Conv(X, 3))

+ RELU(Conv(X, 5))
(7)

Flocal = Downscale(S) (8)

Finally, the aggregated feature is obtained as

F i
agg = Concat(F i

global, Flocal) (9)

SR-Module

The SR-Module consists of four-path of SR-Net (fA
SR, fH

SR,
fV

SR, fD
SR) with different capacities. To accelerate SR net-

works, we simply reduce the number of feature channels in
the original networks (e.g., FSRCNN and RCAN). Next, the
SR-Module takes the aggregated feature FA

agg , FH
agg , FV

agg ,
FD
agg as input of different SR-Net. The output is denoted as

Ŷ i = f i
SR(F

i
agg) (10)

where i ∈ {A,H, V,D} belongs to four branches.
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Model Parameters Test2K Test4K Test8K
PSNR FLOPs PSNR FLOPs PSNR FLOPs

FSRCNN-O 25K 25.61 468M(100%) 26.90 468M(100%) 32.66 468M(100%)
ClassSR-FSRCNN 113K 25.61 311M( 67%) 26.91 286M( 61%) 32.73 239M( 51%)
FSR-FSRCNN 154K 25.83 285M( 61%) 27.01 285M( 61%) 32.75 285M( 61%)
CARN-O 295K 25.95 1.15G(100%) 27.34 1.15G(100%) 33.18 1.15G(100%)
ClassSR-CARN 645K 26.01 814M( 71%) 27.42 742M( 65%) 33.24 607M( 53%)
FSR-CARN 745K 26.17 730M( 63%) 27.44 730M( 63%) 33.20 730M( 63%)
SRResNet-O 1.5M 26.19 5.20G(100%) 27.65 5.20G(100%) 33.50 5.20G(100%)
ClassSR-SRResNet 3.1M 26.20 3.62G( 70%) 27.66 3.30G( 63%) 33.50 2.69G( 52%)
FSR-SRResNet 3.66M 26.31 3.24G( 62%) 27.66 3.24G( 62%) 33.47 3.24G( 62%)
RCAN-O 15.6M 26.39 32.6G(100%) 27.89 32.6G(100%) 33.76 32.6G(100%)
ClassSR-RCAN 30.1M 26.39 21.2G( 65%) 27.88 19.5G( 60%) 33.73 16.4G( 50%)
FSR-RCAN 36.9M 26.39 19.4G( 60%) 27.89 19.4G( 60%) 33.73 19.4G( 60%)

Table 2: PSNR and FLOPs on Test2K, Test4K and Test8K with 4X SR. -O: the original networks. ClassSR-: ClassSR framework
with the baselines. FSR-: frequency-oriented framework with the baselines (ours). The best results are highlighted in bold.

Model Average Inference Time(s)
TEST2K TEST4K TEST8K

FSRCNN-O 0.03 0.12 0.60
ClassSR-FSRCNN 0.16 0.69 8.90
FSR-FSRCNN 0.03 0.12 0.60
FSR*-FSRCNN 0.03 0.12 0.58
CARN-O 0.10 0.28 0.88
ClassSR-CARN 0.78 2.87 14.85
FSR-CARN 0.10 0.26 0.77
FSR*-CARN 0.04 0.13 0.66
SRResNet-O 0.12 0.26 0.85
ClassSR-SRResNet 0.42 1.40 8.59
FSR-SRResNet 0.11 0.25 0.81
FSR*-SRResNet 0.05 0.15 0.65
RCAN-O 0.71 1.53 4.41
ClassSR-RCAN 7.67 28.59 226.78
FSR-RCAN 0.66 1.51 4.37
FSR*-RCAN 0.20 0.67 2.06

Table 3: Average inference time on Test2K, Test4K and
Test8K with 4X SR. -O: the original networks. ClassSR-:
ClassSR framework. FSR-: frequency-oriented framework.
FSR*-: Largest branch of frequency-oriented framework.

