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Abstract
Unsupervised image registration commonly adopts U-Net
style networks to predict dense displacement fields in the
full-resolution spatial domain. For high-resolution volumet-
ric image data, this process is however resource-intensive
and time-consuming. To tackle this problem, we propose
the Fourier-Net, replacing the expansive path in a U-Net
style network with a parameter-free model-driven decoder.
Specifically, instead of our Fourier-Net learning to output a
full-resolution displacement field in the spatial domain, we
learn its low-dimensional representation in a band-limited
Fourier domain. This representation is then decoded by our
devised model-driven decoder (consisting of a zero padding
layer and an inverse discrete Fourier transform layer) to the
dense, full-resolution displacement field in the spatial do-
main. These changes allow our unsupervised Fourier-Net to
contain fewer parameters and computational operations, re-
sulting in faster inference speeds. Fourier-Net is then evalu-
ated on two public 3D brain datasets against various state-of-
the-art approaches. For example, when compared to a recent
transformer-based method, named TransMorph, our Fourier-
Net, which only uses 2.2% of its parameters and 6.66% of the
multiply-add operations, achieves a 0.5% higher Dice score
and an 11.48 times faster inference speed. Code is available
at https://github.com/xi-jia/Fourier-Net.

1 Introduction
Medical image registration aims to learn a spatial defor-
mation that identifies the correspondence between a mov-
ing image and a fixed image, which is a fundamental step
in many medical image analysis applications such as longi-
tudinal studies, population modeling, and statistical atlases
(Sotiras, Davatzikos, and Paragios 2013).

Iterative optimization techniques such as FFD (Rueck-
ert et al. 1999), Demons (Vercauteren et al. 2009), ANTS
(Avants et al. 2011), Flash (Zhang and Fletcher 2019) and
ADMM (Thorley et al. 2021) have been applied to de-
formable image registration. However, such optimization-
based approaches require elaborate hyper-parameter tuning
for each image pair, and iteration towards an optimal defor-
mation is very time-consuming, thus limiting their applica-
tions in real-time and large-scale volumetric registration.

† Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: From left to right in the 1st row: moving im-
age, fixed image, deformation grid, and warped moving im-
age. From left to right in the 2nd row: DFT of horizontal
displacement field, DFT of vertical displacement field, re-
constructed deformation grid from Fourier coefficients only
in band-limited region (marked by red rectangles), and the
warped moving image by reconstructed deformation.

In recent years, deep learning based approaches have
burgeoned in the field of medical image registration (Her-
ing et al. 2022). Their success has been largely driven by
their exceptionally fast inference speeds. The most effective
methods, such as VoxelMorph (Balakrishnan et al. 2019),
usually adopt a U-Net style architecture to estimate dense,
spatial deformation fields. They only require one forward
propagation during inference, and thus can register images
several orders of magnitudes faster than traditional itera-
tive methods. Following the success of VoxelMorph, a large
number of deep learning based approaches have been pro-
posed for various registration tasks (Zhang 2018; Zhao et al.
2019; Mok and Chung 2020b; Jia et al. 2021; Kim et al.
2021; Chen et al. 2021a; Jia et al. 2022). These models ei-
ther use multiple U-Net style networks in a cascaded way or
replace basic convolution blocks in VoxelMorph with more
sophisticated ones such as swin-transformers (Chen et al.
2021a) to boost registration performance. However, these
changes rapidly increase the number of network parameters
and multiply-add operations (mult-adds), sacrificing training
and inference efficiency altogether.

For U-Net-based registration models, we argue 1) that it
may be unnecessary to include the whole expansive path of
U-Net backbone and 2) that the training and inference effi-
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ciency of such networks can be further improved by learning
a low-dimensional representation of displacement field in a
band-limited Fourier domain. Our arguments are based on
our observation in Figure 1, where we notice it is sufficient
to reconstruct an accurate full-resolution deformation (the
third image of the second row in Figure 1) by using only a
small number of coefficients in the band-limited Fourier do-
main. Inspired by this insight, we propose an end-to-end un-
supervised approach that learns only a low-dimensional rep-
resentation of displacement field in the band-limited Fourier
domain. We term our approach the Fourier-Net.

