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Abstract

Spotting camouflaged objects that are visually assimilated
into the background is tricky for both object detection algo-
rithms and humans who are usually confused or cheated by
the perfectly intrinsic similarities between the foreground ob-
jects and the background surroundings. To tackle this chal-
lenge, we aim to extract the high-resolution texture details
to avoid the detail degradation that causes blurred vision in
edges and boundaries. We introduce a novel HitNet to refine
the low-resolution representations by high-resolution features
in an iterative feedback manner, essentially a global loop-
based connection among the multi-scale resolutions. To de-
sign better feedback feature flow and avoid the feature corrup-
tion caused by recurrent path, an iterative feedback strategy is
proposed to impose more constraints on each feedback con-
nection. Extensive experiments on four challenging datasets
demonstrate that our HitNet breaks the performance bottle-
neck and achieves significant improvements compared with
35 state-of-the-art methods. In addition, to address the data
scarcity in camouflaged scenarios, we provide an application
to convert the salient objects to camouflaged objects, thereby
generating more camouflaged training samples from the di-
verse salient objects. Code will be made publicly available.

Introduction
Camouflaged object detection (COD) is a bio-inspired re-
search area to detect hidden objects or animals that blend
with their surroundings (Fan et al. 2021). From biological
and psychological studies (Cuthill 2019; Stevens and Meri-
laita 2009), the camouflage skill helps some animals prevent
being the prey of their predators, and it also can cheat the hu-
man perception system that is sensitive to the coloration and
the illumination around the edges. The camouflaged stud-
ies not only provide an effective way to deeply understand
human perception system, but also benefit a wide range of
downstream applications, such as medical image segmenta-
tion (Dong et al. 2021; Fan et al. 2020b,c), artistic creation

* Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0.78 0.8 0.82 0.84 0.86

0.55

0.6

0.65

0.7

0.75

0.8

SINet-v2
UGTRMGLPFNet

 LSR

SCRN

PraNet 
F3Net

GCPANet

SINet

ITSD

 UCNet

CSNet

Our HitNet

3.1% higher

7.5% higher

Fβ

Sα

w

BSA-Net

DCO-FD

SegMaR ZoomNet 

Figure 1: Weighted F-measure (Fw
β ) vs. Structure-measure

(Sα) of top 17 models from 35 SOTA methods and our Hit-
Net on COD10k-Test dataset. Fw

β is a comprehensive metric
to evaluate the weighted precision and recall of the predic-
tion map, and Sα aims to analyze the structural information
of the prediction map. Our framework achieves a remarkable
performance milestone.

(Chu et al. 2010), species discovery (Pérez-de la Fuente et al.
2012), and crack inspection (Fang et al. 2020).

In the last two decades, a growing interest is witnessed
in developing algorithms capable of seeing targets through
camouflage. Early methods aim to utilize the handcrafted
low-level features (e.g., texture and contrast (Huerta et al.
2007), 3D convexity (Pan et al. 2011) and motion bound-
ary (Yin et al. 2011)). These features still suffer from the
limited capability of discriminating the foreground and the
background in complex scenes. Recently, some CNNs-based
frameworks have been proposed to analyze the visual sim-
ilarities around boundaries between the camouflaged ob-
jects and their surroundings. The auxiliary information is ex-
tracted from the shared context as the boundary guidance for
COD, such as features for identification (Fan et al. 2020a),
classification (Le et al. 2019), boundary detection (Zhai et al.
2021) and uncertainties (Yang et al. 2021).

