
FacT: Factor-Tuning for Lightweight Adaptation on Vision Transformer

Shibo Jie, Zhi-Hong Deng*

School of Intelligence Science and Technology, Peking University
{parsley, zhdeng}@pku.edu.cn

Abstract

Recent work has explored the potential to adapt a pre-trained
vision transformer (ViT) by updating only a few parame-
ters so as to improve storage efficiency, called parameter-
efficient transfer learning (PETL). Current PETL methods
have shown that by tuning only 0.5% of the parameters, ViT
can be adapted to downstream tasks with even better perfor-
mance than full fine-tuning. In this paper, we aim to further
promote the efficiency of PETL to meet the extreme storage
constraint in real-world applications. To this end, we propose
a tensorization-decomposition framework to store the weight
increments, in which the weights of each ViT are tensorized
into a single 3D tensor, and their increments are then de-
composed into lightweight factors. In the fine-tuning process,
only the factors need to be updated and stored, termed Factor-
Tuning (FacT). On VTAB-1K benchmark, our method per-
forms on par with NOAH, the state-of-the-art PETL method,
while being 5× more parameter-efficient. We also present
a tiny version that only uses 8K (0.01% of ViT’s parame-
ters) trainable parameters but outperforms full fine-tuning and
many other PETL methods such as VPT and BitFit. In few-
shot settings, FacT also beats all PETL baselines using the
fewest parameters, demonstrating its strong capability in the
low-data regime.

Introduction
The de-facto paradigm for achieving state-of-the-art perfor-
mance on visual tasks involves pre-training on large datasets
like ImageNet (Deng et al. 2009), and then fully fine-tuning
on downstream tasks. However, this paradigm is not storage-
efficient because each downstream task necessitates the stor-
age of an entire model, which becomes prohibitive in some
scenarios (e.g., storing customized models for each user) as
the size of vision models grows exponentially.

To promote storage efficiency, recent work on parameter-
efficient transfer learning (PETL) attempts to fine-tune only
a small part of the parameters to adapt the large pre-trained
models to downstream tasks. These methods either insert ad-
ditional trainable structures (e.g., adapters (Houlsby et al.
2019) or prompt tokens (Jia et al. 2022)) to a frozen vision
transformer (ViT) (Dosovitskiy et al. 2021) backbone or se-
lectively fine-tune some of the ViT’s own parameters (e.g.,

*Corresponding Author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10 2 10 1 100 101 102

trainable param (M)

64

66

68

70

72

74

76

78

Av
er

ag
e

Ac
c

(%
)

19-Task Average Accuracy on VTAB-1k
Full
BitFit
VPT
Adapter
AdaptFormer
LoRA
NOAH
FacT-TT (Ours)
FacT-TK (Ours)

Figure 1: Average accuracy vs. number of trainable parame-
ters (log axis) on VTAB-1K benchmark. Our FacT signifi-
cantly reduces the number of trainable parameters.

all bias parameters (Zaken, Goldberg, and Ravfogel 2022)).
Recently, LoRA (Hu et al. 2022) also shows that optimizing
the low-rank decomposition matrices of weight increments1

of the dense layers is a promising way to adapt large models.
However, though LoRA’s matrix decomposition signif-

icantly reduces the storage overhead of fine-tuned dense
layers, it is far from exploiting the low-rank properties of
neural networks to the extreme. Inspired by recent work
on compression of the transformer-based pre-trained lan-
guage models (PLMs) (Wang et al. 2022), we infer that dur-
ing fine-tuning, the weight increments of pre-trained ViT
are also redundant in terms of intra-weight rank and inter-
weight rank. The former is reflected in that the dense incre-
ments matrix can be low-rank as in LoRA, while the lat-
ter is implied by the fact that cross-layer weight-sharing
has already been adopted in some lightweight ViT struc-
tures (Zhang et al. 2022), which is not taken into consid-
eration by LoRA. To fully develop the potential of PETL,
we propose a tensorization-decomposition framework. In-
stead of decomposing the weight increment matrices indi-
vidually like LoRA, we represent the whole ViT as a single

1We refer to the weight’s change during fine-tuning as its incre-
ment, which is a matrix or tensor of the same shape as the weight.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

1060

tensor, in which all weight increment matrices are decom-
posed together. This means that the different matrices could
share their factors to reduce inter-weight rank redundancy as
well. The factors are then fine-tuned with the ViT backbone
frozen, called Factor-Tuning (FacT). After fine-tuning, only
the classification head and these factors need to be stored,
and thus the storage efficiency is significantly promoted.

In this paper, we explore the feasibility of applying var-
ious tensor decomposition formats to the tensorization-
decomposition framework, including Tensor-Train for-
mat (Oseledets 2011) (denoted as FacT-TT) and Tucker
format (Lathauwer, Moor, and Vandewalle 2000) (denoted
as FacT-TK). We also show that LoRA can be regarded as
a special case of FacT when using Matrix-Batch format. As
the experimental results on VTAB-1K benchmark shown in
Fig 1, both FacT-TT and FacT-TK significantly reduce
the number of trainable parameters while maintaining com-
petitive performance. FacT-TK achieves performance on
par with that of the current state-of-the-art (SOTA) method
NOAH (Zhang, Zhou, and Liu 2022) with only 19% of
NOAH’s parameters. In a more extreme case, FacT-TT can
adapt the ViT with 85.8M parameters by only tuning the fac-
tors with 8K parameters, while still outperforming full fine-
tuning and some other PETL methods such as VPT (Jia et al.
2022) and BitFit (Zaken, Goldberg, and Ravfogel 2022).
In few-shot learning, FacT-TT beats all other PETL base-
lines, demonstrating its superiority in the low-data regime.

