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Abstract

Point annotations are considerably more time-efficient than
bounding box annotations. However, how to use cheap point
annotations to boost the performance of semi-supervised
object detection remains largely unsolved. In this work,
we present Point-Teaching, a weakly semi-supervised ob-
ject detection framework to fully exploit the point annota-
tions (WSSOD-P). Specifically, we propose a Hungarian-
based point-matching method to generate pseudo labels for
point-annotated images. We further propose multiple instance
learning (MIL) approaches at the level of images and points
to supervise the object detector with point annotations. Fi-
nally, we propose a simple-yet-effective data augmentation,
termed point-guided copy-paste, to reduce the impact of the
unmatched points. Experiments demonstrate the effectiveness
of our method on a few datasets and various data regimes.
In particular, Point-Teaching outperforms the previous best
method Group R-CNN by 3.1 AP with 5% fully labeled
data and 2.3 AP with 30% fully labeled data on MS COCO
dataset. We believe that our proposed framework can largely
lower the bar of learning accurate object detectors and pave
the way for its broader applications. The code is available at
https://github.com/YongtaoGe/Point-Teaching.

Introduction
Great progress has been achieved in object detection and
segmentation in recent years (Ren et al. 2015; Redmon et al.
2016; Lin et al. 2017; Tian et al. 2019; He et al. 2017; Tian,
Shen, and Chen 2020; Wang et al. 2021). Accurate object de-
tectors can be trained using large fully-labeled datasets (Lin
et al. 2014; Gupta, Dollár, and Girshick 2019). However, an-
notating large-scale object detection datasets are extremely
expensive and time-consuming, as it requires the annotators
to find all the objects of interest in the images and to draw a
tight bounding box/segmentation mask for each of them.

How to train object detectors with fewer annotations has
attracted increasing attention. Weakly supervised object de-
tection (WSOD) methods (Song et al. 2014; Cinbis, Ver-
beek, and Schmid 2014; Bilen and Vedaldi 2016; Kan-
torov et al. 2016; Tang et al. 2017; Ren et al. 2020a) re-
duce the cost via replacing the box annotations with cheaper
annotations, e.g., image-level categories, point clicks and
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squiggles. Semi-supervised object detection (SSOD) meth-
ods (Jeong et al. 2019; Sohn et al. 2020; Liu et al. 2021;
Zhou et al. 2021b; Yang et al. 2021) train object detectors
with a small amount of fully-labeled images and large-scale
unlabeled images. However, although both ways can reduce
the annotation cost, the performance of the trained detectors
is still far behind the fully-supervised counterpart.

In this paper, we aim to train object detectors with consid-
erably fewer annotations while achieving comparable per-
formance with the fully-supervised counterpart. To achieve
this goal, there are two key problems: 1) what annotation
formats to use and 2) how to train object detectors with
such annotations. A cheap but effective annotation format
for object detection should be 1) simple to annotate, 2) con-
venient to store and use 3) localization-aware. Among var-
ious weak formats, point click annotation stands out as it
meets all the requirements. Point click provides a stronger
prior of object location compared with image-level cate-
gory annotation. Meanwhile, it does not require detailed
and expensive location information such as object bounding
box or segmentation masks, thus being considerably more
time-efficient. According to (Papadopoulos et al. 2017a) and
(Cheng, Parkhi, and Kirillov 2022), a box annotation takes 7
seconds while a point annotation takes 0.8-0.9 seconds. To
achieve the best balance of detection performance and anno-
tation cost, we adopt mixed annotation formats to construct
the training dataset. In the following, we use point annotated
setting to represent such a dataset which comprises a small
number of fully annotated images and massive point anno-
tated images. Under this setting, we are able to obtain abun-
dant annotations in a relatively cheaper manner (Su, Deng,
and Fei-Fei 2012; Russakovsky, Li, and Li 2015).

To fully utilize both the limited box annotations and
abundant point annotations, we propose a novel weakly
semi-supervised object detection framework, termed Point-
Teaching. Inspired by Mean Teacher (Tarvainen and Valpola
2017) and Unbiased Teacher (Liu et al. 2021), we con-
struct a Student model and a Teacher model with the same
architecture. In each training iteration, weakly augmented
point-labeled images are fed to the Teacher model to gen-
erate reliable pseudo-bounding boxes. The Student is then
optimized on fully labeled and pseudo-labeled images with
strong augmentation. The Teacher is updated via the Expo-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

667



nential Moving Average (EMA) of the Student. Within this
basic framework, we propose three key components tailored
for point annotations. First, we propose the hungarian-based
point matching method to generate pseudo labels for point
annotated images. A spatial cost and a classification cost are
introduced to find the bipartite matching between point an-
notations and predicted box proposals.