By removing several layers in the expansive path of a
U-Net style architecture, our Fourier-Net outputs only a
small patch that stores low-frequency coefficients of dis-
placement field in the Fourier domain. We then propose
to directly apply a model-driven decoder to recover the
full-resolution spatial displacement field from these low-
frequency Fourier coefficients. This model-driven decoder
contains a zero-padding layer that broadcasts complex-
valued low-frequency signals into a full-resolution complex-
valued map. The inverse discrete Fourier transform (iDFT)
is then applied to this map to obtain the full-resolution spa-
tial displacement field. Both zero-padding and iDFT layers
are parameter-free and therefore fast. On top of Fourier-Net,
we propose a diffeomorphic variant, termed Fourier-Net-
Diff. This network first estimates a stationary velocity field,
followed by squaring and scaling layers (Dalca et al. 2018)
to encourage the output deformation to be diffeomorphic.

2 Related Works
Unsupervised approaches can be based on either iterative
optimization or learning. Iterative methods are prohibitively
slow, especially when the images to be registered are of
a high-dimensional form, such as 3D volumes. Over the
past decades, many works have been proposed to acceler-
ate such methods. (Ashburner 2007) used a stationary ve-
locity field (SVF) representation (Legouhy et al. 2019), and
proposed a fast algorithm DARTEL for image registration
which computes the resulting deformation by using scaling
and squaring from the SVF. Another fast approach for im-
age registration is Demons (Vercauteren et al. 2009), which
imposes smoothness on displacement fields by incorporat-
ing inexpensive Gaussian convolutions into its iterative pro-
cess. Hernandez (Hernandez 2018) reformulated the Stokes-
LDDMM variational problem used in (Mang and Biros
2015) in the domain of band-limited non-stationary vector
fields and utilized GPUs to parallelize their methods. (Zhang
and Fletcher 2019) developed the Fourier-approximated Lie
algebras for shooting (Flash) for fast diffeomorphic image
registration, where they proposed to speed up the solution
of the Euler-Poincaré differential (EPDiff) equation used
to compute deformations from velocity fields in the band-
limited Fourier domain.

On the other hand, deep learning methods based on con-
volutional neural networks have been employed to over-
come slow registration speeds. Among them, U-Net style
networks have been proven to be an effective tool to learn
deformations between pairwise images (Balakrishnan et al.
2019; Zhang 2018; Mok and Chung 2020b; Kim et al. 2021).

While their registration performance is comparable with it-
erative methods, their inference can be orders of magnitude
faster. RC-Net (Zhao et al. 2019) and VR-Net (Jia et al.
2021) cascaded multiple U-Net style networks to improve
the registration performance, but their speed is relatively
slow. Very recently, approaches, such as ViT-V- Net (Chen
et al. 2021b) and TransMorph (Chen et al. 2021a), which
combine vision transformers and U-Nets have achieved
promising registration performance, but they involve much
more computational operations and are therefore slow. An-
other group of network-based image registration techniques
(De Vos et al. 2019; Qiu et al. 2021) is to estimate a grid
of B-Spline control points with regular spacing, which is
then interpolated based on cubic B-Spline basis functions
(Rueckert et al. 1999; Duan et al. 2019). By estimating fewer
control points, these networks perform fast predictions, but
currently are less accurate.

Supervised approaches are also studied in medical im-
age registration. However, they have several pitfalls: 1) it is
generally hard to provide human-annotated ground truth de-
formations for supervision; and 2) if trained using numer-
ical solutions of other iterative methods, the performance
of these supervised registration methods may be limited by
iterative methods. Yang et al. proposed Quicksilver (Yang
et al. 2017) which is a supervised encoder-decoder network
and trained using the initial momentum of LDDMM as the
supervision signal. Wang et al. extended Flash (Zhang and
Fletcher 2019) to DeepFlash (Wang and Zhang 2020) in a
learning framework in lieu of iterative optimization. Com-
pared to Flash, DeepFlash accelerates the computation of
initial velocity fields but needs to solve a PDE (i.e., EPDiff
equation) in the Fourier domain so as to recover the full-
resolution deformation in the spatial domain, which can be
slow. The fact that DeepFlash requires the numerical solu-
tions of Flash (Zhang and Fletcher 2019) as training data
attributes to lower registration performance than Flash.

