
Parameter-Efficient Model Adaptation for Vision Transformers

Xuehai He1, Chuanyuan Li2, Pengchuan Zhang2, Jianwei Yang2, Xin Eric Wang1

1 UC Santa Cruz,
2Microsoft Research at Redmond

{xhe89,xwang366}@ucsc.edu, {chunyl,penzhan,jianwyan}@microsoft.com

Abstract

In computer vision, it has achieved great transfer learning
performance via adapting large-scale pretrained vision mod-
els (e.g., vision transformers) to downstream tasks. Common
approaches for model adaptation either update all model pa-
rameters or leverage linear probes. In this paper, we aim to
study parameter-efficient model adaptation strategies for vi-
sion transformers on the image classification task. We formu-
late efficient model adaptation as a subspace training prob-
lem and perform a comprehensive benchmarking over dif-
ferent efficient adaptation methods. We conduct an empirical
study on each efficient model adaptation method focusing on
its performance alongside parameter cost. Furthermore, we
propose a parameter-efficient model adaptation framework,
which first selects submodules by measuring local intrinsic
dimensions and then projects them into subspace for further
decomposition via a novel Kronecker Adaptation (KAdapta-
tion) method. We analyze and compare our method with a
diverse set of baseline model adaptation methods (including
state-of-the-art methods for pretrained language models). Our
method performs the best in terms of the tradeoff between
accuracy and parameter efficiency across 20 image classifica-
tion datasets under the few-shot setting and 7 image classifi-
cation datasets under the full-shot setting.

Introduction
In the last few years, large-scale vision models and lan-
guage models pretrained on web-scale data have seen a great
surge of interest with promising performance (Radford et al.
2019; Devlin et al. 2018; Yang et al. 2019; Liu et al. 2019).
Meanwhile, aided by the rapid gains in hardware, their sizes
keep growing rapidly. Currently, vision transformers (Doso-
vitskiy et al. 2020) (ViTs) with billions of parameters such
as ViT-Large (Dosovitskiy et al. 2020) have been released.
It is expected that pretrained vision models with even larger
orders of magnitude will emerge in the foreseeable future.

These large-scale pretrained models are powerful when
transferred to downstream vision tasks. However, deploying
many independent instances of fine-tuned models can also
cause substantial storage and deployment costs and hinder
the applicability of large-scale ViTs to real-world problems.
Motivated by this and the importance of parameter-efficient

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ours

Compacter

Linear-probing

Full-model
Fine-tuning

Adapter-tuning

Lora

(10!.#+, 68.92%)

(10!.!' ,	66.32%)

(10&.+#,	65.08%)

(10!.*# ,	62.77%) (10$.($,	61.48%)

(10'.#!, 65.49%)

0.50

0.55

0.60

0.65

0.70

0.75

Number of trainable parameters
Ac

cu
ra

cy
 (%

)

Figure 1: The tradeoff between accuracy and parameter
numbers of various model adaptation methods. The results
are measured using the vision transformer (ViT-B-224/32)
via CLIP pretraining across the average of 20 image clas-
sification datasets. Our method places in the topleft corner
and achieves the best tradeoff between accuracy and param-
eter efficiency. The color of points and numbers denote the
performance-efficiency (PE) metric (higher is better).

learning (Houlsby et al. 2019; Hu et al. 2021; Zaken, Ravfo-
gel, and Goldberg 2021; Mahabadi, Henderson, and Ruder
2021; He et al. 2021), we aim to study the parameter-
efficient model adaptation strategy for vision transformers.
Conventional wisdom for transfer learning in our computer
vision community is fine-tuning all model parameters or
leveraging linear probes. However, performing full-model
fine-tuning of pretrained ViTs may incur both financial and
environmental costs (Patterson et al. 2021), requires a high
computational budget, and becomes increasingly infeasible
as the model size continuously grows. Another go-to strat-
egy is performing linear-probing by stacking an additional
trainable multi-layer perceptron (MLP) layer in the end. It is
parameter-efficient yet suboptimal in terms of performance.
Ideally, we hope to design model adaptation strategies that
can achieve the best tradeoff between efficiency and effec-
tiveness (see Figure 1) — optimizing adaptation parameter-
efficiency while allowing for the model to maintain the ef-
fectiveness of transfer learning on downstream vision tasks,
especially the image classification task.

To this end, we ask an essential question: what are the
general guidelines one should adopt while adapting large-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

817

scale pretrained vision models on the downstream image
classification datasets? This work aims to answer the ques-
tion by building a benchmark for adapting ViTs and propos-
ing a more parameter-efficient model adaptation method. We
choose ViTs as the pretrained vision models, which are rep-
resentative mainstream state-of-the-art (SOTA) models on a
wide range of downstream vision tasks. Specifically, we ex-
periment with two off-the-shelf pretrained ViTs in the re-
mainder of this paper: the one via Contrastive Language-
Image Pretraining (also known as CLIP) (Radford et al.
2021), and the one via supervised pretraining (we refer to as
Supervised ViT) (Vaswani et al. 2017). In addition to Full-
model Fine-tuning and linear-probing, we re-implement sev-
eral SOTA efficient adaptation methods (Houlsby et al.
2019; Rücklé et al. 2021; Hu et al. 2021; Zaken, Ravfogel,
and Goldberg 2021; Li and Liang 2021) (originally proposed
for pretrained language models) on vision tasks, and design
various new baseline methods for comparison.