The contributions of our work are as follows:
• Inspired by the assumption that weight increments of

pre-trained ViT during fine-tuning are rank-redundant,
we propose FacT, a tensorization-decomposition frame-
work to adapt ViT by tuning the factors of increments.

• Under this framework, we propose FacT-TT and
FacT-TK, decomposing the tensorized ViT with Tensor-
Train and Tucker format, respectively.

• Experimental results show that our methods are much
more lightweight than other PETL methods yet maintain
competitive performances on VTAB-1K benchmark and
SOTA results on few-shot learning datasets, demonstrat-
ing the potential of PETL with an extremely small stor-
age budget.

Related Work
Parameter-Efficient Transfer Learning
PETL has been investigated in the field of both natural lan-
guage processing (NLP) and computer vision, which aims
to fine-tune a small number of trainable parameters to trans-
fer large pre-trained models to downstream tasks. We here
introduce some PETL methods either proposed for ViT or
ported from PLMs.

Adapter (Houlsby et al. 2019; Mahabadi, Henderson, and
Ruder 2021; Rebuffi, Bilen, and Vedaldi 2017) is typically
a bottleneck block composed of two fully connected layers,
whose weights are W down ∈ Rd×h and W up ∈ Rh×d,
where h << d. There are two common ways to insert
adapters. The original way is sequential (Houlsby et al.
2019; Pfeiffer et al. 2021), formulated as

X ′ ←X + ϕ(XW down)W up

where X ∈ RN×d is the output of Feed-Forward Network
(FFN) blocks and ϕ is a nonlinear function. The other is par-
allel (He et al. 2022; Chen et al. 2022), formulated as

X ′ ←X + FFN(X) + s · ϕ(XW down)W up

where s is a hyper-parameter, X is the input of FFN blocks.
The parallel adapter design is also referred to as Adapt-
Former by Chen et al. (2022). Concurrently, Jie and Deng
(2022) suggest using convolutional adapters for ViT. Lian
et al. (2022b) propose shifting and scaling the intermediate
features of the models which can also be regarded as a sim-
plified linear adapter.

LoRA (Hu et al. 2022) decomposes the increments of
query transformation W q and value transformation W v

into low-rank Aq/v ∈ Rd×r and Bq/v ∈ Rr×d where
r << d. The query and value are then computed as

Q/V ←XW q/v + s ·XAq/vBq/v

in which s is a hyper-parameter.
VPT (Jia et al. 2022) concatenates the input X with sev-

eral trainable prompts P ∈ Rl×d before feeding it into trans-
former layers. This extended sequence is formulated as

X ′ ← [X,P]

In VPT-Deep, these prompts are concatenated before every
layer and then discarded at the end of the layer. While in
VPT-Shallow, the prompts are only inserted before the first
layer and will be maintained until the last layer.

NOAH (Zhang, Zhou, and Liu 2022) focuses on combin-
ing existing PETL methods without manual design. It trains
a large supernet at first and then performs neural architecture
search on hidden dimension h of Adapter, rank r of LoRA,
and prompt length l of VPT.

In all the aforementioned methods, the parameters of pre-
trained ViT are frozen. There are also methods that only fine-
tune a few of the pre-trained parameters without introducing
new parameters, such as BitFit (Zaken, Goldberg, and Rav-
fogel 2022), which fine-tunes the bias parameters only.

Tensor Decomposition for Network Compression
Tensor decomposition is an important research area aiming
to approximate a tensor with a set of low-rank factors that
has been studied for many years. Previous work on deep
learning has investigated the use of tensor decomposition
to compress neural networks so as to reduce the size of
models, including ConvNets (Denton et al. 2014; Lebedev
et al. 2015), RNNs (Winata et al. 2019; Ye et al. 2018; Yang,
Krompass, and Tresp 2017), and Transformers (Noach and
Goldberg 2020; Lan et al. 2020).

Note that model compression and PETL have a similar
purpose: to reduce the storage overhead. But the difference
lies in that model compression aims at reducing the size
of the whole model, while PETL only considers reducing
the trainable parameters on a pre-trained model since the
pre-trained weights are always required when fine-tuning
on subsequent new tasks. Therefore, in this paper, we take
inspiration from model compression but compress the in-
crements of the weights instead of the pre-trained weights
themselves.

1061

���

����

����

x �

����

qW kW vW

oW

upW

downW

Figure 2: Illustration of tensorizing ViT. The ViT is ten-
sorized into a single 12L× d× d tensor.

Method
Tensorizing Vision Transformer
Tensorizing a neural network means representing its param-
eters using a single tensor. Previous vision models such as
ResNet (He et al. 2016) usually use weights of different sizes
in different layers, e.g., different kernel sizes and input/out-
put channels. This property limits their capability of ten-
sorization. However, due to the consistency of Transformer
layers in ViT, we can tensorize ViT in a much simpler way.