Although the approaches mentioned above have improved
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(a) Image (b) GT (c) HR result (d) LR result

Figure 2: Results from high-resolution (HR) and low-
resolution (LR) inputs with SINet (Fan et al. 2020a) trained
on LR images. In camouflaged scenario (a) where cat is as-
similated into the dark background, cat’s beard is very chal-
lenging to be segmented. From results analysis, LR result
has blurred edges (e.g., cat’s beard), which indicates the
high-frequency detail loss (e.g., boundaries) during image
degradation from HR to LR in camouflaged scenario.

the performance, most methods discard the high-resolution
details, including edges or textures, by down-sampling the
high-resolution images. Fig. 2 shows an interesting phe-
nomenon by evaluating the low-resolution (LR) and the
high-resolution (HR) images on the same model well-trained
on LR images, respectively. Although HR result suffers from
a bit of over-segmentation with a lot of noise, it still has
more high-frequency details like cat beards than that from
LR. This implies that the high-resolution priors are crucial
to the boundary and edge detection (Zhang et al. 2021; Wang
et al. 2021a). The degradation of inputs from HR to LR leads
to blurry vision without capturing fine structures. To bal-
ance the trade-off between computational resources and per-
formance, the down-sampling operation on high-resolution
input is acceptable to achieve satisfactory performance to
some extent. But the lose of edge details is not desirable ,
especially for camouflaged object detection where edges or
boundaries are visually assimilated into the background.

We find that two main aspects account for the degrada-
tion: 1) the lack of high-resolution information from in-
put images; 2) the absence of an effective mechanism to
enhance the low-resolution features. Thus, it is promising
to explore how to maintain the high-resolution information
and enhance the low-resolution features without sacrific-
ing the real-time property. To achieve this goal, we pro-
pose a High-resolution Iterative Feedback Network (HitNet)
to sufficiently and comprehensively exploit the multi-scale
HR information and refine the LR with HR knowledge via
an effective iterative feedback approach. Specifically, Hit-
Net includes three main components: Transformer-based
Feature Extraction (TFE), Multi-Resolution Iterative Refine-
ment (RIR), and Iteration Feature Feedback (IFF). To re-
duce the computational cost for the HR feature maps in TFE
stage, we adopt pyramid vision transformer (Wang et al.
2021b) as an image feature encoder. Then, we utilize the
RIR module to recursively refine the LR feature extracted
from TFE via a global and cross-scale feedback strategy. To
ensure the better aggregation of feedback feature, we use it-
eration feature feedback (IFF) to impose constraints on feed-
back feature flow. In addition, we implement an application
that converts the salient objects (Li et al. 2017; Zhao et al.
2021, 2020) to camouflaged objects via our cross-domain
learning strategy. Results from our application can be used

as additional training data to further improve the segmen-
tation accuracy of the COD task without increasing the pa-
rameters and computations of models in the inference stage.
Our main contributions are summarized as:
• We propose a novel recursive operation to refine the low-

resolution feature via a cross-scale feedback mechanism.
The recursive operation is simple and can be easily ex-
tended to existing COD models.

• Based on the recursive operation, we design a novel
framework, termed as High-resolution Iterative Feedback
Network (HitNet) for COD task. To avoid the feature cor-
ruption caused by recurrent path, the corresponding itera-
tive feedback loss with an iteration weight scheme is pro-
posed for HitNet to penalize the output of each iteration.

• Our HitNet sets a new record, as shown in Fig. 1, break-
ing the performance bottleneck, compared with existing
cutting-edge models on four benchmarks using four stan-
dard metrics. On COD10K, HitNet achieves Fw

β of 0.804,
which is 7.5% higher than the second-best ZoomNet22
(Youwei et al. 2022).

Related Work
Camouflaged Object Detection. COD aims to spot the
camouflaged object from its high-similarity surroundings
(Fan et al. 2020a). It has wide applications (Fan et al. 2020b;
Chu et al. 2010; Pérez-de la Fuente et al. 2012) and many
COD methods (Youwei et al. 2022; Cheng et al. 2022) have
been proposed. These methods can be categorized into two
main classes: handcrafted-based and deep-learning-based.
More specifically, most of the early works were developed
based on the handcrafted features (e.g., colour and intensity
features (Huerta et al. 2007), 3D convexity (Pan et al. 2011),
and motion boundary (Yin et al. 2011)). But they are rel-
atively less robust and prone to fail in complex scenarios.
More studies resort to the powerful representation capacity
of deep learning models to detect camouflaged objects in
a data-driven way and have achieved impressive improve-
ments against those handcrafted-based methods. On the one
hand, deep models usually have many parameters, which en-
sures stronger representative capabilities for segmenting the
camouflaged objects from their backgrounds. On the other
hand, most of these deep models benefit by exploring the
auxiliary knowledge, e.g., fixations, boundaries, and loca-
tion. Nevertheless, most of models pay much attention to
regional accuracy. At the same time, few of them explore
the effectiveness of high-frequency information (in high-
resolution), which plays a vital role in perceiving the clear
boundaries or edges of camouflaged targets. Thus, it im-
pedes the further improvements of COD models. To address
this issue, we design a novel High-resolution Iterative Feed-
back Network, which sets a new record on all benchmarks.