Aghajanyan et al. (2020) show that pretrained language
models have a low intrinsic dimension and can still learn ef-
ficiently despite a low-dimensional reparameterization. Mo-
tivated by this observation, we reformulate the task of ef-
ficient model adaptation as a subspace training problem.
Within this framework, we measure the local intrinsic di-
mension of each module in ViTs, which reveals that the
attention module dominates the training progress. More-
over, we introduce a novel parameter-efficient model adap-
tation framework named Kronecker Adaptation (KAdap-
tation), where during adaptation, pretrained weights are
frozen, and only the updates to the weights receive gradi-
ents. And the weight updates are decomposed to a set of
Kronecker products, with the slow weights (Wen, Tran, and
Ba 2020) shared across layers and fast weights (Wen, Tran,
and Ba 2020) further decomposed into low-rank matrices
product to improve parameter efficiency. We apply KAdap-
tation to attention weights, and it achieves the best average
accuracy among efficient model adaptation methods while
containing much less trainable parameters, e.g., around 45%
parameters of LoRA (Hu et al. 2021) and 0.09% of all the
model parameters in CLIP under the few-shot setting.

The contributions of this paper are summarized below:

• We build a benchmark1 for parameter-efficient model
adaptation of ViTs on the image classification task by in-
troducing our new baseline methods and several state-of-
the-art efficient model adaptation strategies inspired from
the NLP community. To our best knowledge, this is the
first empirical study of the efficient model adaptation of
Transformers to date that considers pure vision tasks.

• We formulate efficient model adaptation as a subspace
training problem. To address it, we define the local in-
trinsic dimension, based on which we choose submod-
ules — attention modules and we employ the proposed
KAdaptation method to decompose the weight updates
of attention modules for trainable parameter deduction.

1To facilitate future research, implementations of all the meth-
ods studied in this work are released at https://github.com/eric-ai-
lab/PEViT.

• We experiment on 20 datasets under the few-shot set-
ting and 7 image classification datasets under the full-
shot setting. The results demonstrate the effectiveness of
our method, achieving the best tradeoff between accuracy
and parameter efficiency, as shown in Figure 1.

Related Work
Vision Transformer Fine-tuning large-scale pretrained
ViTs has shown prominent performance for computer vi-
sion tasks, such as image classification (Dosovitskiy et al.
2020), object detection (Carion et al. 2020), and etc. Re-
cently, there are also other variants, including hierarchical
ViTs with varying resolutions and spatial embeddings (Liu
et al. 2021; Dong et al. 2021) been proposed. Undoubtedly,
the recent progress of large ViTs posts great demands for
developing efficient model adaptation strategies.

Efficient Model Adaptation in NLP In the natural lan-
guage processing domain, efficient model adaptation tech-
niques typically involve adding to or modifying a limited
number of parameters of the model — limiting the dimen-
sion of the optimization problem can prevent catastrophic
forgetting (McCloskey and Cohen 1989). Exiting meth-
ods are mainly divided into two categories depending on
whether new trainable parameters are introduced. Specifi-
cally, one is to train a subset of the model parameters, where
the common approach is to use a linear probe on top of
pretrained features (Radford et al. 2021). The other alter-
natives include new parameters in between the network (Li
and Liang 2021; Rücklé et al. 2021; Houlsby et al. 2019;
Hu et al. 2021; Pfeiffer et al. 2021; Sung, Cho, and Bansal
2022). Nevertheless, these methodologies normally have not
been investigated in the computer vision scenario and it is
furthermore uncertain if findings from NLP tasks (e.g., ques-
tion answering (Rajpurkar et al. 2016), natural language un-
derstanding (Wang et al. 2018), etc.) can transfer to down-
stream vision applications. Spurred by those facts, we estab-
lish a benchmark to compare these methods and we further
advocate our method which can gain a better tradeoff under
both the full-shot and few-shot settings.

Efficient Model Adaptation with Subspace
Training

Given a large pretrained vision transformer M with size
|M|. Our goal is to develop a parameter-efficient model
adaptation technique with trainable parameters θ of size
d ≪ |M|, that can attain comparable performance with fine-
tuning the whole model. Our ultimate goal is that one could
achieve satisfactory results in both efficacy and efficiency
without the hassle of fine-tuning the full model.

Subspace Training
A typical neural network contains numerous dense layers
that perform matrix multiplication. The weight matrices in
these layers can be full-rank. When adapting to a specific
task, Aghajanyan et al. (2020) show that the pretrained lan-
guage models have a low intrinsic dimension and can learn
efficiently despite a low-dimensional reparameterization.

818

Drawing inspiration from their observation and study, we
hypothesize that the updates to weights of ViTs during each
step in model adaptation also have a low intrinsic rank and
develop our method accordingly. The intuition behind our
method is to perform subspace training on weight updates.
In the de-facto training paradigm of neural network models,
the gradient is computed first, followed by gradient steps
taken by the optimizer in the entire parameter space D.
While in subspace training, we instead build a random d-
dimensional parameter subspace from M, where generally
d ≪ |M|, and optimize directly in this subspace.

In fact, most current parameter-efficient NLP model adap-
tation strategies perform subspace training. Given a large
pretrained language model M with size |M|, existing meth-
ods either select a submodule from M or inject an additional
module to M. For the parameter vector Θ ∈ RD from this
module, they learn a projection P mapping Θ into a ran-
dom d-dimensional subspace and perform training in that
subspace to minimize computational cost. With this observa-
tion, we motivate our study on the efficient model adaptation
problem in the principle of subspace training. We approach
the problem by addressing two scientific questions: how to
choose these submodules and how to make the subspace pro-
jection.