Although DeepFlash also learns a low-dimensional band-
limited representation, it differs from our Fourier-Net in four
aspects, which we reckon our novel contributions to this
area. First, DeepFlash is a supervised method that requires
ground truth velocity fields calculated from Flash prior to
training, whilst Fourier-Net is a simple and effective unsu-
pervised method thanks to our proposed model-driven de-
coder. Second, DeepFlash is a multi-step method whose net-
work’s output requires an additional PDE algorithm (Zhang
and Fletcher 2019) to compute final full-resolution spatial
deformations, whilst Fourier-Net is a holistic model that can
be trained and used in an end-to-end manner. Third, Deep-
Flash needs two individual convolutional networks to esti-
mate real and imaginary signals in the band-limited Fourier
domain, whilst Fourier-Net uses only one single network di-
rectly mapping image pairs to a reduced-resolution displace-
ment field without the need of complex-valued operations.
Lastly, DeepFlash is essentially an extension of Flash and it
is difficult for the method to benefit from vast amounts of
data, whilst Fourier-Net is flexible and can easily learn from
large-scale datasets. Due to these, our Fourier-Net outper-
forms DeepFlash (as well as Flash) by a significant margin
in terms of both accuracy and speed.
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Figure 2: Architecture of our end-to-end Fourier-Net. It contains 1) a convolutional encoder that first produces a low-
dimensional representation of displacement or velocity field, followed by an embedded discrete Fourier transformation (DFT)
layer to map this low-dimensional representation into the band-limited Fourier domain; 2) a parameter-free model-driven de-
coder that adopts a zero-padding layer, an inverse DFT (iDFT) layer, and seven optional squaring and scaling layers to recon-
struct the displacement field or deformation into the full-resolution spatial domain from its band-limited Fourier domain; 3) a
warping layer to deform the moving image; and 4) a loss function that includes a similarity term and a regularization term.

3 Methodology
As illustrated in Figure 2, in Fourier-Net, the encoder first
takes a pair of spatial images as input, and encodes them
to a low-dimensional representation of displacement field
(or velocity field if diffeomorphisms are imposed) in the
band-limited Fourier domain. Then the decoder brings the
displacement field (or velocity field) from the band-limited
Fourier domain to the spatial domain, and ensures that they
have the same spatial size as the input image pair. Next, the
optional squaring and scaling layers are used to encourage a
diffeomorphism in final deformations. Finally, by minimiz-
ing the loss function, an accurate deformation can be esti-
mated, with which the warping layer deforms the moving
image to be similar to the fixed image.

3.1 Encoder
The encoder aims to learn a displacement or velocity field
in the band-limited Fourier domain. Intuitively, this may
require convolutions to be able to handle complex-valued
numbers. One may directly use complex convolutional net-
works (Trabelsi et al. 2017), they are suitable when both
input and output are complex values, but complex-valued
operations sacrifice computational efficiency. Instead, Deep-
Flash (Wang and Zhang 2020) tackles this problem by first
converting input image pairs to the Fourier domain and then
using two individual real-valued convolutional networks to
learn the real and imaginary signals separately. Such an ap-
proach increase the training and inference cost (as listed
in Table 1). Since our Fourier-Net estimates displacement
fields in the band-limited Fourier domain from spatial im-
ages (inputs are real values but outputs are complex values),
these approaches may not be well suited to our application.

To bridge the domain gap between real-valued spatial im-

ages and complex-valued band-limited displacement fields
without increasing complexity, we propose to embed a DFT
layer at the end of the convolutional network in the encoder.
This is a simple and effective way to produce complex-
valued band-limited displacement fields without the network
being able to handle complex values itself. Let us denote the
moving image as I0, the fixed image as I1, the convolutional
network as CNN with the parameters Θ, the DFT as F , the
full-resolution spatial displacement field as ϕ, and the com-
plex band-limited displacement field as Bϕ. In this case, our
encoder can be defined as Bϕ = F(CNN(I0, I1;Θ)), re-
sulting in a compact, efficient implementation as compared
to DeepFlash and other complex convolutional networks. On
the other hand, we also notice from our experiments (Ta-
ble 1) that it is difficult to regress Bϕ directly from I0 and
I1 within a single CNN, i.e., Bϕ = CNN(I0, I1;Θ). We
believe the reason being that: if the CNN directly learns a
band-limited displacement field, it needs to go through two
domains altogether: first mapping the spatial images to the
spatial displacement field and then mapping this displace-
ment field into its band-limited Fourier domain. In this case,
the domain gap is too big. Our network however only needs
to go through one domain and then DFT handles the sec-
ond domain. By doing so, Fourier-Net is efficient and easy
to learn. An illustration of this idea is given in Figure 3.