We further propose multiple instance learning (MIL) ap-
proaches at the level of images and points to supervise the
object detector with point annotations. Inspired by previ-
ous WSOD works (Bilen and Vedaldi 2016; Kantorov et al.
2016; Tang et al. 2017; Ren et al. 2020a), we perform image-
wise MIL via treating the whole image as a bag of object
proposals. These proposals are aggregated for predicting all
presented classes in the image, supervised by image-level la-
bels during the training. To leverage the location information
of point annotations, we propose point-wise MIL, which se-
lects the highest detection score proposal with the same class
label as the only positive and suppresses the rest of propos-
als as negatives around the given point annotation. Finally,
we propose the point-guided copy-paste augmentation strat-
egy. The motivation is that there still exist some point anno-
tations that have not been matched any proposals after the
point matching. To further utilize those unmatched points,
we maintain an online object bank and paste same-class ob-
jects to unmatched point annotations during the training. The
point-guided copy-paste makes the distribution of generated
pseudo labels closer to that of the ground truth.

Experiments demonstrate the effectiveness of our method
on different datasets and various data regimes. Point-
Teaching has the following advantages: 1) Our method can
boost the performance of existing SSOD methods, e.g.,
over the strong semi-supervised baseline method Unbiased
Teacher (Liu et al. 2021), our detector achieves significant
improvements of 9.1 AP with 0.5% fully labeled data on MS
COCO. 2) Our method outperforms all existing WSSOD-P
methods in all data regimes by a large margin. In partic-
ular, when using 30% fully labeled data from MS COCO,
our method outperforms previous state-of-the-art WSSOD-
P method Group R-CNN (Zhang et al. 2022) by 2.3 AP and
Point DETR (Chen et al. 2021) by 3.4 AP.

Our main contributions are summarized as follows:

• We propose a simple and effective training framework
for weakly semi-supervised object detection, termed
Point-Teaching, which integrates point annotations into
semi-supervised learning. The key components of Point-
Teaching include Hungarian-based point-matching ap-
proach, image-wise and instance-wise MIL loss, and
point-guided copy-paste augmentation.

• Extensive experiments are conducted on MS-COCO and
VOC datasets to verify the effectiveness of our method.
Point-Teaching significantly outperforms the existing
methods (Chen et al. 2021; Zhang et al. 2022) and greatly
narrows the gap between weakly semi-supervised and
fully-supervised object detectors.

• We further extend Point-Teaching from WSSOD-P to
weakly semi-supervised instance segmentation (WSSIS)
and weakly-supervised instance segmentation (WSIS),

setting a strong baseline for the two challenging tasks.

Related Work

Fully-supervised object detection. With the large-scale
fully annotated detection datasets (Lin et al. 2014; Gupta,
Dollár, and Girshick 2019), existing modern detectors have
obtained great improvements in the object detection task.
These detectors can be divided into three categories: two-
stage detectors (Ren et al. 2015; Wu et al. 2020), one-stage
detectors (Redmon et al. 2016; Liu et al. 2016; Tian et al.
2019) and the recent end-to-end detectors (Carion et al.
2020; Zhu et al. 2021; Zhou et al. 2021a). Faster RCNN
is a popular two-stage detector that first generates region
proposals and then refines these proposals in the second
stage. Unlike two-stage detectors, one-stage detectors, such
as YOLO (Redmon et al. 2016) and FCOS (Tian et al. 2019),
directly output dense predictions of classification and re-
gression without refinement. Recently, DETR (Carion et al.
2020) introduces the transformer encoder-decoder architec-
ture to object detection and effectively removes the need
for many hand-craft components, e.g. predefined anchors
and non-maximum suppression (NMS) post-processing. De-
spite the great success, these detectors are trained with large
amounts of expensive fully-labeled data. Therefore, a lot of
work has been proposed to reduce the annotation cost.

