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Abstract

Human trajectory Prediction (HTP) in complex social envi-
ronments plays a crucial and fundamental role in artificial
intelligence systems. Conventional methods make use of both
history behaviors and social interactions to forecast future
trajectories. However, we demonstrate that the social environ-
ment is a confounder that misleads the model to learn spurious
correlations between history and future trajectories. To end
this, we first formulate the social environment, history and
future trajectory variables into a structural causal model to
analyze the causalities among them. Based on causal interven-
tion rather than conventional likelihood, we propose a Social
Environment ADjustment (SEAD) method, to remove the con-
founding effect of the social environment. The core of our
method is implemented by a Social Cross Attention (SCA)
module, which is universal, simple and effective. Our method
has consistent improvements on ETH-UCY datasets with four
baseline methods and achieves competitive performances with
existing methods.

Introduction
Human trajectory prediction is a fundamental and essential
task for several social applications, such as intelligent trans-
port systems and socially-aware robotic navigation (Chandra
et al. 2019; Liang et al. 2019). For example, autonomous
driving systems rely on accurate future trajectory prediction
to control the vehicles and avoid collisions (Bai et al. 2015;
Morotomi, Katoh, and Hayashi 2014). In addition, the human
trajectory prediction models could be used by surveillance
systems to identify pedestrians(Luber et al. 2010; Musleh
et al. 2010). Due to these important applications, human tra-
jectory prediction methods have been extensively investigated
in the literature.

The prevailing pipeline to train trajectory prediction model
is shown in Figure 1 (a). History trajectory X and the
surrounding pedestrians X̃ are incorporated to predict fu-
ture trajectory Y. Existing methods focus on modeling
the social interactions with history behaviors for predic-
tion (Kosaraju et al. 2019; Pellegrini et al. 2009). Social-
LSTM leverages a social pooling module to exploit social
environments (Alahi et al. 2016). STGAT (Huang et al. 2019)
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Figure 1: (a) The general pipeline of the trajectory predic-
tion models (beyond the green block) (Huang et al. 2019;
Mohamed et al. 2020; Liu et al. 2022). We propose to use a
Social Self-Attention module to leverage causal intervention
to adjust the social environment (in the green block). (b) The
comparison between HOTEL and UNIV. We could observe
the social distances between pedestrians are distinct between
these two domains. (c) The illustration of how our SEAD
method works. With causal intervention, P (Y|do(X)) incor-
porates every social environment pattern into the scene to
predict future trajectories. Compared with our method, con-
ventional methods are shown in the yellow box which predict
future trajectories with likelihood predictor P (Y|X).

and Social-STGCNN (Mohamed et al. 2020) apply graph neu-
ral networks to aggregate social information by introducing
graph attention and weighted adjacency matrix.

In spite of the progress, human trajectory prediction still
remains a challenging problem since the social environments
are complex and biased (Liu, Yan, and Alahi 2021; Chen et al.
2021). The trajectory data are collected at various places and
times whose social environments are distinct (Amirian et al.
2020; Lerner, Chrysanthou, and Lischinski 2007; Ge et al.
2022). The social motion patterns, social interactions etc. are
different (Amirian et al. 2020; Pellegrini et al. 2009): e.g.,
people tend to form groups in the crowded UNIV domain
since the scene is crowded, while pedestrians mostly keep a
social distance from each other in HOTEL domain(Pellegrini,
Ess, and Gool 2010) (Figure 1 (b)). It’s worth noting that the
biased social environment features lead to spurious correla-
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tions. For example, people may proceed in parallel with the
same speed since they are in a crowded environment rather
than forming a group. The prediction could be inaccurate
since the model wrongly correlates a crowded environment
to the group motion pattern.

Based on the above analysis, we have observed how the so-
cial environment influences trajectory prediction. Essentially,
the social environment is a confounder that misleads the
model to learn the spurious correlations between history and
predicted trajectories. The confounding effect could not be
eliminated by current trajectory prediction methods without
causal intervention (Pearl 2009). To systematically investi-
gate the problem, we formulate the causalities among social
environments, history and future trajectories into a Structural
Causal Model (SCM) (Pearl 2009).

Based on such SCM, we propose a causal intervention
method, named Social Environment ADjustment (SEAD)
to remove the confounding effect of social environments
through backdoor adjustment (Pearl 2009). The key differ-
ence from conventional methods is that SEAD aims at learn-
ing the interventional probability rather than conventional
likelihood. However, we could not directly apply causal inter-
vention on history trajectory X, since the social environment
S is not well-defined. Hence, we propose to design a dic-
tionary {si} to approximate the representation of the social
environment S and perform backdoor adjustment on it.