Loss Functions
Our FSR is a frequency-oriented framework that recon-
structs HR images from the frequency features and spatial
features in the LR images. Thus, the loss function consists
of a frequency reconstruct loss and spatial reconstruct loss

L = Lfre + αadaLspa (11)

where αada is an adaptive weight to balance the two losses.
Specifically, we apply Charbonnier loss as frequency loss
Lfre due to its robustness to frequency noise, while L2 Loss
is applied as the spatial loss to improve the visual quality of
the reconstructed images. The frequency loss Lfre and the
spatial loss L2 can be formulated as

Lfre =βA∥Ŷ A − Y A∥c + βH∥Ŷ H − Y H∥c+
βV ∥Ŷ V − Y V ∥c + βD∥Ŷ D − Y D∥c

(12)

Lspa = ∥Ŷ − Y ∥2 (13)

Figure 4: The quantitative comparison (average diffusion in-
dex) between baselines (FSRCNN, CARN, SRResNet and
RCAN) and FSR on Set5, Set14, B100 and Urban100.

where ∥ · ∥c is denoted as Charbonnier loss, ∥ · ∥2 is de-
noted as L2 loss, βA, βH , βV , βD are hyper-parameters. Be-
sides, Ŷ A, Ŷ H , Ŷ V , Ŷ D are four sub-bands of SR image,
Y A, Y H , Y V , Y D are four sub-bands of HR image, and Ŷ
is the restored image and Y is the corresponding HR image.

During training, the frequency loss Lfre aims to guaran-
tee the recovery of high-frequency image details, while the
spatial loss aims to improve the visual quality. To have a
trade-off between image detail recovery and visual quality,
in our experiments, we design an adaptive weight strategy
for Lfre and Lspa as

αada = min(αmax, αinit + k
Ecur·
Emax·

Lspa

Lfre
) (14)

where αmax is the maximum value, αinit is the initial value
and k controls the growth rate. Ecur is the current epoch and
Emax is the maximum epoch.
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Figure 5: Visual results of our FSR and the baselines with ×4 SR. The right images are 128× 128

Model Para FLOPs PSNR/SSIM
TEST2K TEST4K TEST8K

FSR-FSRCNN w/o TABlock 136K( 88%) 276M( 97%) 25.78/0.8490 26.95/0.8809 32.58/0.9355
FSR-FSRCNN w/o SCBlock 137K( 89%) 276M( 97%) 25.77/0.8488 26.94/0.8806 32.67/0.9352
FSR-FSRCNN 154K(100%) 285M(100%) 25.83/0.8489 27.01/0.8820 32.75/0.9362

Table 4: Ablation study of the effect of proposed Transform Attention Block (TABlock) and Spatial Context Block (SCBlock)

Experiments
Settings
Training Data The DIV2K dataset (Agustsson and Timo-
fte 2017) is adopted to train our FSR framework. Firstly, we
prepare the HR images by downsampling the original im-
ages with scaling factors 0.6, 0.7, 0.8, 0.9. These HR images
are downsampled with scaling factors 0.25 to obtain the LR
images. Then we obtain the training sub-images with size
64× 64 by cropping from LR images. Finally, We augment
these sub-images by flipping and rotating.

Testing Data We evaluate our method with PSNR (RGB
channels) and SSIM (Y channel) metrics on DIV8K (Gu
et al. 2019) instead of commonly used benchmarks: Set5
(Bevilacqua et al. 2012), Set14 (Yang et al. 2010), on ac-
count of these images are too small to be decomposed. To
be specific, we choose 300 images (index 1201-1500) from
the DIV8K to generate TEST2K, TEST4K and TEST8K,
which follows ClassSR (Kong et al. 2021). During testing,
we further crop the LR images into 64×64 sub-images with
stride 58. Then we combine these SR sub-images to SR im-
ages by averaging overlapping areas. Besides, We evaluate

computations and inference time on DIV8K. For a fair com-
parison with baselines and ClassSR, all sub-images are with
size 32× 32 and we calculate a mean within a test set.

Training Details We apply the proposed frequency-
oriented framework on FSRCNN, CARN, SRResNet and
RCAN. Our FSR is trained using the ADAM (Kingma and
Ba 2014) optimizer with β1 = 0.9 and β2 = 0.99. The
batch size is set to 64. We adopt the cosine annealing learn-
ing strategy to adjust the learning rate. Specifically, the ini-
tial learning rate is set to 2 × 10−4 and the minimum is set
to 1×10−7. αmax is set to 25, αinit is set to 1 and k is set to
100, Emax is set to 4000. βA is set to 5 whereas βH , βV , βD

are set to 1.

Comparison with State-of-the-art Methods
Our FSR is a general framework to accelerate existing SR
networks thus we do not compare FSR with other networks
directly. Instead, we compare with State-of-the-arts frame-
work ClassSR (Kong et al. 2021) on prominent FSRCNN,
CARN, SRResNet (middle scale) and RCAN. We visualize
the SR resulting images as shown in Fig. 5 including two
common scenes.
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(Gu and Dong 2021)) for original networks and FSR (ours).