Weakly-supervised object detection. There exist many
WSOD works that focus on training object detector with
weakly-labeled data. Most previous studies have two phases:
proposal mining and proposal refinement. The proposal min-
ing phase is formulated as the MIL problem to implicitly
mine object locations with image-level labels. The proposal
refinement phase aims at refine the object location with the
predictions from the proposal mining phase. WSDDN (Bilen
and Vedaldi 2016) proposes a two-stream network to simul-
taneously perform region selection and classification. The
region-level scores from these two streams are then element-
wise multiplied and transformed to image-level scores by
summing over all regions. Following WSDDN (Bilen and
Vedaldi 2016), ContextLocNe (Kantorov et al. 2016) intro-
duces context information. OICR (Tang et al. 2017) presents
a multi-stage refinement strategy to avoid the MIL detector
being trapped in the local minimum. PCL (Tang et al. 2020)
proposes to refine instance classifiers by clustering region
proposals in an image to different clusters. MIST (Ren et al.
2020a) proposes a multiple-instance self-training frame-
work. OIM (Lin et al. 2020) effectively mines all possible
instances by introducing information propagation on spatial
and appearance graphs. However, propagating image-level
weak supervision to instance-level training data inevitably
involves a large amount of noisy information and the perfor-
mance of these methods are limited.

Semi-supervised object detection. Besides WSOD, SSOD
addresses the problem by using a large amount of unlabeled
data, together with a small set of labeled data. One pop-
ular SSOD technique is consistency regularization, which
aims to regularize the detector’s prediction with an image of
different augmentations. CSD (Jeong et al. 2019) enforces
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the detector to make consistent predictions on an input im-
age and its horizontally flipped counterpart. ISD (Jeong
et al. 2021) proposes an interpolation-based method for
SSOD. Another emerging SSOD approach is pseudo la-
beling, where a teacher model is trained on labeled data
to generate pseudo labels on unlabeled data, and a student
model is then trained on both labeled and pseudo-labeled
data. STAC (Sohn et al. 2020) pre-trains a model on la-
beled data and fine-tunes it on both labeled and unlabeled
data iteratively. Instance-Teaching (Zhou et al. 2021b) intro-
duces a co-rectify scheme for alleviating confirmation bias
of pseudo labels. Unbiased Teacher (Liu et al. 2021) pro-
poses a class-balance loss to address the class imbalance is-
sue in pseudo-labels and refine the teacher model via Expo-
nential Moving Average (EMA). DenseTeacher (Zhou et al.
2022) replaces the sparse pseudo-boxes with the dense pre-
diction as a united form of pseudo-label.

Weakly semi-supervised object detection. Image-level an-
notation is a kind of weak annotation compared to box anno-
tation. However, it is not optimal for object detection since
the lack of instance-level information. Recently, point su-
pervision (Ren et al. 2020b; Chen et al. 2021; Papadopoulos
et al. 2017b,a) has been employed in WSSOD. Papadopou-
los et al. (Papadopoulos et al. 2017b,a) collect click annota-
tion for the PASCAL VOC dataset and train an object detec-
tor through iterative multiple instance learning. UFO2 (Ren
et al. 2020b) proposes a unified object detection framework
that can handle different forms of supervision simultane-
ously, including box annotation and point annotation. Point
DETR (Chen et al. 2021) extends DETR (Carion et al. 2020)
by adding a point encoder and thus can convert point annota-
tions to pseudo box annotations. Group R-CNN (Zhang et al.
2022) proposes to use instance-level proposal grouping for
each point annotation and thus can get a high recall rate. In
this paper, we follow this setting and introduce several meth-
ods for improving the performance of WSSOD-P.

Method

Preliminaries

Problem definition. In this work, we study weakly semi-
supervised object detection under the point annotated set-
ting, in which the dataset consists of a small set of fully
annotated images DF = {(Ii, {b̂i,j})}NF

i=1 and a large set
of point annotated images DP = {(Ii, {p̂i,j})}NP

i=1. NF and
NP are the numbers of fully labeled and point labeled im-
ages respectively. I denotes fully or point labeled images,
i is the image index and j is the instance index of image
Ii. For fully annotated images, the annotations {b̂i,j} in-
cludes box coordinates (b̂x1

i,j , b̂
y1

i,j , b̂
x2
i,j , b̂

y2

i,j) and class label
b̂li,j . For point annotated images, the annotations {p̂i,j} in-
cludes point location (p̂xi,j , p̂

y
i,j) and class label p̂li,j . For

point-annotated images, we only need to randomly annotate
one point for each object instance, thereby the annotation
cost can be greatly reduced.