Besides the patch embedding and classification head,
a ViT is composed of two types of blocks: Multi-Head
Self-Attention (MHSA) and Feed-Forward Network (FFN,
also referred to as Multi-Layer Perceptron). In MHSA,
the query, key, value, and output transformations are
parametrized by W q,W k,W v,W o ∈ Rd×d, respectively.
These transformations are further divided into Nh heads:
{W (i)

q }
Nh
i=1, {W

(i)
k }

Nh
i=1, {W

(i)
v }

Nh
i=1, {W

(i)
o }

Nh
i=1. Then, the

MHSA is formulated as2

MHSA(X) =

Nh∑
i=1

softmax

(
XW (i)

q W
(i)
k

⊺
X⊺

√
d

)
XW (i)

v W (i)
o

⊺ (1)

An FFN block consists of two fully-connected (FC) lay-
ers. Ignoring the bias parameters for simplicity, the FFN is
formulated as

FFN(X) = GELU(XW up)W down (2)

where W up ∈ Rd×4d and W down ∈ R4d×d are the weights
of the FC layers.

The FFN can also be regarded as a multi-head block. We
divide W up and W down into four matrices of size d×d, i.e.,
{W (i)

up}4i=1 and {W (i)
down}4i=1, respectively. The FFN can be

rewritten as

FFN(X) =

4∑
i=1

GELU
(
XW (i)

up

)
W

(i)
down (3)

In each layer, there are four d× d matrices in the MHSA
block and eight d× d matrices in the FFN block. Supposing

2We use superscript (i) to denote the i-th head.

the number of layers in a ViT is L, we can stack all weights
of the Transformer layers together as a single 12L × d × d
tensor3

W =
{
{W j

q,W
j
k,W

j
v,W

j
o} ∪ {W

j,(i)
up }4i=1∪

{W j,(i)
down}

4
i=1

}L
j=1
∈ R12L×d×d

(4)

as shown in Fig 2.
Note that the classification head, patch embedding, nor-

malization, and all bias parameters are not taken into ac-
count in this tensorized format since they are irregular and
few in number. For simplicity, we suppose the classifica-
tion head is not tensorized, and others (patch embedding,
normalization, and bias parameters) are frozen during fine-
tuning.

Factor-Tuning: a Unified Perspective
Let W0 denote a tensorized pre-trained ViT. During fine-
tuning, the ViT is updated to Wft, and we use ∆W =
Wft −W0 to denote the increment of the ViT weight ten-
sor. When fine-tuning, the gradient is calculated as4

gW =
∂L(D;W)

∂W (5)

where D is the training dataset and W is initialized as W0.
We can rewrite this equation in another equivalent form

gW = g∆W =
∂L(D;W0 +∆W)

∂∆W (6)

where ∆W is initialized as a zero tensor.
Traditional fine-tuning updates all parameters in a ViT,

which means that we need to store at least a dense ∆W
(for Eq (6)) or Wft (for Eq (5)) for each downstream task,
resulting in a storage overhead of O(Ld2) per task.

In the two modules of ViT, all the weight matrices multi-
ply the inputs in a fully-connected way, implying the exis-
tence of redundancy. In the field of NLP, many studies have
already found that the weight matrices in the transformer-
based PLMs are redundant in rank (Noach and Goldberg
2020; Ma et al. 2019; Lan et al. 2020; Wang et al. 2022).
The rank redundancies include intra-weight redundancy,
when each of the dense weight matrices can be decomposed
(e.g., SVD) into and approximated by low-rank factors; and
inter-weight redundancy, when the model could work well
with cross-layer shared weights (e.g., ALBERT (Lan et al.
2020)). Since the blocks of ViT and PLMs are highly sim-
ilar, we infer that the weights of pre-trained ViT could be
redundant in rank as well, suggesting that the rank of weight
increments ∆W could also be redundant.

Due to the redundancies of ∆W , we can decompose
∆W into some factors to promote storage efficiency. We
consider several well-known formats to decompose ∆W ∈
R12L×d×d: Matrix-Batch format, Tensor-Train format (Os-
eledets 2011), and Tucker format (Lathauwer, Moor, and
Vandewalle 2000), as illustrated in Fig 3.

3We use superscript j to represent that the matrix is in j-th layer.
4Tensor flattening notations are omitted for simplicity.

1062

���

����

����

x �

����

qW kW vW

oW

upW

downW

������� ���� ������� �������

��������� Matrix-Batch format ��������	������� �����������

W∆

U

V

P
CΣU

V

U

V
�

�

��� �
�

�

�

��� �

�

���

���

���

Figure 3: Factor-Tuning with different tensor decomposition methods. Full fine-tuning optimizes the raw tensor. LoRA can be
regarded as optimizing factors of Matrix-Batch format. FacT-TT and FacT-TK optimize Tensor-Train and Tucker factors,
respectively. Grey and white tensors/matrices indicate random and zero initialization, respectively.