Iterative Feedback Mechanism of Super-Resolution
allows the network to correct previous states (i.e.,
lower-resolution) with a higher-level output (i.e., higher-
resolution) (Zamir et al. 2017; Hu et al. 2021). In image
super-resolution, some studies proved certain improvements
after using different feedback mechanisms, such as up-
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Figure 3: An overview of High-resolution Iterative Feedback Network (HitNet). Our HitNet consists of Transformed-based
backbone for multi-scale feature extraction, multi-resolution iterative refinement to self-correct low-resolution features with
high-resolution information via a cross-resolution iterative feedback mechanism, and iteration feature feedback to impose con-
straint on each iteration.

and down-projection units (Haris, Shakhnarovich, and Ukita
2018) and dual-state recurrent module (Han et al. 2018).
However, most of these mechanisms are implemented by
using recurrent structures (Li et al. 2019) while the infor-
mation flows from the LR to HR images are still feed-
forward. Recently, Li et al. (Li et al. 2019) proposed an im-
age super-resolution feedback network to refine LR repre-
sentation with HR information by outlining the edges and
contours while suppressing smooth areas. Inspired by this
work, we build our transformer-based high-resolution iter-
ative feedback for COD. Different from Li et al. (Li et al.
2019), our feedback connection is designed as a global con-
nection other than a local connection (Feng, Lu, and Ding
2019) and embedded into the multi-scale framework via a
feedback fusion block, which merges the information from
multi-scale outputs. To avoid corruption of each iteration,
we impose more constraints on each feedback connection
by supervising each iteration with the corresponding loss.
Vision Transformer. The Transformer (Vaswani et al. 2017)
was firstly proposed as a powerful tool in the domain of ma-
chine translation. Considering the superiority of transformer
in modeling long-term dependencies, more recent studies
have tried to exploit its potentials in different vision tasks,
such as image classification (Dosovitskiy et al. 2020; Srini-
vas et al. 2021), semantic segmentation (Zheng et al. 2021),
object detection (Dai et al. 2021), and other low-level tasks
(Yang et al. 2020). Thus, we adopt a Pyramid Vision Trans-
former (PVT) (Wang et al. 2021b) that uses a progressive
shrinking pyramid structure to reduce the sequence length
and a spatial-reduction attention layer to decrease the com-
putation further when learning HR features.
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Figure 4: Adaptive Feature Fusion.

Proposed Method
Motivation. Our motivation stems from the observation of
degradation phenomenon, shown in Fig. 2. HR inputs gen-
erate more accurate predictions than LR inputs, especially
for object boundaries. Thus, we aim to explore the feature
interaction between high- and low-resolution for COD.

Transformer-based Feature Extraction
Currently, many of the vision transformers are GPU mem-
ory exhaustive and our HR features will further exaggerate
the problem. To alleviate this issue, we choose the Pyramid
Vision Transformer (PVT) (Wang et al. 2021b) as our fea-
ture extraction module, which can extract multi-scale fea-
tures, and handle relatively higher resolution feature maps
with less memory costs by its progressive shrinking strategy
and spatial reduction attention mechanism.
Multi-scale Feature Extraction. PVT consists of four
stages, and each stage includes a patch embedding and an
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encoder structure. The input features to each stage (Fi) are
first divided into patches with size of Pi. After that, these
features are fed into Transformer encoder structure to get
the output features Xi for the i-th. Then, we get the multi-
scale features (X1, X2, X3, X4) with (512, 320, 128, 64)
number of channels and with ( 1

32 , 1
16 , 1

8 , 1
4 ) resolution of

input images for further processing.