Overall Architecture
For a fair comparison, we take Faster RCNN with FPN (Ren
et al. 2015) and ResNet-50 backbone (He et al. 2016) as
our baseline object detector. Compared to the original Faster
RCNN network (Ren et al. 2015), we add two additional
parallel branches to the RCNN head, termed Objectness-
I branch and the Objectness-P branch, respectively. The
Objectness-I branch is used to suppress the likelihood of
inconsistent classification predictions with image-level an-
notations and is optimized with image-wise MIL loss. The
Objectness-P branch is developed to measure the quality of
pseudo boxes at point level and is supervised with point-
wise MIL loss. The key difference is that the Objectness-I
branch selects the most probable region proposals for each
class from the image-level bag with different classes. While
the Objectness-P branch performs binary classification to se-
lect the most probable region proposal from the point-level
bag that only contains region proposals of the same class.

The training pipeline of Point-Teaching is represented
in Fig. 1. Inspired by Mean Teacher (Tarvainen and Valpola
2017) and Unbiased Teacher (Liu et al. 2021), there are two
models with the same architecture, a student model and a
teacher model. In each training iteration, weakly augmented
point-labeled images from the dataset DP are firstly fed to
the Teacher for reliable pseudo labels; the Student is then op-
timized by labels from fully-labeled dataset DF , and pseudo
labels generated from the Teacher with strong augmentation;
Finally, the Teacher is updated by EMA of the Student. Dif-
ferent from the original Unbiased Teacher (Liu et al. 2021),
there are three key components within the proposed frame-
work: hungarian-based point matching strategy, point su-
pervision with image-wise and instance-wise MIL loss, and
point-guided copy-paste augmentation.

Point Matching
In order to find the best matching between the annotated
points and the predicted boxes, i.e., to choose the best box
prediction for each point annotation, we propose a sim-
ple point matching method, termed hungarian-based point
matching. Specifically, we design two types of matching
costs between annotated points and predicted boxes: a spa-
tial cost and a classification cost. For the spatial cost, we
consider two factors: 1) Predicted boxes that share the same
class label with the given point annotation should have a low
cost. 2) Predicted boxes with point annotations inside lead
to a low cost. For the classification cost, higher confidence
scores of the Classification branch and Objectness-P branch
lead to a lower cost.

Formally, the cost matrix Lmatch ∈ RNp×Nb is defined as:

Lmatch(i, j) = (1− 1[p̂i in bj ] · 1[p̂li = blj ])︸ ︷︷ ︸
spatial cost

+ (1− σ(sj,p̂l
i
) · σP(sP

j,1))︸ ︷︷ ︸
classification cost

,
(1)

where i is the index of the annotated points, and j is the in-
dex of the predicted boxes. Lmatch(i, j) denotes the matching
cost between the annotated point p̂i and the predicted box bj .
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Figure 1: The training process of Point-Teaching. In each training iteration, the Teacher model first generates pseudo box
annotations for the point-labeled images with weak augmentation. The Student model is then trained on fully-labeled images
with weak augmentation and point-labeled images with strong augmentation. The Teacher model is gradually updated by the
student model via EMA. Image-wise MIL loss constructs a bag containing all predicted boxes, and the number of positive boxes
in the bag is uncertain. The point-wise MIL loss constructs a bag for each annotated point, and there is only one positive box in
these bags.

Np is the number of annotated points, and Nb is the number
of predicted boxes. p̂li indicates the class label of the anno-
tated point p̂i, blj indicates the class label of the predicted
box bj . We use s ∈ RNb×(C+1) and sP ∈ RNb×2 to denote
the outputs of Classification and Objectness-P branches, re-
spectively, where C denotes the number of categories ex-
cluding the background. σ(·) represents the softmax opera-
tion on the Classification output along the second dimension.
σP(·) represents the softmax operation on the Objectness-P
output along the second dimension.

Once the cost matrix is defined, the point matching
problem could be mathematically formulated as a bipartite
matching problem as:

π̂ = argmin
π∈SNb

Np∑
i

Lmatch (i, π(i)) , (2)

where π ∈ SNb
indicates a permutation of Nb elements.

This optimal assignment can be solved with the Hungarian
algorithm (Kuhn 1955).

MIL Loss for Images and Points
In this section, we present the overall loss function L of
Point-Teaching framework.