1 2 4 8 16 32
Rank r

0

100

200

300

400

500

#
 tr

ai
na

bl
e

pa
ra

m
 (K

)

LoRA
FacT-TT
FacT-TK

Figure 4: Number of trainable parameters vs. rank r.
With the same rank, FacT-TK uses fewer parameters than
FacT-TT, and LoRA is significantly larger than FacT-TT
and FacT-TK.

Interpreting LoRA in our framework: Matrix-Batch
Matrix-Batch format regards the first dimension of ∆W as
the batch dimension and decomposes all the matrices of d×d
in the batch individually. Formally, ∆W is decomposed into
U ∈ R12L×d×r and V ∈ R12L×r×d, where

∆W i,:,: = s ·U i,:,:V i,:,: ∀i ∈ {1, 2, ..., 12L} (7)
in which s is a hyper-parameter for scaling. If we only
consider W q and W v in tensorization, i.e., let W ={
W j

q,W
j
v

}L
j=1
∈ R2L×d×d instead, FacT with Matrix-

Batch format will become exactly LoRA. The size of
LoRA’s factors is 4Ldr ∼ O(Ldr), where r << d.

However, since the weight matrices are discomposed in-
dividually in Matrix-Batch format, LoRA only reduces the
intra-weight redundancy. We now introduce two other for-
mats that take inter-weight redundancy into consideration.

Proposed Format I: Tensor-Train ∆W is decomposed
into U ∈ Rd×r1 , V ∈ Rd×r2 , and Σ ∈ R12L×r1×r2 , where

∆W = s ·Σ×2 U
⊺ ×3 V

⊺ (8)
in which ×i is mode-i product, i.e.,

∆W i,j,k = s ·
r1∑

t1=1

r2∑
t2=1

Σi,t1,t2U j,t1V k,t2

∀i ∈ {1, 2, ..., 12L}, ∀j, k ∈ {1, 2, ..., d}
(9)

For simplicity, we set r = r1 = r2 << d. The size of factors
is 2dr + 12Lr2 ∼ O(dr + Lr2).

Proposed Format II: Tucker ∆W is decomposed into
U ∈ Rd×r2 , V ∈ Rd×r3 , P ∈ R12L×r1 , and C ∈
Rr1×r2×r3 , where

∆W = s ·C ×1 P
⊺ ×2 U

⊺ ×3 V
⊺ (10)

i.e.,

∆W i,j,k = s ·
r1∑

t1=1

r2∑
t2=1

r3∑
t3=1

Ct1,t2,t3P i,t1U j,t2V k,t3

∀i ∈ {1, 2, ..., 12L}, ∀j, k ∈ {1, 2, ..., d}
(11)

For simplicity, we set r = r1 = r2 = r3 << d. The size of
factors is 2dr + 12Lr + r3 ∼ O(dr + Lr + r3).

Inspired by Hu et al. (2022), we adopt a decompose-then-
train paradigm, i.e., decompose the ∆W before fine-tuning,
and then update the factors end-to-end during fine-tuning.
This paradigm benefits fine-tuning process in several ways.
First, since ∆W is initially a zero tensor, we can use a pre-
defined rule to initialize the factors directly instead of run-
ning the expensive decomposition algorithm. Second, de-
composing a tensor means an uncontrollable loss of infor-
mation. Because the factors are optimized via gradient de-
scent, we can expect the most useful information to be re-
tained when minimizing the training loss.

In each of the two formats, the factor V is zero-initialized
and other factors are randomly initialized so that the ∆W
is initially a zero tensor. After decomposition, we fine-tune
the factors end-to-end. Taking the Tensor-Train format as an
example, the gradient w.r.t. U is calculated as

gU =
∂L(D;W0 +∆W)

∂U
= s · gW

∂(Σ×2 U
⊺ ×3 V

⊺)

∂U
(12)

and the same for V and Σ. Note that the role of hyper-
parameter s in Eq (12) is to adjust the learning rate of factors.

After fine-tuning, we only need to store the lightweight
factors for each task. We use FacT-TT and FacT-TK to
denote FacT using Tensor-Train and Tucker formats, re-
spectively. FacT-TT and FacT-TK reduce both intra- and
inter-weight redundancies, so they can use fewer parame-
ters to store task-specific information and are more storage-
efficient, as shown in Fig 4. The factors can be absorbed
into Wft before inference, so FacT adds no extra compu-
tational cost or latency during the inference phase.

1063

Natural Specialized Structured

#
pa

ra
m

(M
)

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
ve

ra
ge

Traditional Fine-Tuning
Full 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
PETL methods
BitFit 0.103 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
VPT-Shallow 0.063 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 67.8
VPT-Deep 0.531 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 0.157 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer 0.157 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
LoRA 0.295 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
NOAH 0.361 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
FacT-TT4 0.008 69.4 88.5 70.6 98.8 90.0 83.3 53.7 83.9 95.1 81.5 75.4 78.2 69.0 47.7 79.0 75.2 42.7 27.2 38.7 73.5
FacT-TT≤16 0.037 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4 75.3
FacT-TK8 0.014 70.3 88.7 69.8 99.0 90.4 84.2 53.5 82.8 95.6 82.8 75.7 81.1 68.0 48.0 80.5 74.6 44.0 29.2 41.1 74.0
FacT-TK≤32 0.069 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6

Table 1: Full results on the VTAB-1K benchmark. “# params” specifies the number of trainable parameters in backbones. Both
average accuracy and # params are averaged over group-wise average values. Our FacT-TK≤32 outperforms all previous PETL
methods while using significantly fewer parameters.