To implement the key of our idea, we propose a simple
yet effective Social Cross Attention (SCA) module to real-
ize the causal intervention on trajectory features. The SCA
module leverages external social environment variables with
internal trajectory features. The learnable social environment
variables are encoded into keys and values to interact with
queries of trajectory features. It could be intuitively under-
stood as follows (Figure 1 (c)): the module incorporates every
social environment pattern into the scene to predict future
trajectories. As a consequence, the spurious correlations be-
tween history and future trajectories are cut off.

We demonstrate the effectiveness of SEAD on trajectory
prediction dataset ETH (Pellegrini, Ess, and Gool 2010) and
UCY (Lerner, Chrysanthou, and Lischinski 2007). Our SEAD
method could be applied to both RNN-based and CNN-based
frameworks, including STGAT (Huang et al. 2019), Social-
STGCNN (Mohamed et al. 2020) and TF (Giuliari et al.
2021). Additionally, our method could further improve the
performance of Causal-STGAT (Chen et al. 2021) since they
are orthogonal. We show that our method achieves consistent
improvements on both four baseline models. With SEAD,
STAGT, Social-STGCNN, TF and Causal-STGAT have
an improvement of 0.05/0.09, 0.03/0.04, 0.04/0.08 and
0.03/0.07 on the ADE/FDE metrics respectively. Through
qualitative experiments, we demonstrate that our method is
able to produce more reasonable trajectories for pedestrians.

Related Work
Trajectory Prediction. Temporal information and social in-
formation are two critical factors in predicting feature tra-
jectories (Huang et al. 2021). For temporal information, the
future sequence could be predicted through learning the un-
derlying temporal associations from the history sequence.

Recurrent Neural Networks (RNN), especially Long Short-
Term Memory (LSTM) networks (Hochreiter and Schmid-
huber 1997), are designed for modeling such information.
Besides, Nikhil et al. proposed to use temporal Convolutional
Neural Networks (CNN) to predict future trajectories(Nikhil
and Morris 2018).

For social information, traditional methods leverage physi-
cal and pre-defined rules to exploit social interactions, e.g.,
Social Force Model (Helbing and Molnar 1995) and Discrete
Choice framework (Antonini, Bierlaire, and Weber 2006).
In deep learning methods, social pooling is proposed for so-
cial interaction aggregation with equal weights(Alahi et al.
2016). A line of methods applies attention mechanism to
distinguish the importance of different neighboring pedes-
trians (Kosaraju et al. 2019; Sadeghian et al. 2019). Graph
Neural Networks (GNN) are used for trajectory prediction
since they could aggregate the social information accord-
ing to the pre-defined metrics, e.g., distance between pedes-
trians (Huang et al. 2019; Mohamed et al. 2020; Kosaraju
et al. 2019). These conventional methods are based on likeli-
hood P (Y |X) while we propose to use causal intervention
to model the causalities P (Y |do(X)).
Attention Mechanism. Attention mechanism is first pro-
posed in natural language processing to better model long-
term sequential relations (Vaswani et al. 2017; Pan et al.
2022). Features are mapped into queries, keys and values
to model the interactions between tokens. Attention mech-
anism is used in computer vision and multi-modality tasks
recently (Dosovitskiy et al. 2021; Radford et al. 2021; Li et al.
2021). Cross attention module(Vaswani et al. 2017) is widely
used to fuse different feature maps (Hao et al. 2017; Gheini,
Ren, and May 2021). In our proposed method, the input of
keys and values are trainable social environment variables to
perform causal intervention.
Causal Inference. Causal inference (Imbens and Rubin 2015;
Pearl 2009) is developed to estimate causal effect with co-
variate shift (Richiardi, Bellocco, and Zugna 2013; Glymour,
Pearl, and Jewell 2016). By causal intervention, the spurious
correlations between cause and effect are cut off and the true
causality could be accurately estimated (Glymour, Pearl, and
Jewell 2016). Many methods taking inspiration from causal
inference have been explored to help deep neural networks
to learn the true causalities (Zhang et al. 2020; Tang, Huang,
and Zhang 2020). The true causalities could reduce the pre-
diction error of deep learning models (Niu et al. 2021). In
this paper, we propose to use causal intervention to remove
the spurious correlations.

A related work to us is Counterfactual Analysis (Chen
et al. 2021). It uses counterfactual analysis to reduce
the discrepancy between training and deployment environ-
ments. The main differences are as follows. First, Counter-
factual Analysis applies mediation analysis which is still
based on likelihood, while we leverage causal intervention
method (Richiardi, Bellocco, and Zugna 2013). Second,
Counterfactual Analysis aims to alleviate the negative effect
of the discrepancy between training and deployment environ-
ments, while our method resorts to dealing with the biased
social environment. Last, Counterfactual Analysis maintains
the relations between pedestrians, while our method adjusts
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Figure 2: An overview of our proposed Social Environment Adjustment (SEAD) method. The color yellow stands for conventional
models and blue stands for our method. Wq,Wk.Wv are linear transformation blocks.

the biased relations via causal intervention. In addition, an-
other work (Liu et al. 2022) considers the robustness of HTP
models with respect to noisy input while we focus on the
confounding bias.