So far, we have given an intuitive explanation of how the
encoder in our network learns. Here we discuss their math-
ematical relationship between the low-dimensional spatial
displacement field Sϕ = CNN(I0, I1;Θ), its band-limited
representation Bϕ, as well as the displacement field ϕ (com-
ing after the decoder) in the full-resolution spatial domain.
For simplicity, we use a 2D displacement field as an exam-
ple and the formulations below can be easily extended to 3D
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Figure 3: Connection between low-dimensional spatial dis-
placement field Sϕ, band-limited Fourier coefficients Bϕ,
full-resolution Fourier coefficients F(ϕ) by zero-padding
Bϕ, and full-resolution displacement field ϕ by taking iDFT
of F(ϕ).

cases. A general discrete Fourier transform used on ϕ can
be defined as follows:

[F(ϕ)]k,l =

M−1∑
i=0

N−1∑
j=0

ϕi,je
−
√
−1( 2πk

M i+ 2πl
N j), (1)

where ϕ is of size M ×N , i ∈ [0,M − 1] and j ∈ [0, N −
1] are the discrete indices in the spatial domain, and k ∈
[0,M − 1] and l ∈ [0, N − 1] are the discrete indices in the
frequency domain.

In our Fourier-Net, ϕ is actually a low-pass filtered dis-
placement field. If we define a M ×N sized sampling mask
D whose entries are zeros if they are on the positions of
high-frequency signals in ϕ and ones if they are on the low-
frequency positions. With D, we can recover the displace-
ment field ϕ from Eq. (1)

ϕi,j =
1

MN

M−1∑
k=0

N−1∑
l=0

Dk,l[F(ϕ)]k,le
√
−1( 2πi

M k+ 2πj
N l).

(2)
If we shift all low-frequency signals of the displacement

field to a center patch of size M
a × N

b (Ma , N
b , a = 2Za, b =

2Zb, Za, Zb ∈ Z+), center-crop the patch (denoted by Bϕ),
and then perform the iDFT on this patch, we obtain Sϕ in
Eq. (3)

[Sϕ ]̂i,̂j =
ab

MN

M
a −1∑
k̂=0

N
b −1∑
l̂=0

[Bϕ]k̂,l̂e
√
−1

(
2πaî
M k̂+ 2πbĵ

N l̂
)
, (3)

where î ∈ [0, M
a − 1] and ĵ ∈ [0, N

b − 1] are the indices in
the spatial domain, and k̂ ∈ [0, M

a − 1] and l̂ ∈ [0, N
b − 1]

are the indices in the frequency domain. Note that Sϕ is a
low-dimensional spatial representation of ϕ and we are in-
terested in their mathematical connection. Another note is
that Sϕ actually contains all the information of its band-
limited Fourier coefficients in Bϕ. As such, we do not need

the network to learn the coefficients in Bϕ and instead only
to learn its real-valued coefficients in Sϕ.

Since most of entries (a×b−1
a×b %) in F(ϕ) are zeros, and

the values of rest entries are exactly the same as in Bϕ, we
can conclude that Sϕ contains all the information ϕ can pro-
vide, and their mathematical connection is

[Sϕ ]̂i,̂j = ab× ϕâi,bĵ . (4)

With this derivation, we show that we can actually recover
a low-dimensional spatial representation Sϕ from its full-
resolution spatial displacement field ϕ, as long as they have
the same low-frequency coefficients Bϕ. This essentially
proves that there exists a unique mapping function between
Sϕ and ϕ and that it is reasonable to use a network to learn
Sϕ directly from image pairs.

3.2 Model-Driven Decoder
The proposed decoder consists of a zero-padding layer, an
iDFT layer, and an optional squaring and scaling module.

The output from the encoder is a band-limited represen-
tation Bϕ. To recover the full-resolution displacement field
ϕ in the spatial domain, we first pad the patch Bϕ con-
taining mostly low-frequency signals to the original image
resolution with zero values (i.e., F(ϕ)). We then feed the
zero-padded complex-valued coefficients F(ϕ) to an iDFT
layer consisting of two steps: shifting the Fourier coeffi-
cients from centers to corners and then applying the stan-
dard iDFT to convert them into the spatial domain. The out-
put from Fourier-Net is thus a full-resolution spatial dis-
placement field. Both padding and iDFT layers are differen-
tiable and therefore Fourier-Net can be optimized via stan-
dard back-propagation. We note that our proposed decoder
is a parameter-free module that is driven by knowledge in-
stead of learning and therefore fast.