The Proposed Kronecker Adaptation
To answer the two fundamental questions of efficient model
adaptation, how to choose these submodules and how to
make the subspace projection, we propose a novel frame-
work with two strategies. First, we define the local intrin-
sic dimension and we choose submodules based on their
measured results. Second, we propose a Kronecker Adap-
tation method to perform the subspace projection on the se-
lected submodules by exploiting parameterized hypercom-
plex multiplication layers (PHM) (Zhang et al. 2021).

Local Intrinsic Dimension Measuring the intrinsic di-
mension of an objective function was first proposed in Li et
al. (2018). Aghajanyan et al. (2020) extended it to analyze
the quality of pretrained language models. They point out
that analyzing model adaptation through the lens of intrinsic
dimension offers empirical and theoretical intuitions. Both
of them study the intrinsic dimension of the entire model.

Unlike them, we propose to measure the intrinsic dimen-
sion of each individual submodule in ViT. We define the
intrinsic dimension of the submodule as local intrinsic di-
mension, to distinguish it from the intrinsic dimension of the
whole model. The local intrinsic dimension is indicative of
the contribution of each submodule during model adaptation
and measuring it will tell us how many free parameters are
required to approximate the optimization problem closely.
The conventional standard method of measuring the intrinsic
dimensionality of an objective (Li et al. 2018) asks for per-
forming grid search over different subspace dimensions d,
training using standard SGD (Ruder 2016) over the subspace
reparameterization, and selecting the smallest d which can
produce a satisfactory solution (e.g., 90% of the full training
metric). Likewise, we measure the local intrinsic dimension
via finding the smallest d for the measured submodule that

Pretrained
weights

𝑾𝟎

Update
weights
∆𝑾

h

x

𝒖𝟏

𝒗𝟏

𝒖𝒏

𝒗𝒏

…
Shared weights A𝒊 B𝒊

…Selected
submodules
based on
local intrinsic
dimension

Decomposition

Figure 2: An illustration of KAdaptation. Ai denotes the
shared weight matrix, with i ∈ {1, . . . , n}. Bi is decom-
posed into two low-rank matrices ui and vi. h is the output
of the selected ViT submodule. x is the input to the submod-
ule. During model adaptation process, only matrices Ai, ui,
and vi receive gradients to improve parameter efficiency.

can reach 90% of the full accuracy.
To this end, we first follow the similar definition in Li et

al. (2018) and define Θ in a subspace in the following way:

Θ = Θ0 + Pθ, (1)

where Θ0 ∈ RD is the initial parameter vector of Θ when
the training begins, P ∈ RD×d is the projection matrix
generated by the Fastfood transform (Le, Sarlós, and Smola
2014), and θ ∈ Rd is the parameter vector in the subspace.
Subspace training proceeds by computing gradients with re-
spect to θ and taking steps in that subspace. By performing
experiments with gradually larger values of d, we can find
the subspace dimension dt at which the performance of the
model M reaches 90% of the full accuracy. We refer to dt
the local intrinsic dimension of the measured submodule.

The module with the lowest local intrinsic dimension —
attention module is selected. We project them into subspace
via our proposed Kronecker Adaptation method for the sake
of efficient model adaptation. Kronecker Adaptation fine-
tunes attention weight matrices indirectly by optimizing de-
composition matrices of the updates to attention weight ma-
trices. To lower the parameter cost, the decomposition is
computed as the sum of Kronecker products while the orig-
inal matrices remain frozen.

Kronecker Product The Kronecker product between ma-
trix A ∈ Rm×n and B ∈ Rp×q , denoted by A ⊗ B ∈
Rmp×nq , is mathematically written in the following form:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB,

 (2)

where aij shows the element in the i-th row and j-th column
of A.

Kronecker Adaptation Leveraging the Kronecker prod-
uct to perform language model compression has been shown
to be beneficial in prior works (Tahaei et al. 2021; Edalati
et al. 2021). Recently, Zhang et al. (2021) introduces PHM
layers, theoretically demonstrating that Kronecker products
can help to reduce learnable parameters in language models
and maintain performance. Built upon the success of PHM,
for an update matrix ∆W ∈ Rk×d in the ViT, we propose

819

the Kronecker Adaptation to adapt it into subspace. The il-
lustration is shown in Fig. 2. Mathematically, we compute
∆W as follows:

∆W =
n∑

i=1

Ai ⊗Bi, (3)

where n is the user-defined hyperparameter representing the
number of Kronecker products, Ai ∈ Rn×n, and Bi ∈
R k

n× d
n . The new representation of the update weights in

Eq. 3 is composed of a sum of n Kronecker products be-
tween shared slow weights Ai and independent fast weights
Bi, with i ∈ {1, . . . , n}.

Meanwhile, low-rank methods (Aghajanyan, Zettle-
moyer, and Gupta 2020; Li et al. 2018; Sainath et al. 2013)
have demonstrated that strong performance can be achieved
by optimizing models in a low-rank subspace. Similarly, we
hypothesize that ∆W can be effectively adapted by learning
transformations in a low-rank subspace to reduce parameter
cost further. Therefore, we parameterize Bi ∈ R k

n× d
n as

low rank and further decompose it into the product of two
low-rank matrices ui ∈ R k

n×r and vi ∈ Rr× d
n , where r is

the rank of the matrix. The expression of ∆W is then:

∆W =
n∑

i=1

Ai ⊗Bi =
n∑

i=1

Ai ⊗
(
uiv

⊤
i

)
. (4)

The number of trainable parameters is now substantially
saved. Note that similar to Bi ∈ R k

n× d
n , the shared slow

weights Ai can also be further decomposed into the product
of low-rank matrices. Additional bias terms can also be ap-
plied to the update matrix. We give the analysis of parameter
efficiency in the next section.