VPT-D
eep

NOAH
LoRA

Adapter

AdaptFo
rmer

FacT-T
T

FacT-T
K

78

80

82

Te
st

 A
cc

 (%
)

80.680.680.5

79.0
79.5

80.2

78.5

Natural

VPT-D
eep

NOAH
LoRA

Adapter

AdaptFo
rmer

FacT-T
T

FacT-T
K

82

84

86
85.3

84.984.9
84.1

84.684.9

82.4

Specialized

VPT-D
eep

NOAH
LoRA

Adapter

AdaptFo
rmer
FacT-T

T
FacT-T

K

55

60

65

60.760.5
58.858.5

60.561.3

55.0

Structured

Figure 5: Group-wise results on VTAB-1K. The width of the bars is proportional to the number of trainable parameters.

Experiments
Transfer Learning on VTAB-1K Benchmark
First of all, we evaluate our method on the basic transfer
learning scenario – fine-tuning the pre-trained models on
various downstream tasks.

Datasets We use VTAB-1K benchmark (Zhai et al. 2019)
to evaluate the performance of our methods in terms of
PETL. VTAB-1K consists of 19 different visual classifica-
tion datasets, which can be divided into three groups: Nat-
ural, Specialized, and Structured. Each dataset only con-
tains 1,000 training samples. We report top-1 accuracy on
test sets in all experiments. These datasets cover a large
range of the possible domains where downstream tasks come
from, and thus the effectiveness of PETL methods can be
measured comprehensively.

Compared Methods We compare our methods to vari-
ous competitive baselines, including BitFit (Zaken, Gold-
berg, and Ravfogel 2022), VPT-Shallow (Jia et al. 2022),

VPT-Deep (Jia et al. 2022), Adapter (Pfeiffer et al.
2021; Mahabadi, Henderson, and Ruder 2021), Adapter-
Former (Chen et al. 2022), LoRA (Hu et al. 2022), and
current SOTA method NOAH (Zhang, Zhou, and Liu 2022).
Following Zhang, Zhou, and Liu (2022), the hidden dimen-
sion h of Adapter and AdaptFormer and the rank r of LoRA
are all set to 8. The prompt length l of VPT follows the
recipes in the original paper. We also report the results of
two traditional transfer learning methods: Full fine-tuning,
which updates all parameters on downstream tasks, and Lin-
ear probing, which learns a linear classification head on the
pre-trained backbone.

For our methods, we report four settings: FacT-TT4 with
r = 4; FacT-TT≤16 with r searched from {1, 2, 4, 8, 16}
for each task; FacT-TK8 with r = 8; and FacT-TK≤32

with r searched from {2, 4, 8, 16, 32}. Following Zhang,
Zhou, and Liu (2022), we use AdamW optimizer with a
learning rate of 1e-3 and batch size of 64 to train for 100
epochs. The hyper-parameter s is roughly swept from {0.01,
0.1, 1, 10, 100}.

1064

12 4 8 16

10

20

30

40

50
FGVCAircraft

12 4 8 16
 # labeled training examples per class

60

65

70

75

80

85

90
OxfordPets

12 4 8 16

30

40

50

60

70

Food101

12 4 8 16

10

20

30

40

50

60

70

StanfordCars

12 4 8 16

40

50

60

70

80

90

100
Flowers102

12 4 8 16

30

40

50

60

70

80
Te

st
 A

cc
 (%

)
Average

NOAH (335K) LoRA (295K) Adapter (157K) AdaptFormer (157K) VPT-Deep (74K) FacT-TT (61K)

Figure 6: Top-1 accuracy on fine-grained few-shot datasets. The average numbers of trainable parameters in backbones are
shown in parentheses. Our FacT-TT outperforms other baselines using the fewest trainable parameters.

Pre-trained Backbone For all methods, we use a ViT-
B/16 (Dosovitskiy et al. 2021) pre-trained on supervised
ImageNet-21K (Deng et al. 2009) as the backbone.

Results Experimental results are shown in Table 1, from
which we can see that:

(1) FacT-TT and FacT-TK have competitive results
with respect to previous SOTA PETL methods while us-
ing much fewer trainable parameters. FacT-TT≤16 and
FacT-TK≤32 introduce only 37K and 69K trainable pa-
rameters, respectively. However, they outperform NOAH,
the previous SOTA methods with 361K trainable parame-
ters, on 11 out of 19 tasks. Moreover, FacT-TT≤16 and
FacT-TK≤32 also achieve new SOTA results on 7 out of
19 tasks. It’s worth noting that NOAH trains an additional
large supernet for 500 epochs used for architecture search,
and thus FacT is also superior to NOAH in terms of train-
ing efficiency.