We also propose a diffeomorphic variant of Fourier-Net
which we term Fourier-Net-Diff. A diffeomorphic deforma-
tion is defined as a smooth and invertible deformation, and
in Fourier-Net-Diff we need an extra squaring and squaring
module for the purpose. The output of the iDFT layer can be
regarded as a stationary velocity field denoted by v instead
of the displacement field ϕ. In group theory, v is a mem-
ber of Lie algebra, and we can exponentiate this stationary
velocity field (i.e., Exp(v)) to obtain a diffeomorphic de-
formation. In this paper, we use seven scaling and squaring
layers (Ashburner 2007; Dalca et al. 2018) to impose such a
diffeomorphism.

3.3 Warping Layer and Loss Functions
After the model-driven decoder, we obtain a full-resolution
displacement field (or a diffeomorphic deformation) for the
input image pair. We then deform the moving image using a
warping layer to produce the warped moving image, which
is then used to calculate the loss. We implement 2D and
3D spatial warping layers based on linear interpolation as
in (Jaderberg et al. 2015) and (Balakrishnan et al. 2019).

We adopt an unsupervised loss which is computed from
the moving image I1, the fixed image I0, and the predicted
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displacement field ϕ or velocity field v. The training objec-
tive of our Fourier-Net is L(Θ) = minΘ

1
N

∑N
i=1 LSim(Ii1◦

(ϕi(Θ)+Id)− Ii0)+
λ
N

∑N
i=1 ∥∇ϕi(Θ)∥22, where N is the

number of training pairs, Θ is the network parameters to be
learned, Id is the identity grid, ◦ is the warping operator,
and ∇ is the first order gradient implemented using finite
differences (Lu et al. 2016; Duan et al. 2016). The first term
LSim defines the similarity between warped moving images
and fixed images, and the second term defines the smooth-
ness of displacement fields. Here λ is a hyper-parameter
balancing the two terms. As for Fourier-Net-Diff, the train-
ing loss is defined as L(Θ) = minΘ

1
N

∑N
i=1 LSim(Ii1 ◦

Exp(vi(Θ)) − Ii0) +
λ
N

∑N
i=1 ∥∇vi(Θ)∥22. LSim can be

either mean squared error (MSE) or normalized cross-
correlation (NCC), which we clarify in our experiments.

4 Experiments
4.1 Datasets
OASIS-1 dataset (Marcus et al. 2007) consists of a cross-
sectional collection of T1-weighted brain MRI scans from
416 subjects. In experiments, we use the pre-processed
OASIS data1 provided by (Hoopes et al. 2021) to per-
form subject-to-subject brain registration, in which all 414
MRI scans are bias-corrected, skull-stripped, aligned, and
cropped to the size of 160×192×224. Automated segmen-
tation masks from FreeSurfer are provided for evaluation of
registration accuracy. This dataset also has 414 2D slices and
marks extracted from their corresponding 3D volumes. We
randomly split this 2D dataset into 201, 12, and 201 images
for training, validation, and test. After pairing, we end up
with 40200 (201×200), 22 ([12-1]×2), and 400 ([201-1]×2)
image pairs for training, validation, and test, respectively.

IXI dataset2 contains nearly 600 MRI scans from healthy
subjects. In experiments, we use the pre-processed IXI data
provided by (Chen et al. 2021a) to perform atlas-based brain
registration. The atlas is generated by (Kim et al. 2021).
There are in total 576 160×192×224 3D brain MRI volumes
in this dataset. The dataset is split into 403 for training, 58
for validation, and 115 for testing. There is no pairing step
for this dataset as it is an atlas-to-subject registration task.

4.2 Implementation Details
We implement our Fourier-Net using PyTorch, where train-
ing is optimized using Adam with a fixed learning rate of
0.0001. We tune built-in hyper-parameters on a held-out val-
idation set. Specifically, we use MSE to train both 2D and
3D OASIS for 10 and 1000 epochs, respectively, and λ in
L(Θ) is set to 0.01. For 3D OASIS, an additional Dice loss
is used with its weight being set to 1. On 3D IXI, we train
the models with NCC loss for 1000 epochs with λ = 5. All
deep models are trained with an Nvidia A100 GPU.