Multi-Resolution Feedback Refinement
The multi-scale resolution features X extracted from the
Transformer backbone are fed to a basic block BA(·) (Zhang
et al. 2018) as shown in Fig. 3:

BA(Xi) = C2(Xi)+ Cb(C2(Xi)) ·Xi, (1)

where Xi is the input feature of i-th scale produced by
Transformer module, C2(·) indicates two stacked convolu-
tional layers with 3 × 3 filters. Cb(·) denotes the channel
attention function (Zhang et al. 2018).
Iterative Feedback Mechanism is critical in this module
to achieve high accuracy around the object boundary (see
Fig. 6). The setting iterative number in=1 assumes the first
iteration and no feedback feature transported from previous
state. Thus, the Y in

1 and Y in
3 are the initial value (0) when

in=1. For iterative number (in > 1), the feedback features
are produced by previous iteration and then passed into feed-
back block FB(·) as:

FB(Xi + Y in
i ) = Sq(Concat(Xi ↑,Y in

i )), (2)

where Y in
i is the feedback features of in-th iteration at i-th

scale (i ̸= 2), Symbol ↑ is the up-sampling operation from
the size of Xi to Y in

i to avoid degradation of the HR infor-
mation. Concat(·) indicates the channel-based concatena-
tion operation between Xi ↑ and Y in

i , and Sq(·) is feature
size and channel compression using convolution layer with
large kernel and stride1 to get identical size for i-th scale.

As shown in Fig. 3, with the prerequisite that the iterative
number (in > 1), the first scale structure receives X1 and
Y in
1 and the output the feature can be defined as:

Sin
1 = BA(FB(X1 + Y in

1 )), (3)

Then, Sin
1 is further fed into the next scale to generate next

output feature as follows:

Sin
2 = BA(Concat(Sin

1 ↑,X2)), (4)

Finally, the features of the previous scale are transported to
the next scale as:

Sin
3 = BA(Concat(Sin

2 ↑,FB(X3 + Y in
3 ))), (5)

After ending at in-th iteration, (in + 1)-th iteration starts
from the first scale to the last scale in the same way. The
feedback features Y in+1

1 and Y in+1
3 at (in+1)-th iteration

are updated as follows:

Y in+1
1 = Y in+1

3 = Conv(Sin
3 ), (6)

1If i=1, kernel = 8 with stride = 4 while i=3, kernel = 1 with
stride = 1.

where Conv is a convolution layer with 3 kernel size and
1 padding. The segmentation prediction map of i-th itera-
tion (Y in) is obtained via two stacked convolution opera-
tion Y in = Conv(Conv(Sin

3 )). The low and upper index
of Y indicates the scale and the iteration information.

The design intuitions on different scales are mainly mo-
tivated to get a better cross-scale data flow. The feedback
features are explicitly imported into the top and third top
scales for the data flow. As the data flow works, the second-
top scale can get the implicit feedback features from the top
scale. From our experiments, this setting can decrease the
computational cost but maintaining good performance. Our
HitNet breaks the performance bottleneck due to the follow-
ing three indispensable mechanisms:
• In each iteration, it outputs an intermediate HR segmenta-

tion map that is supervised with a segmentation loss, en-
abling the feedback features to learn HR cues.

• The HR feedback features merge with inputs in a feedback
block, alleviating the degradation of HR information.

• It uses a feedback fusion mechanism to exploit the HR
data flow in a multi-scale structure.

Iteration Feature Feedback
To tailor satisfactory feedback feature flow and avoid the
feature corruption caused by recurrent path, we present it-
eration feature feedback strategy to tie the each feedback
feature with the segmentation ground-truth. Intuitively, the
data flow of feedback features can be controlled by the
loss function. Our basic loss function is defined as L =
Lw
IoU + Lw

BCE , where Lw
IoU is the weighted intersection-

over-union (IoU) loss and Lw
BCE denotes the weighted bi-

nary cross entropy (BCE) loss. Unlike other recurrent struc-
tures (Wei, Wang, and Huang 2020), we compute the HR
prediction loss in each iteration and use an iteration-weight
scheme to penalize the output of each iteration when pre-
dicting a HR segmentation map:

LHIF =
N∑
in

(w · in)L(Y in) + L(Y
′
), (7)

where in is the current iteration number, N is the total iter-
ation number, w is the weight parameter, Y in is the output
of in-th iteration, Y

′
is the output of graph-based resolution

fusion. In this way, our iteration-weight scheme focuses on
the features of deeper iterations by assigning higher weights.