L = Ldet + λ1LI
mil + λ2LP

mil. (3)
As shown in Eq. (3), the overall loss L consists of three
parts: Ldet , LI

mil and LP
mil, respectively. Ldet represents the

losses of the original object detector, e.g. classification loss
and regression loss in RPN and ROI head of Faster RCNN.
LI

mil is image-wise MIL loss, which is proposed in WS-
DDN (Bilen and Vedaldi 2016). LP

mil is our proposed point-
wise MIL loss, which is defined below. λ1 and λ2 are hyper-
parameters used to balance these three loss terms.

Image-wise MIL loss. Given the point annotations, we can
easily obtain image-level labels {ϕ̂c, c = 1, · · · , C}. Image

labels can help improve the performance of object detection
in two ways. First, for categories that do not present in the
image, the image-level supervision could help decrease the
confidence score of the corresponding predicted boxes. Sec-
ond, it helps detect the objects of the categories that present
in the image.

Taking hundreds of predicted boxes as a bag, we only
know the class labels of the entire bag and do not know the
individual class label of each predicted box. Let us denote
by s, sI ∈ RNb×C the output of Classification branch and
Objectness-I branch, respectively; σI(·) the softmax opera-
tion on the first dimension. We share ROI features of box
proposals with two fully-connected layers and then produce
two score matrices σ (s) , σI

(
sI
)

∈ RNb×C by Classifi-
cation branch and Objectness-I branch, respectively. Then
the element-wise product of the two score matrix is a new
score matrix Xs ∈ RNb×C , which can be formulated as:
Xs = σ (s) ⊙ σI

(
sI
)
. Finally, a sum pooling is applied to

obtain image-level classification scores:

ϕc =

Nb∑
i=1

Xs
ic =

Nb∑
i=1

[
σ (si,c)⊙ σI

(
sIi,c

)]
. (4)

Based on the obtained image-level labels and image-level
classification scores, the introduced image-wise MIL loss is
defined as the sum of binary cross-entropy loss across all
categories:

LI
mil = −

C∑
c=1

(
ϕ̂c log(ϕc) + (1− ϕ̂c) log(1− ϕc)

)
, (5)

where C is the number of categories, ϕ̂c ∈ {0, 1}C is the
image-level one-hot labels, and ϕc denotes the predicted
image-wise classification scores.

Point-wise MIL loss. To perform multiple instance learn-
ing at the point level, we construct a bag with part of the
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predicted boxes for each annotated point, as shown in Fig. 1.
For example, the constructed bag Ψi for the annotated point
p̂i consists of those predicted boxes that enclose point p̂i
and have the same class label as p̂i. In other words, Ψi =
{bj | 1[p̂i in bj ] · 1[p̂li = blj ]}, in which p̂li denotes the class
label of annotated point p̂i, and blj denotes the class label of
the predicted box bj . Unlike the bag of image-wise MIL loss,
there is only one positive box proposal inside Ψi, defined as
the best-predicted box corresponding to the annotated point
p̂i. Assuming we know how to calculate the bag-level confi-
dence score φi for bag Ψi, we can define the proposed point-
wise MIL loss as:

LP
mil = −

Np∑
i=1

log(φi), (6)

where Np denotes the number of annotated points, and LP
mil

is the sum of the binary cross-entropy loss for all annotated
points.

Next, we explain how to compute the bag-level confi-
dence score φi corresponding to bag Ψi. To help find out
the best box proposal inside Ψi, we add the Objectness-P
branch. This branch performs binary classification to pre-
dict whether the box is the best prediction inside bag Ψi,
and its output is denoted as sP ∈ RN×2. Since there should
be only one positive box inside the bag Ψi, we use a slightly
different way to compute φi. As shown in Eq. (7):

φi =

|Ψi|∑
k=1

[
σ(sk,p̂l

i
)⊙ σP(sP

k,1)⊙
∏

m!=k

σP(sP
m,0)

]
, (7)

in which σ(·) and σP(·) denote softmax operation as de-
scribed earlier, |Ψi| indicates the number of predicted boxes
in bag Ψi. Comparing Eq. (4) and Eq. (7), we can find that
the element-wise multiplication before accumulation is dif-
ferent. Taking the kth predicted box in bag Ψi as an example.
In addition to multiplying the positive confidence score of
the two branches (i.e., σ(sk,p̂l

i
) ·σP(sP

k,1)), we also multiply
the negative confidence scores of the Objectness-P branch
of the remaining boxes in bag Ψi (i.e.,

∏
m!=k σ

P(sP
m,0)).