Analysis of Efficient Adaptation Methods
Discussion of State-of-the-art Methods
In what follows, we discuss connections between our
method and state-of-the-art parameter-efficient tuning meth-
ods on NLP tasks and provide additional insight into the
characteristics of our method.

Adapter-tuning (Houlsby et al. 2019) is the first efficient
model adaptation work in the NLP community. It brings in
an additional trainable set of modules by adding a train-
able bottleneck layer after the feedforward network in each
Transformer layer of the pretrained language models. A bot-
tleneck layer consists of a down and up projection pair that
shrinks and recovers the size of token hidden states.

Similar to the Adapter-tuning method where they use the
bottleneck structure in the additional layer, our method im-
plements low-rank decomposition on the fast rank-one ma-
trices (Wen, Tran, and Ba 2020). The critical functional dif-
ference is that our learned weights can be merged with the
main weights during inference, thus introducing no latency.

LoRA (Hu et al. 2021) is another line of work for
parameter-efficient language model tuning: it treats the
model parameters after fine-tuning as an addition of the pre-
trained parameters Θpretrained and task-specific differences

Method #Params Complexity

Adapter-tuning 4Lkd O (kd)
LoRA 2Lrdmodel O (rdmodel)
Compacter 4L(kn + d

n) + n3 O
(
k+d
n

)
KAdaptation 2L(dmodel

n + r
n) + n3 O

(
r+dmodel

n

)
Table 1: Parameter count in Adapter-tuning, LoRA, Com-
pacter, and Kronecker Adaptation. L is the number of layers
in the Transformer. k is the size of the input dimension to the
Adapter layer. d is the bottleneck dimension in the Adapter
layer. dmodel is the Transformer hidden size. r denotes the
rank in the low-rank decomposition step. n is the number of
Kronecker products usually very small.

θtask , where Θpretrained is fixed and a new subset of model
parameters are added on top. Given a pretrained weight ma-
trix W 0 ∈ Rd×k, they constrain its update by performing
low-rank decomposition: W0 +∆W = W 0 +BA, where
A ∈ Rr×k, B ∈ Rd×r, and the rank r ≪ min(d, k). By do-
ing this, the weight matrices are split into two parts, where
during training, W 0 is frozen and receives no gradient up-
dates, while only A and B contain trainable parameters.

Our work differs from LoRA mainly in that we decom-
pose weight updates to a set of Kronecker product decom-
position. The decomposed slow weight are shared across lay-
ers, further reducing the parameter cost.

Compacter (Mahabadi, Henderson, and Ruder 2021)
inserts task-specific weight matrices into weights of pre-
trained models. Each Compacter weight matrix is computed
as the sum of Kronecker products between shared slow
weights and fast matrices defined per Compacter layer.

In a similar vein to Compacter, we also leverage the Kro-
necker product in our method to reduce parameter cost fur-
ther. Yet, apart from application domains, our method fun-
damentally differs from Adapter/Compacter based methods
in that: first, our method brings in no additional layer and
introduces no latency; Second, our method first selects sub-
modules by measuring the local intrinsic dimension and then
performs the Kronecker Adaptation over the update weights
to selected submodules; Third, during adaptation, only up-
dates to the weights of selected submodules receive gradi-
ents and tuned, while pretrained weights are always fixed.

Analysis of Parameter Efficiency
We analyze the parameter-efficiency of our Kronecker
Adaptation and other model adaptation methods as below:

Adapter-tuning In the standard setting, two Adapters are
added per layer of a Transformer model (Baevski and Auli
2019). Each Adapter layer consists of 2× k × d parameters
for the down and up-projection matrices, where k is the size
of the input dimension and d is the Adapter’s bottleneck di-
mension. The total number of parameters for Adapters for a
L−layer Transformer is, |Θ| = 2× L× 2× k × ds.

LoRA LoRA adds trainable pairs of rank decomposition
matrices to existing weight matrices. The number of train-

820

able parameters is determined by the rank r: |Θ| = 2×L×
dmodel × r, where dmodel is Transformer hidden size.

Compacter Compacter shares the trained weight matri-
ces {Ai}ni=1 consisting of n3 parameters across all layers,
where n is the number of Kronecker products. Compacter
also has two rank-one weights for each Adapter layer con-
sisting of k

n + d
n parameters, where the Adapter layers are of

size k×d, resulting in a total of 2×
(
k
n + d

n

)
parameters for

down and up-projection weights. Therefore, the total num-
ber of parameters of Compacter is 4 × L ×

(
k
n + d

n

)
+ n3

for a Transformer with L layers in the encoder and decoder.

Our Approach we analyze the parameter efficiency of our
approach under the scenario where we decompose the up-
dates to weights into a sum of Kronecker products first and
then further perform low-rank decomposition for the fast
weights. The total number of parameters in this scenario will
be: 2× L×

(
r+dmodel

n

)
+ n3.

The overall comparison of parameter counts is shown in
Table 1. Our method has a complexity of O

(
r+dmodel

n

)
with

r being a small integer. Our approach greatly reduces the
number of parameters. The exact numbers of trainable pa-
rameters are present in Table 3.

Experiments
Datasets
For few-shot benchmark experiments, we conduct exper-
iments on 20 image classification datasets from the EL-
EVATER benchmark (Li et al. 2022b) on four Quadro
RTX A6000 GPUs. Detailed dataset statistics are given in
the supplementary material. For full-shot experiments, we
summarize the results by computing the average perfor-
mance on CIFAR10 (Krizhevsky and Hinton 2009), CI-
FAR100 (Krizhevsky and Hinton 2009), SUN397 (Xiao
et al. 2010), DTD (Cimpoi et al. 2014), STL10 (Coates,
Ng, and Lee 2011), FGVCAircraft (Maji et al. 2013), and
FER2013 (Goodfellow et al. 2013). We use the official split
for each of these datasets.