In this session, to efficiently integrate the features from
the previous module, we design an adaptive feature fusion
module (shown in Fig. 4).

Y
′
= AFF(T1, T2), (8)

where Y
′

is final prediction map, T1 is the Y in=4, AFF
is the Adaptive Feature Fusion module. Specifically, when
given the features T1 and T2, the global average pooling is
used to get the shrunk features with the size of 1 × 1 × C
on the channel dimension. Afterwards, the operations (fc
and fa) are implemented on the shrunk features to get the
channel-wise weights and adaptive feature-wise coefficients
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CAMO-Test COD10K-Test
Baseline Models Sα ↑ Eϕ ↑ Fw

β ↑ M ↓ Sα ↑ Eϕ ↑ Fw
β ↑ M ↓

MirrorNet (Yan et al. 2021) 0.741 0.804 0.652 0.100 ‡ ‡ ‡ ‡
MGL (Zhai et al. 2021) 0.775 0.847 0.673 0.088 0.814 0.865 0.666 0.035
PFNet (Mei et al. 2021) 0.782 0.852 0.695 0.085 0.800 0.868 0.660 0.040

UGTR (Yang et al. 2021) 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035
UJSC (Li et al. 2021) 0.800 0.858 0.728 0.073 0.809 0.884 0.684 0.035

C2FNet (Sun et al. 2021) 0.796 0.853 0.719 0.080 0.813 0.890 0.686 0.036
LSR (Lv et al. 2021) 0.793 0.826 0.725 0.085 0.793 0.868 0.685 0.041

SINet-V2 (Fan et al. 2021) 0.820 0.882 0.743 0.070 0.815 0.887 0.680 0.037
DCO-FD (Zhong et al. 2022) 0.828 0.884 0.747 0.069 0.833 0.907 0.711 0.033

BSA-Net (Zhu et al. 2022) 0.796 0.851 0.717 0.079 0.818 0.891 0.699 0.034
SegMaR (Jia et al. 2022) 0.815 0.872 0.742 0.071 0.833 0.895 0.724 0.033

ZoomNet (Pang et al. 2022) 0.819 0.877 0.752 0.065 0.838 0.887 0.729 0.029
HitNet (Ours) 0.844 0.904 0.806 0.056 0.869 0.936 0.804 0.023

Table 1: Quantitative results of our method and the most recent 12 of 35 state-of-the-art methods on two benchmark datasets.

(α). fc and fa are the stacked combinations of operators
nn.Linear+ReLU+nn.Linear+Sigmoid. The features F1 and
F2 are obtained after assigning the channel-wise weights on
the channel features of T1 and T2. Finally, the final predic-
tion map Y

′
can be achieved weighted by adaptive coeffi-

cients α1 and α2 as follows:

Y
′
= F1 × α1 + F2 × α2, (9)