With the help of negative confidence scores, the proposed
point-wise MIL loss can encourage that each bags have and
only have one positive box with the highest positive confi-
dence score, while the positive confidence score of remain-
ing boxes is suppressed. The pseudo-code of point-wise MIL
loss based on PyTorch is provided in the supplementary.

Point-Guided Copy-Paste
During the point matching, we observe that some of the an-
notated points are not matched with any predicted boxes, and
these unmatched points usually correspond to difficult in-
stances to be detected (e.g. instances from minority classes).
Ignoring these unmatched points may cause the class im-
balance of the generated pseudo boxes. The confirmation
bias in pseudo boxes further reinforces the imbalance is-
sue. To alleviate the impact of these unmatched points, we
propose a simple data augmentation strategy termed point-
guided copy-paste. Different from naively copying ground-
truth boxes from one labeled image to another unlabeled im-
age like Simple Copy-Paste (Ghiasi et al. 2021), we maintain

a dynamic object bank as depicted in Fig. 1, which will be
updated with ground truth object patches (cropped based on
box annotation) from fully labeled images and pseudo ob-
ject patches from point labeled images during each training
iteration. For each unmatched point after the point match-
ing stage, we randomly select an object patch with the same
class label from the object bank, and paste the selected patch
near the point on the original image. The effectiveness of
point-guided copy-paste augmentation is verified in Table 7.

Experiment
Datasets
We mainly benchmark our proposed method on the large-
scale dataset MS-COCO (Lin et al. 2014). Following (Chen
et al. 2021), we synthesize the point annotations by ran-
domly sampling a point inside the annotated box. Then we
discard the box annotations of point-labeled images. Specif-
ically, We randomly selected 0.5%, 1%, 2%, 5% , 10% and
30% from the 118k labeled images as the fully-labeled set,
and the remainder is used as the point-labeled set. Model
performance is evaluated on the COCO2017 val set. We also
conduct experiments on PASCAL VOC (Everingham et al.
2010). The VOC results are in Appendix.

Implementation Details
We implement our proposed Point-Teaching framework
based on the Detectron2 toolbox (Wu et al. 2019). For fair
comparison with existing works (Sohn et al. 2020; Zhou
et al. 2021b; Liu et al. 2021), we take Faster RCNN with
FPN (Ren et al. 2015) as our object detector and ResNet-
50 (He et al. 2016) as backbone. The feature weights are
initialized by the ImageNet pretrained model. Our method
mainly contains three hyperparameters: τ , λ1 and λ2, which
indicates the score threshold of the pseudo boxes, the loss
weight of image-wise MIL loss and the loss weight of point-
wise MIL loss, respectively. We set τ = 0.05, λ1 = 1.0 and
λ2 = 0.05 unless otherwise specified.

We use AP50:95 (denoted as AP) as evaluation metric. On
Pascal VOC, the models are trained for 40k iterations on
8 GPUs and with batch size 32, which contains 16 box-
labeled images and 16 point-labeled images respectively.
Other training and testing details are the same as the orig-
inal Unbiased-Teacher (Liu et al. 2021).

Ablation Study
When conducting ablation experiments, we choose 1% MS-
COCO protocol and take a quick learning schedule of 90k
iterations and a smaller batch size of 32, containing 16 box-
labeled images and 16 point-labeled images, respectively.

Effects of point location. We verify the effectiveness of
point annotation location to Point-Teaching between two
point location schemes: a center point and an arbitrary point
on objects. As shown in Table 2, when using the center point
on objects as our annotation, Point-Teaching achieves 25.2
AP. While we randomly sample points inside the box anno-
tation, the performance only slightly drops 0.01% AP, show-
ing that Point-Teaching is insensitive to the location of point
annotation.
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Method Type 0.5% 1% 5% 10% 30%

Supervised FSOD 6.83 ± 0.15 9.05 ± 0.16 18.47 ± 0.22 23.86 ± 0.81 31.99 ± 0.82

CSD (Jeong et al. 2019) SSOD 7.41 ± 0.21 10.51 ± 0.06 18.63 ± 0.07 24.46 ± 0.08 -
STAC (Sohn et al. 2020) SSOD 9.78 ± 0.53 13.97 ± 0.35 24.38 ± 0.12 28.64 ± 0.21 -