Implementation Details
For benchmark experiments, we use the SGD (Ruder 2016)
optimizer with the learning rate and weight decay being au-
tomatically searched for all methods so that these two hy-
perparameters have the optimum combination. We borrow
the automatic hyper-parameter tuning toolkit from Li et al.
(2022b). Training epochs are set via grid search. We test two
pretrained 12-layer ViTs: the one using ViT-B-224/32 via
unsupervised pretraining (CLIP) and the one using ViT-B-
224/16 via supervised pretraining (Supervised ViT).

For intrinsic dimension experiments, we use the
AdamW (Kingma and Ba 2014) as the optimizer, with the
weight decay of 10−8, learning rate of 10−5, and batch size
of 32 following the setting in Li et al. (2018). The Fastfood
transform (Le, Sarlós, and Smola 2014) is applied to the at-
tention and multi-layer perceptron (MLP) module in the first
layer of Supervised ViT, respectively. The dimension d is
measured from 0 − 2000 in both scenarios. Each model is
fine-tuned for 300 epochs.

Baselines

We test the baselines below. Unless otherwise specified, the
task-specific classification layer and added parameters are
tuned while the pretrained ViTs are frozen.

First are commonly-used model adaptation methods for
vision models.

• Full-model Fine-tuning: fine-tunes all model parameters.

• Linear-probing: only tune the classification layer.

The second types are SOTA methods borrowed from NLP.

• BitFit (Zaken, Ravfogel, and Goldberg 2021): freezes all
ViT parameters except for the bias terms and the task-
specific classification layer.

• Adapter-tuning (Houlsby et al. 2019): two Adapters are
added and tuned in each Transformer layer.

• AdapterDrop (Rücklé et al. 2021): only keep Adapters
from the last Transformer layer.

• LoRA (Hu et al. 2021): apply LoRA to W q and W v ma-
trices in the attention module and tune the low-rank de-
composition matrices.

• Compacter (Mahabadi, Henderson, and Ruder 2021): we
experiment with n = 4.

The third types are new baseline methods we developed.

• Transformer-probing: an additional trainable Trans-
former block is stacked before the task-specific classi-
fication layer and tuned.

• LoRA-Fix: the matrix A in LoRA (Hu et al. 2021) is fixed
and only the matrix B is tuned.

• LayerNorm Tuning: the layer norm layers are tuned.

• Attention Tuning: the attention layers are tuned.

• LePE Tuning (Dong et al. 2021): locally-enhanced posi-
tional encoding (LePE) is added to the ViT and tuned.
We implement it by the depthwise convolution opera-
tor (Chollet 2017) on the matrix V in the attention layer:
Attention(Q,K,V) = SoftMax

(
QKT /

√
d
)
V +DWConv(V).

• Relative Position Bias (RPB) Tuning (Liu et al. 2021):
an additional relative position bias term B is in-
cluded in computing self-attention in the ViT and tuned:
Attention(Q,K,V) = SoftMax

(
QKT /

√
d+B

)
V .

LayerNorm Tuning, Attention Tuning, and BitFit shed light
on which parameters in ViT matter more during model adap-
tation. Among all modules in ViT, multi-layer perceptron
(MLP) tuning is not considered a baseline because it is pro-
hibitively costly compared to others. Given that the special
structure of ViT and its variants, e.g., depthwise convolu-
tion operator and relative position bias, are different from the
general transformers in natural language processing, we ac-
tually made the first step towards parameter-efficient model
adaptation for the ViT via LePE Tuning and Relative Posi-
tion Bias Tuning.

821

Method

C
al

te
ch

10
1

C
IF

A
R

10

C
IF

A
R

10
0

C
ou

nt
ry

21
1

D
T

D

E
ur

oS
at

FE
R

20
13

FG
V

C
A

ir
cr

af
t

F o
od

10
1

G
T

SR
B

H
at

ef
ul

M
em

es

K
itt

iD
is

ta
nc

e

M
N

IS
T

Fl
o w

er
s1

02

O
xf

or
dP

et
s

P a
tc

hC
am

el
yo

n

SS
T

2

R
E

SI
SC

45

St
an

fo
rd

C
ar

s

V
O

C
20

07

A
ve

A
cc

(↑
)

#P
ar

am
s

(↓
)

PE
(↑

)

Finetune 87.6 91.1 71.5 15.8 54.4 85.2 52.7 26.2 83.3 74.1 55.6 39.2 65.6 80.6 87.3 64.9 59.1 75.6 57.2 83.0 65.5 87.9 0.50
Probing 91.0 90.4 67.3 17.4 62.0 73.0 51.9 29.5 83.8 56.5 55.8 40.4 77.5 92.3 88.0 59.0 59.4 78.1 68.3 85.0 66.3 0.03 0.66
Adapter 90.2 90.1 73.6 16.8 57.1 68.0 41.8 30.5 83.6 58.5 48.9 37.2 80.3 90.8 86.5 59.9 58.7 79.2 67.7 82.2 65.1 1.24 0.65
LoRA 87.6 90.5 69.7 17.1 50.2 74.0 51.0 20.0 83.8 43.0 55.9 48.1 61.4 74.3 85.5 63.2 57.0 62.1 54.9 80.3 61.5 0.18 0.61