Experiments
Experimental Settings
Datasets. Our experiments are based on four widely-used
COD datasets: (1) CHAMELEON (Skurowski et al. 2018)
collects 76 high-resolution images from the Internet with the
label of camouflaged animals. (2) CAMO (Le et al. 2019)
includes 2,500 images with eight categories. (3) COD10K
(Fan et al. 2020a) is the largest collection containing 10,000
images that divided into 10 super-classes and 78 sub-classes
from multiple photography websites. (4) NC4K (Lv et al.
2021) consists of 4,121 images and is commonly used to
evaluate the generalization ability of models. Following
previous studies and benchmarks (Zhai et al. 2021; Fan
et al. 2020a; Yang et al. 2021; Lv et al. 2021), the train-
ing set includes 1,000 images from CAMO, and 3,040 im-
ages from COD10K. The test set consists of 76 images from
CHAMELEON, 250 images from CAMO, 2,026 images
from COD10K, and 4,121 images from NC4K.
Implementation Details. We implement our model based
on PyTorch in AMD Ryzen Threadripper 3990X 2.9GHz
CPU and NVIDIA RTX A6000 GPU. For the training stage,
the resolution of input images is resized to 704×704, and no
data augmentation is used in our model. The transformer-
based feature extraction is initialized by PVT-V2 (Wang
et al. 2021b), and the remaining modules are initialized in
a random manner. We employ the AdamW (Loshchilov and
Hutter 2019) optimizer with the learning rate of 1e-4, which
is widely used in transformer structure, and the correspond-
ing decay rate to 0.1 for every 30 epochs. The weight w of
iterative feedback loss is 0.2, and the well-optimized itera-
tion number (N ) is 4. The total epochs of training are 100

with a batch size of 16. For testing, the images are resized to
704×704 as the network’s input, and the outputs are resized
back to the original size.
Quantitative and Qualitative Evaluation. In Tab. 1, as a
performance milestone, our model are significantly supe-
rior than other existing 35 methods on all datasets and all
metrics. Compared with second-best models 2022 Zoom-
Net, our HitNet averagely lowers the relative MAE error by
16.9% and improves relative Fw

β by 7.5% on four datasets.
Fig. 5 shows qualitative results of our HitNet and other most
recent models. The examples are difficult to be segmented
even for manual annotation due to their complex topological
structures and detailed edges from the first row to the third
row. But our HitNet is capable of segmenting clear edges and
boundaries (e.g., leaves, thorn) even for objects with occlu-
sion (3-nd row). At the same time, other results are blurred
or without correct details. For 4-th and 5-th rows, our Hit-
Net can still clearly segment the multiply camouflaged ob-
jects significantly better than others.

Ablation Study
Effectiveness of Each Component. As shown in Tab. 2,
we evaluate the effectiveness of each module by remov-
ing the corresponding part from our complete (i.e., TFE +
RIR + IFF) HitNet. To assess the contribution of the trans-
former backbone, we substitute the transformer backbone
with Res2Net-50 (Gao et al. 2021) used in SINet-V2 (Fan
et al. 2021) as the version of ‘w/o TFE’. Our algorithm with-
out PVT backbone still achieves the best performance com-
pared with all 35 SOTA methods. Besides, we also remove
the RIR module from HitNet by substituting them with two
stacked convolutional layers in each scale, expressed as ‘w/o
RIR’. The Fw

β performance of this variant sharply deterio-
rates from 0.804 to 0.712. Lastly, we also remove the con-
straints on feedback feature flow in IFF module as the ver-
sion of ‘w/o IFF-1’ and replace the adaptive feature fusion
(AFF) with an element-wise feature summation as the ver-
sion of ‘w/o IFF-2’. We find these variants also decreases
the performance to some extent. But our RIR module plays
a crucial role in performance improvement than others.
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(a) Images (b) GT (c) HitNet (d) ZoomNet (e) SegMaR (f) SINetV2 (g) PFNet (h) LSR (i) PraNet

Figure 5: Visual performance of the proposed HitNet. Our algorithm is capable of tackling challenging cases (e.g., complex
edges with dense thorn, multiply camouflaged objects, partly occlusion, and global thin edges).

Configuration of Iteration Number. We explore the effect
of iteration number in the iterative feedback mechanism on
inference time and performance. To analyze the difference
among the iteration number, we visualize the feature of each
iteration in Fig. 6. We observe that the iterative feedback
mechanism is a self-correcting process that the subsequent
iterations can generate better representations than the previ-
ous iteration (e.g., sharper edges).
Study of Iterative Feedback Mechanism. As discussed
in §, three components enable the feedback mechanism
to boost the performance: 1) Tie each iteration with loss
(denoted as ‘Tie’). 2) The Feedback Block to avoid the
loss of high-resolution information (denoted as ‘FB’). 3)
Multi-scale connection fusion (denoted as ‘Multi-fusion’).
As shown in Tab. 3, any absence of three factors will fail the
model to drive the data flow.