Instant-Teaching (Zhou et al. 2021b) SSOD - 18.05 ± 0.15 26.75 ± 0.05 30.40 ± 0.05 -
Unbiased Teacher (Liu et al. 2021) SSOD 16.94 ± 0.23 20.16 ± 0.12 27.84 ± 0.11 31.39 ± 0.10 -

DenseTeacher (Zhou et al. 2022) SSOD - 22.38 ± 0.31 27.20 ± 0.20 37.13 ± 0.12 -

Point DETR (Chen et al. 2021) WSSOD-P - - 26.2 30.4 34.8
Group R-CNN (Zhang et al. 2022) WSSOD-P - - 30.1 32.6 35.4

Point-Teaching WSSOD-P 26.02 ± 0.09 28.34 ± 0.02 33.15 ± 0.07 35.18 ± 0.09 38.20 ± 0.10

Table 1: Comparison of our proposed Point-Teaching with other SSOD (without point-level labels) and WSSOD-P (with point-
level labels) methods on COCO val. set. All these models use R50-FPN as the backbone network. Point-Teaching are trained
with a batch size of 64 (32 fully-labeled images and 32 point-labeled images) and 180k iterations. Note that the upper bound of
100% fully supervised model is 40.2 AP (Wu et al. 2019).

Point Location AP50:95 AP50

random 25.18 48.26
center 25.19 48.28

Table 2: Comparison of the effectiveness of the point loca-
tion on the COCO validation set. ‘random’ and ‘center’ in-
dicate the annotation location on objects.

Point Matching AP50:95 AP50

None 20.2 36.5
Hungarian 25.2 48.3

Table 3: Comparison of detection accuracy on the COCO
val. set by varying the point matching methods when select-
ing pseudo box annotations.

Effects of point matching. We explore the impact of our
proposed Hungarian-based point matching method on the
model performance. In this experiment, we set the loss
weights of λ1 and λ2 to 0. As shown in Table 3, when point
matching is not used, the model reaches 20.2 AP, as reported
in Unbiased-Teacher (Liu et al. 2021). Taking point annota-
tions into consideration and using our proposed Hungarian
matching, the model reaches 25.2 AP, which improves the
AP with 5.0 absolute points.

λ1 λ2 AP50:95 AP50

0.5 25.00 47.88
1.0 0 25.66 49.04
1.5 25.01 48.46

Table 4: Comparison of detection accuracy on COCO val.
set when varying the loss weight λ1 of image-wise MIL loss.

Loss weight λ1 of image-wise MIL loss. We conduct exper-
iments to explore the effect of loss weight λ1 of image-wise
MIL loss. In these experiments, we use Hungarian-based

point matching and set the loss weight λ2 of point-wise MIL
loss to 0, i.e. the Objectness-P branch is not optimized dur-
ing training and the Objectness-P score is removed in Eq. (1)
when computing the cost matrix. As shown in Table 4, when
loss weight λ1 reaches 1.0, the model achieves the highest
AP. If not specified, in other experiments, we will set λ1 to
1.0 by default.

λ1 λ2 AP50:95 AP50

0.025 25.85 49.63
0 0.05 25.97 49.90

0.1 25.74 49.77
0.15 25.40 48.82

Table 5: Comparison of detection accuracy on COCO val.
set when varying the loss weight λ2 of point-wise MIL loss.

Loss weight λ2 of point-wise MIL loss. We conduct exper-
iments to explore the effect of loss weight λ2 of point-wise
MIL loss. In these experiments, we use Hungarian-based
point matching and set the loss weight λ1 of image-wise
MIL loss to 0. As shown in Table 5, when loss weight λ2

reaches 0.05, the model achieves the highest AP. If not spec-
ified, in other experiments, we will set λ2 to 0.05 by default.

τ λ1 λ2 AP50:95 AP50

0.01 26.24 50.71
0.05 1.0 0.05 26.28 50.44
0.1 26.17 50.01

0.15 26.19 49.94

Table 6: Comparison of detection accuracy on the COCO
val. set when varying the score threshold τ

Score threshold τ . The score threshold τ is used to filter
out low-quality pseudo boxes. We conduct experiments to
explore the effect of score threshold τ . When conducting
these experiments, we use Hungarian-based point matching
and set the loss weights of λ1 and λ2 to 1.0 and 0.05 re-
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spectively. As shown in Table 6, when τ reaches 0.05, the
model achieves the highest AP. If not specified, in other ex-
periments, we set τ to 0.05 by default.