The CNN in Fourier-Net has 6 convolutional blocks. The
initial 4 blocks contain 2 convolutional layers in each block.
The first layer maintains the same spatial resolution as in-
puts, while the second layer performs a down-sampling with

1https://learn2reg.grand-challenge.org/Learn2Reg2021/
2https://brain-development.org/ixi-dataset/

Patch DFT SS Dice↑ |J |<0% MA(M)
20×24 ✗ ✗ .664±.040 .158±.206 891
20×24 ✓ ✗ .732±.042 .434±.355 679
20×24 ✓ ✓ .735±.037 0.0±0.0 679
40×48 ✗ ✗ .675±.038 .279±.257 1310
40×48 ✓ ✗ .756±.039 .753±.407 888
40×48 ✓ ✓ .756±.037 <0.0001 888
U-Net – ✓ .762±.039 <0.0001 2190

Table 1: Ablation and parameter studies. SS denotes squar-
ing and scaling, |J |<0% is the percentage of negative values
of Jacobian determinant of deformation. MA(M) refers to
the number of mult-adds operations in millions.

a stride of 2 and then doubles the number of feature chan-
nels. In the last 2 blocks, each contains a fractional convolu-
tional layer and 2 convolutional layers. The fractional layer
performs an up-sampling with a stride of 2, and the con-
volutional layers halve the number of feature channels. The
kernel size in all convolutional layers is 3×3×3. Each con-
volution is followed by a PReLU activation except the last
sub-layer, which does not have any activation layer and con-
tains 2 or 3 kernels for 2D or 3D registration, respectively.
The initial number of kernels in the first convolutional layer
is set to C. For example, the spatial resolution of input im-
ages changes from 160×192×224×2 to 80×96×112×C →
40×48×56×2C → 20×24×28×4C → 10×12×14×8C →
20×24×28×4C → 40×48×56×3 after each block. We ex-
periment C=8, 16, and 48, which define small Fourier-NetS,
Fourier-Net, and large Fourier-NetL, respectively. Though
the output of our Fourier-Net is set to 40×48×56, the res-
olution is not constrained and one can customize the CNN
architecture to produce a band-limited representation with
any resolution. To adapt Fourier-Net onto 2D images, we di-
rectly change all 3D kernels to 2D.

4.3 Ablation Studies and Parameter Tuning
The first question we ask is what the most suitable resolu-
tion (i.e., patch size) of a band-limited displacement field
is? A very small patch will rapidly decrease model param-
eters as well as training and inference time but may lead to
lower performance. A very large patch could retain registra-
tion accuracy but may increase training and inference time,
thus eliminating the advantages of our method.

In Table 1, we use 2D OASIS images for ablation stud-
ies and investigate the impact of different patch sizes, i.e,
20×24 and 40×48, which are respectively 1

64 and 1
16 of the

original image size. It can be seen that the 40×48 patch im-
proves Dice by 2% over the 20×24 patch, with only a slight
difference in mult-adds operations. The Dice score of our
Fourier-Net (40×48) is already close to the full-resolution
U-Net backbone (last row in this Table), which however has
2.5 times mult-adds cost than our Fourier-Net (40×48).

We also prove the necessity of embedding a DFT layer
in the encoder. Without this layer, our encoder is purely a
CNN that has to learn complex-valued Fourier coefficients
from image pairs. Following DeepFlash (Wang and Zhang
2020), we use two networks to separately compute the real
and imaginary parts of these complex coefficients. As re-
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Methods Patch Dice↑ |J |<0% CPU
Initial - .544±.089 - -
Flash 16×16 .702±.051 .033±.126 13.7
Flash 20×24 .727±.046 .205±.279 22.6
Flash 40×48 .734±.045 .049±.080 85.8
DeepFlash 16×16 .615±.055 0.0±0.0 .487
DeepFlash 20×24 .597±.066 0.0±0.0 .617
B-Spline-Diff 20×24 .737±.038 .015±.069 .012
B-Spline-Diff 40×48 .735±.040 .009±.055 .012
F-NetS 40×48 .748±.039 .671±.390 .007
F-Net-DiffS 40×48 .750±.038 <0.0001 .010
F-Net 40×48 .756±.039 .753±.407 .011
F-Net-Diff 40×48 .756±.037 <0.0001 .015
F-NetL 40×48 .759±.040 .781±.406 .037
F-Net-DiffL 40×48 .761±.037 0.0±0.0 .040

Table 2: Comparing different methods on 2D OASIS. F-Net
is the abbreviation for Fourier-Net. All reported CPU run-
times (in seconds) are tested on the same machine.