Application
The camouflaged dataset is very scarce and rare only exist-
ing in camouflaged scenarios, and almost all public camou-
flaged datasets have been used in our paper. In contrast, there
exists a large-scale salient dataset that is almost 100 times
more than the camouflaged ones. It is an open question that
how to well-utilize the abundant salient dataset to improve
the camouflaged object accuracy without extra annotation
labor. Thus, we adopt a cross-domain learning (CDL) tech-
nique that converts salient objects to camouflage objects to
achieve this goal. In addition, we propose a contrastive index
to evaluate the camouflaged level. This index can be acted as
the criterion to discard some hard cases with unchangeable
intrinsic salient objects.

Cross-domain Learning. We employ the cycle-consistency
structure (Zhu et al. 2017) to learn the camouflaged features
and embed these features into the salient objects in an unsu-
pervised cross-domain learning manner as shown in Fig. 7.
The cycle-consistency loss can be formulated as:

Lcyc(G,F ) =Ex[∥(F (G(x))− x)∥1]+
Ey[∥(G(F (y))− y)∥1]

(10)

where G aims to construct fake images {G(x)} from salient
samples {x} to get close to camouflaged domain Y while
D(Y ) tries to distinguish between the translated camou-
flaged samples {G(x)} and real camouflaged samples {y}.
F is another translator from camouflaged to salient objects.
The procedure is concluded as a min-max optimization task2

in the adversarial loss function used in CycleGAN.
To better select the converted camouflaged objects, we

propose a contrastive index, considering the pixel-level sim-
ilarity between object and its surroundings:

Isc =
1

Num

Num∑
i

∥Pi − Pm∥i∈(Pm−Pstd,Pm+Pstd)
, (11)

where Isc is the index of camouflaged level, Pi is i-th pixel
intensity value, Pm is the mean value of images, Pstd is the
standard deviation, and i is the pixel index that belongs to
one σ rule to exclude the effect of extreme values. In Fig. 7,
the car is an abandoned example detected as a high salient
case by our contrastive index. Empirically, we set the thresh-
old of Isc as Isc = 20.

2Minimize the generator loss while maximized the discrimina-
tor loss.
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Metric w/o TFE w/o RIR w/o IFF-1 w/o IFF-2 HitNet
Fw
β ↑ 0.745 0.712 0.793 0.801 0.804
Sα ↑ 0.851 0.833 0.860 0.862 0.869
M ↓ 0.026 0.031 0.025 0.024 0.023
Eϕ ↑ 0.921 0.907 0.931 0.932 0.936

Table 2: Ablation analyses of HitNet on COD10K dataset.

Images GT Iteration=2Iteration=1 Iteration=3 Iteration=4

Figure 6: Visual performance of each iteration in our iterative feedback mechanism in our RIR module.

Configurations Performance
Tie FB Multi-fusion MAE ↓
× × × 0.0265√

× × 0.0252√ √
× 0.0246√ √ √

0.0230

Table 3: Ablation study on indispensable factors of Iterative
Feedback Mechanism on COD10K dataset.

COD10K (Fan et al. 2020a)
Data Strategy Sα ↑ Eϕ ↑ Fw

β ↑ M ↓
w/o 0.869 0.936 0.804 0.023
Salient data 0.837 0.908 0.778 0.027
CDL (Ours) 0.879 0.939 0.812 0.022

Table 4: Quantitative results on different training strategies.
‘w/o’ means without any data strategy, ‘Salient data’ means
adding salient data for training.

Qualitative and Quantitative Evaluation. Our CDL strat-
egy makes exciting and meaningful explorations on cam-
ouflage domains from the following aspects. (1) As shown
in Fig. 7, it converts salient objects to camouflage ob-
jects, which bridges the gap between salient and camouflage
fields. (2) As shown in Tab. 4, it finds that the usage of salient
object data cannot improve but severely deteriorate the per-
formance of COD. Meanwhile, CDL strategy can make the
distribution of salient objects closer to the camouflage object
distribution. Thus, it can improve the accuracy of COD and
reduce the relative MAE error by 4.3%.