H. PM I. MIL P. MIL P. CP AP50:95

20.2
✓ 25.2
✓ ✓ 25.7
✓ ✓ 26.0
✓ ✓ ✓ 26.3
✓ ✓ ✓ ✓ 27.3

Table 7: The effect of each element proposed in this work.
H. PM indicates hungarian-based point matching, I. MIL de-
notes image-wise MIL loss and P. MIL indicates point-wise
MIL loss, P. CP indicates point-guided copy-paste augmen-
tation.

Factor-by-factor experiment. We conduct a factor-by-
factor experiment on our proposed Hungarian-based point
matching, image-wise MIL loss, point-wise MIL loss, and
point-guided copy-paste. As shown in Table 7, each element
of our proposed Point-Teaching has a positive impact on the
performance of the model. When all these elements are com-
bined, the model reaches the highest performance, i.e., 27.3
AP.

Comparison with State-of-the-art Methods
We verify our method with previous studies on
COCO-standard dataset. As shown in Table 1, our method
consistently surpasses all previous SSOD models (CSD,
Instance Teaching, Unbiased Teacher) and WSSOD-P mod-
els (Group R-CNN and Point DETR) in all data regimes
that 0.5% to 30% data are fully-labeled. The results also
indicate that Point-Teaching is robust to fewer fully-label
data compared to previous methods, e.g. Point-Teaching
outperforms Point DETR (Chen et al. 2021) by 6.95 AP
and Group RCNN (Zhang et al. 2022) by 3.1 AP under 5%
COCO labeled data.

Extensions: Point-Teaching for Instance
Segmentation
In order to demonstrate the generality of Point-Teaching,
we extend our framework to weakly semi-supervised in-
stance segmentation. In this experiment, Mask RCNN with
ResNet-50 backbone is used as our detector and only fully-
labeled data has box and mask annotations. As shown in Ta-
ble 8, Point-Teaching significantly improves the perfor-
mance in all data regimes. This result indicates that Point-
Teaching can benefit from only a small amount of mask an-
notations. Thus, it is a promising approach to reduce the an-
notation cost in weakly semi-supervised instance segmenta-
tion tasks.

We further extend our framework to weakly supervised
instance segmentation. In this scenario, we supervise the in-
stance segmentation training with only box and point an-
notations. Specifically, we train Mask RCNN with ResNet-
50 under 30% COCO labeled setting. The whole training

Method Backbone COCO Labeled Setting

1% 2% 5% 10%

Supervised R50-FPN 10.8 14.5 18.7 22.6

Point-Teaching R50-FPN 23.5 25.9 30.7 33.3

Table 8: Point-Teaching for weakly semi-supervised in-
stance segmentation on COCO val. set. Results are reported
with mask AP50:95. All models are trained with a batch size
of 32 (16 fully-labeled images and 16 point-labeled images)
and 180k iterations.

Method Backbone COCO Labeled Setting

30%

Supervised R50-FPN 22.1

Point-Teaching R50-FPN 28.0 (↑5.9)

Table 9: Point-Teaching for weakly-supervised instance seg-
mentation on COCO validation set. Results are reported with
mask AP50:95.

pipeline contains two stages. In the first stage, we use the
proposed Point-Teaching framework to get a well-trained
teacher model. In the second stage, we fix the teacher model
with zero EMA update rate and use the proposed hungarian-
based point matching method to generate pseudo-bounding
boxes, and the student model is supervised with both an-
notated and pseudo-annotated boxes with three additional
loss terms, e.g. point loss, project loss (Hsu et al. 2019; Tian
et al. 2021) and pairwise loss (Tian et al. 2021). More details
about loss functions can be found in the supplementary ma-
terials. As shown in Table 9, Point-Teaching achieves 28.0
mask AP without mask annotation, outperforming the super-
vised baseline by 5.9 AP.

Conclusion
In this work, we presented Point-Teaching, a novel weakly
semi-supervised framework for object detection and in-
stance segmentation. It can effectively leverage point an-
notation with the proposed hungarian-based point match-
ing strategy, image-wise MIL loss, point-wise MIL loss, and
point-guided copy-paste augmentation. These contributions
enable our framework significantly outperforms all previous
works by a large margin in all data regime settings. We hope
that our work can inspire the community to design more
practical object detectors with limited human annotations.
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