Methods Dice↑ HD95↓
Initial .572±.053 3.831
nnU-Net (Hering et al. 2022) .846±.016 1.500
LapIRN .861±.015 1.514
TransMorph .858±.014 1.494
TransMorph-Large .862±.014 1.431
Fourier-Net-Diff .843±.013 1.495
Fourier-Net .847±.013 1.455
Fourier-NetL .860±.013 1.375

Table 3: Performance comparison on 3D OASIS which is the
MICCAI Learn2reg 2021 Task 3 validation dataset. All re-
sults are taken from the leaderboard. HD95 is the 95% Haus-
dorff distance, a lower value suggests a better performance.

ported in Table 1, using the DFT layer, Dice is improved by
6.8% and 8.1% for the patch sizes of 20×24 and 40×48,
respectively, which validates the efficacy of such a layer.
This experiment shows the superiority of our proposed band-
limited representation over DeepFlash’s.

We further study the impact of adding a squaring and scal-
ing module into Fourier-Net. As shown in Table 1, this mod-
ule encourages diffeomorphisms for the estimated deforma-
tion, due to the fact that it produces less percentage of nega-
tive values of Jacobian determinant of deformation.

4.4 Comparison on Inter-subject Registration
2D OASIS: In Table 2, we compare the performance of
Fourier-Net with Flash (Zhang and Fletcher 2019), Deep-
Flash (Wang and Zhang 2020), and B-Spline-Diff (Qiu et al.
2021). We manage to compile and run Flash3 in CPU, but
its official GPU version keeps throwing segmentation fault
errors. We report the performance of Flash on three band-
limited patch sizes, and its built-in hyper-parameters are
grid-searched over 252 different combinations on the whole
validation set for each size. We also manage to run Deep-

3https://bitbucket.org/FlashC/flashc/src/master/

Flash4 with supervision from Flash’s results. We train Deep-
Flash on all 40200 training pairs for 1000 epochs with more
than 40 different combinations of hyper-parameters and re-
port the best results. B-Spline-Diff is also trained with all
training pairs using its official implementation5.

In Table 2, all Fourier-Net variants outperform compet-
ing methods in terms of Dice. Specifically, our Fourier-NetS
achieves a 0.748 Dice score with 0.007 seconds inference
speed per image pair. Compared to Flash using a 40×48
patch, Fourier-NetS improves Dice by 1.5% and is 12,257
times faster. Though DeepFlash is much faster than Flash,
we find that DeepFlash is very difficult to converge and
as such achieves the lowest Dice score (0.597). Moreover,
DeepFlash is not an end-to-end method, because its out-
put (band-limited velocity field) requires an additional PDE
algorithm to compute the final deformation. As such, it is
much slower than deep learning methods such as ours or B-
Spline-Diff (0.012 seconds per image pair on CPU). Note
that the computational time is averaged on the whole test
set, including the cost of loading models and images.

Note that the speed advantage of Fourier-Net on CPU de-
creases when we use larger models such as Fourier-NetL,
but its performance can be boosted by 1.1% compared to
Fourier-NetS in terms of Dice.

We also list the percentage of negative values of Jacobian
determinant of deformation for all compared methods in Ta-
ble 2. Though both Flash and B-Spline-Diff are diffeomor-
phic approaches, neither of them produces perfect diffeo-
morphic deformations on this dataset. The proposed three
Fourier-Net-Diff variants, however, barely generate negative
Jacobian determinants and are therefore diffeomorphic.

3D OASIS: In Table 3, we further compare Fourier-Net
with other methods on the MICCAI 2021 Learn2reg chal-
lenge dataset. Though Fourier-Net is slightly lower than
LapRIN(Mok and Chung 2020a) in Dice, it achieves a better
Hausdorff distance than LapRIN with a 0.059 improvement.
If we use a larger Fourier-NetL, it can achieve the lowest
HD95, suggesting that Fourier-Net is able to obtain compa-
rable results on par with state-of-the-art on this dataset.

4.5 Comparison on Atlas-Based Registration
3D IXI: In Table 4, we first compare our Fourier-Net with
iterative methods such as Flash and deedsBCV (Heinrich,
Maier, and Handels 2015) and deep learning methods such
as TransMorph-B-Spline (Chen et al. 2021a), which is a
combination of TransMorph and B-Spline-Diff. Note that
for Flash, 200 combinations of hyper-parameters are grid-
searched using 5 randomly selected validation samples. We
do not include all images in the validation set because tuning
Flash on CPU can take up to 30 minutes for each pair.