Figure 7: The overview of salient-to-camouflaged cross-
domain learning pipeline. The S is the salient domain, and
the C means the camouflaged domain. DX is the discrimi-
nator of the salient domain, and DY is the discriminator of
the camouflaged domain.

Conclusion

We propose a novel high-resolution iterative feedback net-
work (HitNet) to extract the informative and high-resolution
representations for tackling the degradation issue of segmen-
tation details on the COD task. HitNet can adaptively refine
the low-resolution features with high-resolution information
in an iterative feedback manner. More importantly, our ap-
proach achieves remarkable performance improvements and
significantly outperforms 35 cutting-edge models on four
challenging datasets. Finally, we introduce the cross-domain
learning strategy to implement an application that converts
the salient object to the camouflaged object, potentially en-
larging the diversity of the COD dataset.

887



References
Cheng, X.; Xiong, H.; Fan, D.-p.; Zhong, Y.; Harandi, M.;
Drummond, T.; and Ge, Z. 2022. Implicit Motion Handling
for Video Camouflaged Object Detection. In CVPR.
Chu, H.-K.; Hsu, W.-H.; Mitra, N. J.; Cohen-Or, D.; Wong,
T.-T.; and Lee, T.-Y. 2010. Camouflage images. ACM TOG,
29(4): 51–1.
Cuthill, I. 2019. Camouflage. JOZ, 308(2): 75–92.
Dai, Z.; Cai, B.; Lin, Y.; and Chen, J. 2021. Up-detr: Unsu-
pervised pre-training for object detection with transformers.
In CVPR.
Dong, B.; Wang, W.; Fan, D.-P.; Li, J.; Fu, H.; and Shao, L.
2021. Polyp-PVT: Polyp Segmentation with PyramidVision
Transformers. arXiv preprint arXiv:2108.06932.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth
16x16 words: Transformers for image recognition at scale.
In ICLR.
Fan, D.-P.; Ji, G.-P.; Cheng, M.-M.; and Shao, L. 2021. Con-
cealed Object Detection. IEEE TPAMI.
Fan, D.-P.; Ji, G.-P.; Sun, G.; Cheng, M.-M.; Shen, J.; and
Shao, L. 2020a. Camouflaged object detection. In CVPR.
Fan, D.-P.; Ji, G.-P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; and
Shao, L. 2020b. Pranet: Parallel reverse attention network
for polyp segmentation. In MICCAI.
Fan, D.-P.; Zhou, T.; Ji, G.-P.; Zhou, Y.; Chen, G.; Fu, H.;
Shen, J.; and Shao, L. 2020c. Inf-net: Automatic covid-
19 lung infection segmentation from ct images. IEEE TMI,
39(8): 2626–2637.
Fang, F.; Li, L.; Gu, Y.; Zhu, H.; and Lim, J.-H. 2020. A
novel hybrid approach for crack detection. Pattern Recogni-
tion, 107: 107474.
Feng, M.; Lu, H.; and Ding, E. 2019. Attentive feedback net-
work for boundary-aware salient object detection. In CVPR.
Gao, S.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-
H.; and Torr, P. H. 2021. Res2net: A new multi-scale back-
bone architecture. IEEE TPAMI, 43(02): 652–662.
Han, W.; Chang, S.; Liu, D.; Yu, M.; Witbrock, M.; and
Huang, T. S. 2018. Image super-resolution via dual-state
recurrent networks. In CVPR.
Haris, M.; Shakhnarovich, G.; and Ukita, N. 2018. Deep
back-projection networks for super-resolution. In CVPR.
Hu, X.; Yan, Y.; Ren, W.; Li, H.; Bayat, A.; Zhao, Y.; and
Menze, B. 2021. Feedback Graph Attention Convolutional
Network for MR Images Enhancement by Exploring Self-
Similarity Features. In MIDL.
Huerta, I.; Rowe, D.; Mozerov, M.; and Gonzàlez, J. 2007.
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