(2) For our two methods, neither FacT-TT nor
FacT-TK shows an advantage over the other one. Note that
Tucker format can be regarded as further decomposing the
Σ in Tensor-Train format into P and C. Although Tucker
format has a higher compression ratio, FacT-TK does not
clearly outperform FacT-TT, implying that FacT-TT is
sufficiently compact for adaptation and thus further com-
pression does not lead to obvious improvement.

(3) Though sub-optimal to many baselines in terms of ab-
solute performance, FacT-TT4 and FacT-TK8 still pro-
vide non-trivial improvement under extreme storage con-
straints. FacT-TT4 and FacT-TK8 use only 8K and 14K
parameters (0.01% and 0.02% of the 85.8M ViT-B) to adapt
the ViT backbones. In contrast, the parameters of the classi-
fication head will be even more than 8K as long as the task
contains more than 10 classes. In other words, FacT-TT4

and FacT-TK8 use trainable parameters of the same mag-
nitude as linear probing, while achieving performance better
than full fine-tuning and VPT.

In Fig 5, we also report the group-wise results on VTAB-
1K. FacT achieves SOTA results on Natural and Special-
ized, but underperforms NOAH on Structured. We still em-
phasize that our methods are much more lightweight, and
thus more efficient than other baselines.

Fine-Grained Few-Shot Learning

Few-shot learning is a common scenario when the data of
downstream tasks are hard to obtain, and there are only a
few training samples for each task that can be utilized.

Datasets To evaluate the capability of our method in
the low-data regime, we conduct experiments on five fine-
grained datasets in few-shot settings. The five datasets
include FGVC-Aircraft (Maji et al. 2013), Oxford-
Pets (Parkhi et al. 2012), Food-101 (Bossard, Guillau-
min, and Gool 2014), Stanford Cars (Krause et al. 2013),
and Oxford-Flowers102 (Nilsback and Zisserman 2006),
which contains fine-grained classes from five categories:
aircraft, pets, food, cars, and flowers. Following previous
work (Zhang, Zhou, and Liu 2022), we evaluate in {1, 2,
4, 8, 16}-shot settings.

Compared Methods We compare our method with five
baselines that perform the best on VTAB-1K: VPT-Deep,
Adapter, AdaptFormer, LoRA, and NOAH. The hyper-
parameter h, r, and l of the baselines are all set to 8. As
for our method, we report the results of FacT-TT16, i.e.,
FacT-TT with a fixed r = 16. Other settings are the same
as on VTAB-1K. All results are averaged over three runs
with different random seeds.

Results As the results shown in Fig 6, we can find that:
(1) Though using the fewest trainable parameters,

FacT-TT still achieves SOTA results on average. Note that
all these datasets can be categorized into the Natural group,
so this observation is in line with what we have found on
VTAB-1K that FacT-TT is better at Natural tasks.

(2) FacT-TT performs the best across all settings on four
out of five datasets except for Food-101, where FacT-TT
slightly underperforms NOAH in 8-shot and 16-shot set-
tings.

These observations confirm the capability and efficiency
of our method in the low-data regime. Again, it verifies the
effectiveness of reducing intra- and inter-rank redundancies
of weight increments for PETL.

1065

Method # param (M) Avg. Nat. Spe. Str.
Full 86.7 75.0 79.2 86.2 59.7

Linear 0 62.6 73.5 80.8 33.5
BitFit 0.201 65.6 74.2 80.1 42.4

VPT-Shallow 0.003 66.7 79.9 82.5 37.8
VPT-Deep 0.162 71.6 76.8 84.5 53.4
FacT-TT16 0.135 77.4 83.1 86.9 62.1

Table 2: Results on VTAB-1K with Swin-B as backbone.
Avg./Nat./Spe./Str.: Average/Natural/Specialized/Structured
results. # params: # of trainable parameters in backbones.

FacT for Hierarchical Transformers
After the original ViT was proposed, it was found that ViT
lacks visual inductive bias which limits its performance, es-
pecially on dense prediction tasks. Subsequently, a series
of studies improved ViT by introducing hierarchical struc-
tures (Liu et al. 2021; Wang et al. 2021; Wu et al. 2021),
among which Swin Transformer (Liu et al. 2021) is a widely
used and representative design. Therefore, we also extend
FacT to Swin Transformer.

A challenge when applying tensorization to such hierar-
chical structures is that the hidden dimension d is different
across layers. However, these models usually partition the
layers into several stages, where the hidden dimension is
consistent within each stage. Therefore, we propose a par-
titioned tensorization strategy for these models, which indi-
vidually tensorizes each stage into a single tensor.

Taking Swin-B as an instance, its four stages consist
{2, 2, 18, 2} layers with hidden dimensions of {128, 256,
512, 1024}, respectively. Therefore, we can tensorize them
into four tensors of size {24×128×128, 24×256×256,
216×512×512, 24×1024×1024} following the steps de-
scribed in Section 3.1. These tensors are then decomposed
individually.