The proposed Fourier-Net achieves the highest Dice score
(0.763) with 4.42s inference speed per image pair. By using
less number of kernels in each layer, Fourier-NetS achieves
the fastest inference speed (1.92s) on CPU, which is faster
than all other deep learning methods, while retaining a com-
petitive accuracy. Furthermore, Fourier-NetS outperforms

4https://github.com/jw4hv/deepflash
5https://github.com/qiuhuaqi/midir
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Methods Dice↑ |J |<0% Parameters Mult-Adds (G) CPU (s) GPU (s)
Affine∗ .386±.195 - - - - -
SyN∗ (Avants et al. 2011) .645±.152 <0.0001 - - - -
NiftyReg∗ (Modat et al. 2010) .645±.167 <0.0001 - - - -
LDDMM∗ (Beg et al. 2005) .680±.135 <0.0001 - - - -
Flash (Zhang and Fletcher 2019) .692±.140 0.0±0.0 - - - -
deedsBCV∗ .733±.126 0.147±0.050 - - - -
VoxelMorph-1∗ (Balakrishnan et al. 2019) .728±.129 1.590±0.339 274,387 304.05 9.373 0.391
VoxelMorph-2∗ (Balakrishnan et al. 2019) .732±.123 1.522±0.336 301,411 398.81 10.530 0.441
VoxelMorph-Diff∗ .580±.165 <0.0001 307,878 89.67 3.691 0.418
B-Spline-Diff∗ (Qiu et al. 2021) .742±.128 <0.0001 266,387 47.05 7.076 0.437
TransMorph∗ (Chen et al. 2021a) .754±.124 1.579±0.328 46,771,251 657.64 22.035 0.443
TransMorph-Diff∗ (Chen et al. 2021a) .594±.163 <0.0001 46,557,414 252.61 10.389 0.438
TransMorph-B-Spline∗ (Chen et al. 2021a) .761±.122 <0.0001 46,806,307 425.95 18.138 0.442
Fourier-NetS .759±.132 0.009±0.008 1,050,800 43.82 1.919 0.318
Fourier-Net-DiffS .756±.130 0.0±0.0 1,050,800 43.82 6.202 0.332
Fourier-Net .763±.129 0.024±0.019 4,198,352 169.07 4.423 0.342
Fourier-Net-Diff .761±.131 0.0±0.0 4,198,352 169.07 8.679 0.345

Table 4: Performance comparison between different methods on IXI. Results of the methods labeled with ∗ are taken from
TransMorph (Chen et al. 2021a), as we used the exact same data splitting and testing protocol as TransMorph. The reported
runtimes of all deep methods are computed by us on the same machine and are averaged on the whole testing set.

Fixed Image VoxelMorphFlash TransMorph Fourier-Net-DiffB-Spline-Diff TM-B-SplineVoxelMorph-Diff Fourier-Net

Moving Image

Figure 4: Visual comparison between different methods on 3D IXI. The 1st column displays a fixed image, a moving image,
and a placeholder. From top to bottom rows excluding the 1st column: warped moving images (with a zoomed area in the
yellow box), displacement fields, and displacement fields after DFT. Our Fourier-Net and Fourier-Net-Diff produce smoother
deformations and better warped moving images (see noisy regions marked by yellow arrows and box).

TransMorph by 0.5% in Dice with only 2.2% of its parame-
ters and 6.66% of its mult-adds. In terms of inference speed,
Fourier-NetS is 11.48 times faster than TransMorph (22.035
seconds) on CPU. Finally, Table 4 (3rd column) indicates
that Fourier-Net-Diff barely generates any folding and thus
effectively preserves diffeomorphisms.

From Figure 4, we can observe that Flash’s deformation
also has no foldings, but it over-smoothes its displacement
field, resulting in a less accurate warping. Figure 4 (last
row) shows that only Flash and Fourier-Net produce strictly
band-limited Fourier coefficients, and that the deformation

of Fourier-Net-Diff is no longer band-limited due to the use
of the squaring and scaling layers.

5 Conclusion
In this paper, we propose to learn a low-dimensional repre-
sentation of displacement/velocity field in the band-limited
Fourier domain. Experimental results on two brain datasets
show that our Fourier-Net is more efficient than state-of-the-
art methods in terms of speed while retaining a comparative
performance in terms of registration accuracy.
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