Compact 89.0 80.0 44.3 28.2 52.9 50.5 35.5 41.1 78.3 66.9 47.6 57.7 85.8 88.3 79.2 61.8 64.2 63.8 64.8 75.8 62.8 0.08 0.63
Ours 89.0 90.0 73.9 17.5 64.0 76.3 47.5 30.0 84.4 80.7 55.9 42.3 85.2 93.2 89.1 63.4 59.2 80.0 70.2 84.5 68.9 0.08 0.69

Table 2: The averaged 5-shot experimental result on Full-model Fine-tuning, Linear-probing, Adapter-tuning, LoRA, Com-
pacter, and KAdaptation (ours) across 20 datasets from ELEVATER benchmark (Li et al. 2022b) in terms of accuracy (%) and
number of trainable parameters (in millions) (#Params) across random seeds of {0, 1, 2}. The ViT-B-224/32 via CLIP pretrain-
ing is evaluated. Our method achieves the best tradeoff between accuracy and parameter efficiency: it obtains the best average
accuracy among all efficient model adaptation methods, while updating only 0.09% of the model parameters in CLIP.

Results and Analysis
Metric with performance-efficiency trade-off To better
compare different methods with a single number that con-
siders both prediction accuracy and parameter-efficiency,
we resort to the performance-efficiency (PE) metric defined
in Li et al. (2022a):

PE = score∗exp (− log10(# trainable-parameters /M0 + 1))

where score is the prediction accuracy, while # trainable-
parameters is the number of updated parameters in the model
adaptation stage, and M0 is the normalization constant. M0

is set to 108 because most existing vision backbone model
size are in this magnitude, e.g. ViT-Base (80M parameters).

The experimental results of measured average accuracy
across the 20 datasets in the low-data regime and under the
5-shot setting using random seeds of 0, 1, and 2 are shown
in Table 2. As observed, the parameter cost of linear-probing
is the lowest while that of full-model fine-tuning is the high-
est. Our method has the highest average accuracy and re-
mains the ideal approach with the optimum tradeoff: our
method has much less trainable parameters than other adap-
tation methods — the second lowest and is only higher than
Linear-probing. From the performance-efficiency trade-off
metric, it can also be seen that ours has the highest PE.

To further compare our method with SOTA methods for
NLP models and more baselines, we investigate the perfor-
mance of adaptation approaches in the full-data regime and
test under the full-shot setting. The results across the seven
datasets are shown in Table 3. In our analytical experiments,
we first observe that Full-model Fine-tuning has the highest
accuracy in both scenarios, serving as a performance upper
bound. Second, different efficient model adaptation meth-
ods exhibit diverse characteristics and perform differently on
the same task. Third, the results from CLIP are mostly con-
sistent with the results from Supervised ViT. This suggests
that the pretraining strategy may not affect the selection of
downstream model adaptation strategy much. Fourth, previ-
ous methods such as Adapter-tuning (Houlsby et al. 2019)
and LoRA (Hu et al. 2021) are still effective, and their ac-
curacy is substantially higher than naive baselines, includ-

ing BitFit and Attention-tuning regardless of the pretrained
checkpoint. Fifth, among naive baselines where only sub-
modules or task-specific classification heads are tuned, tun-
ing the parameters of the attention layer turns out to be a sur-
prisingly effective approach even compared to some SOTA
methods, though its parameter cost is significantly higher.
This further validates the effectiveness of our method by ap-
plying Kronecker Adaptation to attention weights. Finally,
our method outperforms all the SOTA methods borrowed
from the NLP community as well as their variants in both
scenarios.

Furthermore, the average number of trainable parameters
across seven datasets is also shown in Table 3. As can be
seen, our Kronecker Adaptation method contains the lowest
parameter cost compared with other SOTA methods. This
phenomenon is obviously noticeable when compared with
Full-model Fine-tuning, where our method takes less than
0.14% of trainable parameters of end-to-end Full-model
Fine-tuning but it can achieve comparable performance.

Local Intrinsic Dimension
Local intrinsic dimension (Li et al. 2018) informs us of
the importance of each module in the ViT and we select
submodules to perform Kronecker Adaptation based on the
measurement results of local instricsic dimension. We mea-
sure the local intrinsic dimension of the two fundamental ar-
chitectural components in the ViT — the MLP module and
the attention module. We use the remarkable Fastfood trans-
form (Le, Sarlós, and Smola 2014) to do the projection. The
accuracy results averaged across {1, 6, 12}-th ViT layers are
shown in Fig. 3. As a substantiating point to performing Kro-
necker Adapting on attention layers, it can be observed that
the attention module has a lower intrinsic dimension than the
MLP module (300 vs. 575) in the ViT.

Ablation Studies
We ablate our method and Adapter-tuning using the set-
tings in Table 3. In Table 4, several intriguing properties
are observed. First, applying KAdaptation to MLP mod-

822

Method CLIP Supervised ViT

CF10 CF100 SUN DTD FER FGVC STL Ave #Par CF10 CF100 SUN DTD FER FGVC STL Ave #Par

Commonly-used model adaptation methods for vision models

Finetune 97.7 85.4 73.8 79.0 69.8 59.0 99.7 80.6 88 99.0 92.4 75.0 72.4 68.2 52.6 99.6 79.9 86
Probing 94.8 80.1 72.4 75.4 67.3 49.7 98.4 76.9 0.1 96.3 87.7 70.1 72.7 60.1 45.0 98.7 75.8 0.1

SOTA methods for NLP models

BitFit 92.1 76.0 70.8 75.9 68.0 54.5 98.8 76.6 0.2 92.3 81.0 71.8 72.6 60.4 45.9 99.0 74.7 0.4
Adapter 94.7 81.4 77.1 78.0 68.4 55.3 99.0 79.1 1.2 98.4 90.6 74.2 71.0 63.4 52.4 99.3 78.5 1.5