We report the results of FacT-TT16 on VTAB-1K in Ta-
ble 2, using Swin-B pre-trained on supervised ImageNet-
21K as the backbone. We compare our method with base-
lines that can also be employed on Swin: Full, Linear, Bit-
Fit, and VPT. We can see that our FacT-TT outperforms
other PETL methods by a large margin. Although parti-
tioned tensorization weakens the efficiency of FacT to some
extent since we have to store a set of factors for each stage,
FacT-TT still uses fewer parameters than VPT-Deep and
BitFit. These results demonstrate that FacT can also be
applied to Swin Transformer while keeping its advantages.
Since FacT is an architecture-agnostic framework, it can be
extended to various models (e.g., ConvNets (Liu et al. 2022)
and MLPs (Tolstikhin et al. 2021; Lian et al. 2022a)) and
tasks (e.g., NLP and multimodal tasks), as long as the mod-
els can be tensorized appropriately.

Ablation Analyses
We ablate the tensorization-decomposition framework on
VTAB-1K benchmark to show the effect of tensorization
strategy and decomposition rank.

0 50 100 150 200
trainable param (K)

78.0
78.5
79.0
79.5
80.0
80.5

Te
st

 A
cc

 (%
)

Natural

MHSA
FFN
All

0 50 100 150 200
trainable param (K)

83.0

83.5

84.0

84.5

85.0
Specialized

MHSA
FFN
All

0 50 100 150 200
trainable param (K)

56

58

60

Structured

MHSA
FFN
All

Figure 7: Results on VTAB-1K across different ranks
and tensorization strategies. All: the original tensorization
method that tensorizes both MHSA and FFN; MHSA/FFN:
tensorize MHSA/FFN blocks only. We report results with
r ∈ {4, 8, 16, 32} for each setting.

The default tensorization method tensorizes both MHSA
and FFN blocks, resulting in a 12L× d× d tensor. We here
consider two ablated strategies: tensorizing only MHSA or
FFN blocks, i.e.,

W =
{
W j

q,W
j
k,W

j
v,W

j
o

}L
j=1
∈ R4L×d×d (13)

or

W =
{
{W j,(i)

up }4i=1 ∪ {W
j,(i)
down}

4
i=1

}L
j=1
∈ R8L×d×d

(14)
respectively. The blocks that are not tensorized keep frozen
during fine-tuning. As for the decomposition part, we use
Tensor-Train format with rank r ∈ {4, 8, 16, 32}. The results
are shown in Fig 7.

On all three groups, tensorizing MHSA is better than ten-
sorizing FFN overall, suggesting that MHSA blocks play a
more important role than FFN in downstream transfer tasks.
Tensorizing all blocks is better than the other two strategies
on Specialized and Structured. We also find that only ten-
sorizing MHSA is slightly superior to tensorizing all on Nat-
ural when r is larger, indicating that it is feasible to further
develop the potential of FacT by searching the tensorization
strategy for different datasets. Besides, we find that as rank r
increases, the average performance is accordingly improved
across the three tensorization settings. However, since the
size of factor Σ increases with the square of r, FacT-TT is
no longer efficient when r becomes too large. But this lim-
itation will not have a significant negative impact because
the performance is almost saturated when r ≥ 16 and thus a
large r is not necessary.

Conclusion
In this paper, we propose FacT, a tensorization-
decomposition framework for PETL on ViT. Under this
framework, we present an approach to making ViT ten-
sorized, and employ two tensor decomposition methods to
factorize its increment. By updating and storing the factors
only, our methods reduce both intra- and inter-weight re-
dundancies of weight increments and thus are much more
efficient. FacT achieves competitive results on VTAB-1K
benchmark with a significantly reduced number of parame-
ters and outperforms all PETL baselines on few-shot learn-
ing. Our work demonstrates that the storage efficiency of
PETL has not been fully exploited yet, and FacT provides
a promising framework for future work.

1066

References
Bossard, L.; Guillaumin, M.; and Gool, L. V. 2014.
Food-101–mining discriminative components with random
forests. In Proceedings of ECCV.
Chen, S.; Ge, C.; Tong, Z.; Wang, J.; Song, Y.; Wang, J.; and
Luo, P. 2022. AdaptFormer: Adapting Vision Transformers
for Scalable Visual Recognition. In Proceedings of NeurIPS.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A large-scale hierarchical image
database. In Proceedings of CVPR.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting Linear Structure Within Convolu-
tional Networks for Efficient Evaluation. In Proceedings of
NIPS.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In Proceedings of ICLR.
He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; and Neubig,
G. 2022. Towards a Unified View of Parameter-Efficient
Transfer Learning. In Proceedings of ICLR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of CVPR.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and Gelly,
S. 2019. Parameter-Efficient Transfer Learning for NLP. In
Proceedings of ICML.
Hu, E. J.; yelong shen; Wallis, P.; Allen-Zhu, Z.; Li, Y.;
Wang, S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank
Adaptation of Large Language Models. In Proceedings of
ICLR.
Jia, M.; Tang, L.; Chen, B.; Cardie, C.; Belongie, S. J.; Har-
iharan, B.; and Lim, S. 2022. Visual Prompt Tuning. In
Proceedings of ECCV.
Jie, S.; and Deng, Z. 2022. Convolutional Bypasses
Are Better Vision Transformer Adapters. arXiv preprint,
arXiv:2207.07039.
Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3d ob-
ject representations for fine-grained categorization. In Pro-
ceedings of CVPR workshops.
Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.;
and Soricut, R. 2020. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In Pro-
ceedings of ICLR.
Lathauwer, L. D.; Moor, B. D.; and Vandewalle, J. 2000. A
Multilinear Singular Value Decomposition. SIAM J. Matrix
Anal. Appl.
Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I. V.; and
Lempitsky, V. S. 2015. Speeding-up Convolutional Neu-
ral Networks Using Fine-tuned CP-Decomposition. In Pro-
ceedings of ICLR.
Lian, D.; Yu, Z.; Sun, X.; and Gao, S. 2022a. AS-MLP: An
Axial Shifted MLP Architecture for Vision. In Proceedings
of ICLR.