Performance Comparison As shown in Table 2, our FSR
reduces FLOPs by average 39% while keeping and even in-
creasing the PSNR. To be specific, the average PSNR of four
baselines on TEST2K with ×4 SR is improved by 0.14 dB
while being improved by 0.06 dB on TEST4K. Besides, FSR
achieves similar PSNR to ClassSR on TEST8K whereas
the latter saves more FLOPs on TEST8K. ClassSR acceler-
ates baselines by data characteristics. Thus it is efficient on
smooth data (e.g., TEST8K) but has no significant effect on
complex data (e.g., TEST2K, B100, Urban100). However,
our FSR is more general and robust on any data because it
is data independent and deals with images in both frequency
and spatial domains.

As shown in Table 3, we also evaluate the inference time
of our FSR, ClassSR and four baselines. The experimental
results show that the proposed FSR reduces inference time
by almost 50% while ClassSR increases four times infer-
ence time. FSR has low computations (only 6% FLOPs of
the whole framework) to generate the aggregation feature
of dual domain. In addition, four SR-Nets of SR-Module
are mutually independent so they can be executed efficiently
with high parallelism.

Interpretation with Local Attribution Maps (LAM) To
better understand why our FSR achieves higher quantitative
results, reduces FLOPs and inference time at the same time,
we analyze the diffusion index (DI) of original networks
and FSR on Set5 (Bevilacqua et al. 2012), Set14 (Yang
et al. 2010), B100 (Martin et al. 2001) and Urban100. DI
is applied to measure local attribution maps (LAM (Gu and
Dong 2021)) from input image to output image of networks.
As shown in Fig. 4, compared to four baselines, our FSR
achieves three times of DI. As shown in Fig. 6, we can draw
the observation that the better performance of SR networks
has the higher diffusion index of LAM. Also, Our FSR lever-
ages the advantages of frequency domain and spatial domain
features which are global information and local information.

Model FLOPs PSNR
TEST2K TEST4K TEST8K

FSRCNN-×2 141M 30.14 31.89 38.23
FSR-×2 85M 30.16 32.01 39.33
FSRCNN-×4 468M 25.61 26.90 32.66
FSR-×4 285M 25.83 27.01 32.75
FSRCNN-×8 1.75G 23.00 23.88 28.73
FSR-×8 942M 23.23 24.23 28.86

Table 5: Evaluation of FSR in the FSRCNN networks with
×2, ×4, ×8 upscale factors

Ablation Study

In the ablation study, we apply our FSR on FSRCNN to eval-
uate the effect of different modules and settings.

Dual Feature Aggregation Module First, we evaluate the
effect of TABlock by removing it from FSR. As shown in
Table 4, TABlock increases 12% parameters and 3% com-
putations. Nevertheless, this block brings the benefit that
the PSNR increases by 0.06 dB, 0.07 dB and 0.08 dB on
TEST2K, TEST4K and TEST8K, respectively. This demon-
strates that adding a lightweight TABlock is quite benefi-
cial because it extracts shadow global information for SR-
Module.

Then we evaluate the effect of SCBlock by removing it
from FSR. Our experiments in Table 4 demonstrate that
SCBlock improves performance significantly whereas just
bears small parameters and computations. This is because it
extracts shadow local information for SR-Module.

Different Upscale Factors Furthermore, we conduct ex-
periments with different upscale factors ×2, ×4 and ×8. Our
experiments in Table 5 indicate that our FSR also achieves
predominant performance on DIV8K with ×2, ×8 SR be-
sides ×4 SR. For instance, the FLOPs of FSR on TEST4K
with ×8 SR are almost reduced by 50% while PSNR is im-
proved by 0.35 dB. The FLOPs of FSR on TEST8K with ×2
SR are reduced by 40% while PSNR is improved by 1.1 dB.

Conclusion
In this paper, we develop an efficient yet general frequency-
oriented framework (FSR) to accelerate SR networks. Our
FSR adopts dual feature aggregation module (DFAM) to
generate semantic features, followed by different SR net-
works with different capacities to super-resolve in the fre-
quency domain. Specifically, DFAM captures complemen-
tary global spectral information and local spatial context in-
formation with transform attention block and spatial context
block. Besides, we propose an adaptive weight strategy to
achieve a proper balance with between image details recov-
ery and visual quality. Extensive experiments demonstrate
that our FSR can accelerate mainstream SR networks on
public datasets by saving about 40% FLOPs and reducing
about 50% inference time, while improving the model per-
formance.
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