AdapterDrop 93.3 78.3 71.4 77.1 67.1 51.3 98.0 76.6 0.1 96.8 88.4 72.3 70.2 46.9 35.6 99.6 72.8 0.2
LoRA 95.1 78.1 80.8 78.1 67.7 55.8 99.2 79.3 0.2 98.7 90.6 73.6 70.4 62.7 54.9 99.4 78.6 0.2

Baseline methods developed in this work

TF-Probing 95.6 80.1 74.3 75.9 67.6 50.9 98.5 77.6 3.2 96.5 86.9 76.7 72.0 60.7 45.5 99.0 76.8 3.2
LoRA-Fix 92.5 77.1 60.0 77.7 65.5 44.4 88.6 72.3 0.1 96.2 88.3 72.0 65.5 53.4 51.7 99.0 75.2 0.2
LN-tuning 82.5 76.6 66.7 72.4 61.0 37.6 99.1 70.8 0.1 92.2 71.7 72.0 69.0 52.7 51.0 98.8 72.5 0.1
Att-tuning 96.8 81.8 73.1 75.0 62.2 54.2 97.6 77.2 41 93.9 85.7 73.8 69.2 55.2 51.9 99.2 75.6 28

LePE-tuning 95.1 78.9 68.0 75.4 65.2 54.0 98.0 76.4 0.1 93.7 90.8 73.2 69.8 60.0 49.3 99.1 76.6 0.2
RPB-tuning 94.7 77.1 68.4 75.2 65.1 54.1 97.9 76.1 0.1 96.7 87.0 72.4 70.4 50.9 51.4 98.9 75.4 0.2

KAdaptation 95.9 84.8 74.0 78.1 69.0 56.0 99.2 79.6 0.1 97.9 91.2 75.1 71.4 63.8 55.5 99.4 79.2 0.1

Table 3: The results comparison on Full-model Fine-tuning (Finetune), Linear-probing (Probing), BitFit, Adapter-tuning
(Adapter), AdapterDrop, LoRA, Transformer-probing (TF-Probing), LoRA-Fix, LayerNorm Tuning (LN-tuning), Attention
Tuning (Att-tuning), LePE Tuning (LePE-Tuning), Relative Position Bias Tuning (RPB-Tuning), and KAdaptation (Ours)
across CIFAR10 (CF10) (Krizhevsky and Hinton 2009), CIFAR100 (CF100) (Krizhevsky and Hinton 2009), SUN397
(SUN) (Xiao et al. 2010), DTD (Cimpoi et al. 2014), STL10 (STL) (Coates, Ng, and Lee 2011), FGVCAircraft (FGVC) (Maji
et al. 2013), and FER2013 (FER) (Goodfellow et al. 2013) datasets in terms of average accuracy (%) and number of trainable
parameters (in millions) (#Par).

𝑑𝑑! = 575𝑑𝑑! = 300

Dimension

A
cc

ur
ac

y
(%

) 90% of best
performance

best
performance

Figure 3: Validation Accuracy vs. Subspace Dimension d of
MLP and the attention module for Supervised ViT on CI-
FAR100. The local intrinsic dimension dt of the attention
module is lower than that of the MLP.

ules performs worse than the original method where we ap-
ply KAdaptation to attention modules. This phenomenon
is consistent with our findings from naive baseline experi-
ments and intrinsic dimension experiments. Second, we test
another variant of Adapter-tuning. Instead of inserting two
Adapters after the attention and feedforward modules re-
spectively following Houlsby et al. (2019), we add Adapters
in the attention layers. The standard Adapter-tuning out-
performs this variance, indicating the effectiveness of the
vanilla Adapter-tuning when it is adapted to vision tasks us-
ing vision transformers.

Method Average Accuracy

Adapters on attention layer 54.1
Standard Adapter-tuning 87.7
Kronecker Adaptation to MLP 86.6
Kronecker Adaptation 88.1

Table 4: Kronecker Adaptation and Adapter-tuning ablation
experiments with Supervised ViT on CIFAR10 (Krizhevsky
and Hinton 2009), CIFAR100 (Krizhevsky and Hinton
2009), and SUN397 (Xiao et al. 2010). We report the av-
erage accuracy (%) across the three datasets.

Conclusion
In this paper, we conduct the first comprehensive compar-
ison of efficient model adaptation on the image classifica-
tion tasks using vision transformers. We also propose a bet-
ter parameter-efficient model adaptation strategy in the prin-
ciple of subspace training and parameterized hypercomplex
multiplication, which achieves the best tradeoff between ac-
curacy and parameter efficiency. We release a benchmark by
providing the implementation of all the methods studied in
this paper, which could be directly used in developing fu-
ture efficient model adaptation strategies and will hopefully
facilitate research in this area. Looking into the future, we
plan to explore the generalization of our method to other
tasks, especially in the vision-and-language domain.

823

References
Aghajanyan, A.; Zettlemoyer, L.; and Gupta, S. 2020. Intrin-
sic Dimensionality Explains the Effectiveness of Language
Model Fine-Tuning. arXiv:2012.13255 [cs].

Baevski, A.; and Auli, M. 2019. Adaptive Input Represen-
tations for Neural Language Modeling. In ICLR.

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In European Conference on Computer
Vision, 213–229. Springer.

Chollet, F. 2017. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 1251–
1258.

Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; ; and
Vedaldi, A. 2014. Describing Textures in the Wild. In Pro-
ceedings of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Coates, A.; Ng, A.; and Lee, H. 2011. An analysis of single-
layer networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on artificial
intelligence and statistics, 215–223. JMLR Workshop and
Conference Proceedings.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.;
Chen, D.; and Guo, B. 2021. Cswin transformer: A general
vision transformer backbone with cross-shaped windows.
arXiv preprint arXiv:2107.00652.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

Edalati, A.; Tahaei, M.; Rashid, A.; Nia, V. P.; Clark, J. J.;
and Rezagholizadeh, M. 2021. Kronecker decomposition
for gpt compression. arXiv preprint arXiv:2110.08152.

Goodfellow, I. J.; Erhan, D.; Carrier, P. L.; Courville, A.;
Mirza, M.; Hamner, B.; Cukierski, W.; Tang, Y.; Thaler, D.;
Lee, D.-H.; et al. 2013. Challenges in representation learn-
ing: A report on three machine learning contests. In Inter-
national conference on neural information processing, 117–
124. Springer.

He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; and Neu-
big, G. 2021. Towards a unified view of parameter-efficient
transfer learning. arXiv preprint arXiv:2110.04366.

Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; de
Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and Gelly,
S. 2019. Parameter-Efficient Transfer Learning for NLP.
arXiv:1902.00751 [cs, stat].

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. arXiv:2106.09685 [cs].

Kingma, D.; and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. International Conference on Learning
Representations.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Depart-
ment of Computer Science, University of Toronto.
Le, Q. V.; Sarlós, T.; and Smola, A. J. 2014. Fastfood:
Approximate kernel expansions in loglinear time. arXiv
preprint arXiv:1408.3060.
Li, C.; Farkhoor, H.; Liu, R.; and Yosinski, J. 2018. Mea-
suring the Intrinsic Dimension of Objective Landscapes.
arXiv:1804.08838 [cs, stat].
Li, C.; Liu, H.; Li, L. H.; Zhang, P.; Aneja, J.; Yang, J.;
Jin, P.; Lee, Y. J.; Hu, H.; Liu, Z.; and Gao, J. 2022a.
ELEVATER: A Benchmark and Toolkit for Evaluating
Language-Augmented Visual Models. arXiv preprint.
Li, C.; Liu, H.; Li, L. H.; Zhang, P.; Aneja, J.; Yang,
J.; Jin, P.; Lee, Y. J.; Hu, H.; Liu, Z.; et al. 2022b.
ELEVATER: A Benchmark and Toolkit for Evaluating
Language-Augmented Visual Models. arXiv preprint
arXiv:2204.08790.
Li, X. L.; and Liang, P. 2021. Prefix-Tuning: Optimiz-
ing Continuous Prompts for Generation. arXiv:2101.00190
[cs].
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.;
and Guo, B. 2021. Swin Transformer: Hierarchical Vision
Transformer Using Shifted Windows. arXiv:2103.14030
[cs].
Mahabadi, R. K.; Henderson, J.; and Ruder, S. 2021. Com-
pacter: Efficient Low-Rank Hypercomplex Adapter Layers.
arXiv:2106.04647 [cs].
Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151.
McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, 109–165. Elsevier.
Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.-
M.; Rothchild, D.; So, D.; Texier, M.; and Dean, J. 2021.
Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350.
Pfeiffer, J.; Kamath, A.; Rücklé, A.; Cho, K.; and Gurevych,
I. 2021. AdapterFusion: Non-Destructive Task Composition
for Transfer Learning. arXiv:2005.00247 [cs].
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog, 1(8): 9.

824

Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250.
Rücklé, A.; Geigle, G.; Glockner, M.; Beck, T.; Pfeiffer, J.;
Reimers, N.; and Gurevych, I. 2021. AdapterDrop: On the
Efficiency of Adapters in Transformers. arXiv:2010.11918
[cs].
Ruder, S. 2016. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747.
Sainath, T. N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; and
Ramabhadran, B. 2013. Low-rank matrix factorization for
deep neural network training with high-dimensional output
targets. In 2013 IEEE international conference on acoustics,
speech and signal processing, 6655–6659. IEEE.
Sung, Y.-L.; Cho, J.; and Bansal, M. 2022. Vl-
adapter: Parameter-efficient transfer learning for vision-and-
language tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5227–5237.
Tahaei, M. S.; Charlaix, E.; Nia, V. P.; Ghodsi, A.; and Reza-
gholizadeh, M. 2021. Kroneckerbert: Learning kronecker
decomposition for pre-trained language models via knowl-
edge distillation. arXiv preprint arXiv:2109.06243.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.
Wen, Y.; Tran, D.; and Ba, J. 2020. Batchensemble: an alter-
native approach to efficient ensemble and lifelong learning.
arXiv preprint arXiv:2002.06715.
Xiao, J.; Hays, J.; Ehinger, K. A.; Oliva, A.; and Torralba,
A. 2010. Sun database: Large-scale scene recognition from
abbey to zoo. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 3485–3492.
IEEE.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understanding. In Advances in
neural information processing systems, 5754–5764.
Zaken, E. B.; Ravfogel, S.; and Goldberg, Y. 2021. BitFit:
Simple Parameter-Efficient Fine-Tuning for Transformer-
Based Masked Language-Models. arXiv:2106.10199 [cs].
Zhang, A.; Tay, Y.; Zhang, S.; Chan, A.; Luu, A. T.;
Hui, S. C.; and Fu, J. 2021. Beyond fully-connected
layers with quaternions: Parameterization of hypercom-
plex multiplications with 1/n parameters. arXiv preprint
arXiv:2102.08597.

825