Lian, D.; Zhou, D.; Feng, J.; and Wang, X. 2022b. Scaling &
Shifting Your Features: A New Baseline for Efficient Model
Tuning. In Proceedings of NeurIPS.
Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021. Swin Transformer: Hierarchical Vi-
sion Transformer using Shifted Windows. In Proceedings of
ICCV.
Liu, Z.; Mao, H.; Wu, C.; Feichtenhofer, C.; Darrell, T.; and
Xie, S. 2022. A ConvNet for the 2020s. In Proceedings of
CVPR.
Ma, X.; Zhang, P.; Zhang, S.; Duan, N.; Hou, Y.; Zhou, M.;
and Song, D. 2019. A Tensorized Transformer for Language
Modeling. In Proceedings of NeurIPS.
Mahabadi, R. K.; Henderson, J.; and Ruder, S. 2021. Com-
pacter: Efficient Low-Rank Hypercomplex Adapter Layers.
In Proceedings of NeurIPS.
Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint, arXiv:1306.5151.
Nilsback, M.-E.; and Zisserman, A. 2006. A visual vocabu-
lary for flower classification. In Proceedings of CVPR.
Noach, M. B.; and Goldberg, Y. 2020. Compressing Pre-
trained Language Models by Matrix Decomposition. In Pro-
ceedings of AACL/IJCNLP.
Oseledets, I. V. 2011. Tensor-Train Decomposition. SIAM
J. Sci. Comput.
Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; and Jawahar, C.
2012. Cats and dogs. In Proceedings of CVPR.
Pfeiffer, J.; Kamath, A.; Rücklé, A.; Cho, K.; and Gurevych,
I. 2021. AdapterFusion: Non-Destructive Task Composition
for Transfer Learning. In Proceedings of EACL.
Rebuffi, S.-A.; Bilen, H.; and Vedaldi, A. 2017. Learning
multiple visual domains with residual adapters. In Proceed-
ings of NIPS.
Tolstikhin, I. O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.;
Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.;
Uszkoreit, J.; Lucic, M.; and Dosovitskiy, A. 2021. MLP-
Mixer: An all-MLP Architecture for Vision. In Proceedings
of NeurIPS.
Wang, B.; Ren, Y.; Shang, L.; Jiang, X.; and Liu, Q. 2022.
Exploring extreme parameter compression for pre-trained
language models. In Proceedings of ICLR.
Wang, W.; Xie, E.; Li, X.; Fan, D.; Song, K.; Liang, D.; Lu,
T.; Luo, P.; and Shao, L. 2021. Pyramid Vision Transformer:
A Versatile Backbone for Dense Prediction without Convo-
lutions. In Proceedings of ICCV.
Winata, G. I.; Madotto, A.; Shin, J.; Barezi, E. J.; and Fung,
P. 2019. On the Effectiveness of Low-Rank Matrix Fac-
torization for LSTM Model Compression. arXiv preprint,
arXiv:1908.09982.
Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.;
and Zhang, L. 2021. CvT: Introducing Convolutions to Vi-
sion Transformers. In Proceedings of ICCV.
Yang, Y.; Krompass, D.; and Tresp, V. 2017. Tensor-Train
Recurrent Neural Networks for Video Classification. In Pro-
ceedings of ICML.

1067

Ye, J.; Wang, L.; Li, G.; Chen, D.; Zhe, S.; Chu, X.; and
Xu, Z. 2018. Learning Compact Recurrent Neural Networks
With Block-Term Tensor Decomposition. In Proceedings of
CVPR.
Zaken, E. B.; Goldberg, Y.; and Ravfogel, S. 2022. Bit-
Fit: Simple Parameter-efficient Fine-tuning for Transformer-
based Masked Language-models. In Proceedings of ACL.
Zhai, X.; Puigcerver, J.; Kolesnikov, A.; Ruyssen, P.;
Riquelme, C.; Lucic, M.; Djolonga, J.; Pinto, A. S.; Neu-
mann, M.; Dosovitskiy, A.; Beyer, L.; Bachem, O.; Tschan-
nen, M.; Michalski, M.; Bousquet, O.; Gelly, S.; and
Houlsby, N. 2019. The Visual Task Adaptation Benchmark.
arXiv preprint, arXiv:1910.04867.
Zhang, J.; Peng, H.; Wu, K.; Liu, M.; Xiao, B.; Fu, J.; and
Yuan, L. 2022. MiniViT: Compressing Vision Transformers
With Weight Multiplexing. In Proceedings of CVPR.
Zhang, Y.; Zhou, K.; and Liu, Z. 2022. Neural Prompt
Search. arXiv preprint, arXiv:2206.04673.

1068