Causal Attention for Social Interaction
The trajectory prediction task is defined as a sequential pre-
diction problem with history trajectories and social interac-
tions as input. Given m pedestrians in a scene, the history
trajectory of the i-th pedestrian is defined as xi = {pt

i =
(xt

i, y
t
i) ∈ R2|t = 1, 2, . . . , Th}, where the (xt

i, y
t
i) is the 2D

location of the pedestrian at time t and the Th is the length
of the history trajectory. The ground truth future trajectory is
yi = {pt

i = (xt
i, y

t
i) ∈ R2|t = Th+1, Th+2, . . . , Th+Tf},

where Tf is the length of ground truth future trajectory. A line
of methods employs the relative locations or velocity for fu-
ture trajectory prediction (Huang et al. 2019; Mohamed et al.
2020). The social interaction information for i-th pedestrian
could be defined as a function of surrounding pedestrians’
trajectories ei = e(x̃i), where e(·) is a function for aggregat-
ing social information (e.g., social pooling in Social-LSTM)
and x̃i = [xj ]

m,j ̸=i
j=0 . The formalization for HTP is:

ŷi = f(xi, ei), L =
N∑
i=0

L(yi, ŷi), (1)

where the ŷi is the future trajectory predicted by the model
f(·) and L(·) is the loss function.

As discussed in Introduction, the social environment s has
a confounding effect on predicting the future trajectories y.
Next, we would introduce a causal graph to elaborate on
how the biased social environment would impact trajectory
prediction and how to estimate the true causal effect. At
last, we investigate into the essence of backdoor adjustment
and devise a Social Cross-Attention module to make precise
future trajectory prediction.

Structural Causal Model
We construct the structural causal model for trajectory predic-
tion to analyze the causal relations. As shown in Figure 3 (a),
the structural causal model contains three variables (nodes):
X: history trajectory, Y: future trajectory and S: social envi-
ronment. The directed edges in the structural causal model

X Y

S

(a)

X Y

S

(b)
Figure 3: The proposed structural causal model of our method.
The gray color denotes S is unobserved. (a) The original
SCM. (b) The SCM after the causal intervention.

represent causalities between two nodes: cause→ effect. We
would discuss these directed edges in the graph.

X → Y. The future trajectory could be inferred by the
clues of history trajectory. The history trajectory contains
the following information: velocity, acceleration and poten-
tial beginning position of the future trajectory. For example,
pedestrians would maintain proceed in a line rather than
changing the direction frequently.

S → Y. The social environment would influence the fu-
ture trajectory. The social environment influences the mode
of pedestrians. For example, pedestrians would change their
direction when other pedestrians walk to avoid collisions. Be-
sides, people tend to walk parallel to maintain the distances
between them (Lerner, Chrysanthou, and Lischinski 2007).

S → X. The history trajectory is affected by the social
environment for the same reason with S → Y. We need to
point out that the social environment could vary with time
goes. For example, pedestrians may walk alone in the past
and in parallel with other pedestrians in the future.

Based on the above analysis, we could point out that the
social environment plays the role of confounder in the trajec-
tory prediction task (Imbens and Rubin 2015). We could see
clearly that there exists a backdoor path X← S→ Y in the
Figure 3 (a). The backdoor path indicates that even if some
history trajectories X have little likelihood to produce some
unreasonable future trajectories, the social environment could
still correlate X with Y, leading to the problem mentioned
in Introduction. Learning P (Y|X) from the biased social
environments would include the spurious correlation in the
model. Therefore, we propose a causal intervention method
to remove the confounding effect. With intervention on X,
the directed edge S→ X is cut off and spurious correlations
are eliminated (Figure 3).
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Causal Intervention via Backdoor Adjustment
We propose to use causal intervention P (Y|do(X)), named
Social Environment ADjustment (SEAD), to remove the con-
founding effect of social environment S. The core idea of our
SEAD method is (a) applying backdoor adjustment to remove
the confounding effect, and (b) leveraging a set of learnable
variables {si}ni=1 to approximate the social environment.

To learn the probability P (Y|do(X)), we incorporate
backdoor adjustment to perform intervention on the input
history trajectory X (Figure 3 (a)). However, backdoor adjust-
ment requires social environment S could be stratified. The
social environment does not have a strict and well-accepted
definition, let alone stratifying it. To end this, we propose to
use a set of learnable variables {si} to approximate the social
environment S automatically. Such approximation strategy
implies we discretize the representation of the social environ-
ment and assume there are several “typical” patterns of the
social environment. This assumption is reasonable because
the social environment is subject to several factors, e.g., so-
cial norms, physical rules and certain scenes (Liu et al. 2022;
Helbing and Molnar 1995). Here, we could introduce the
backdoor adjustment (the detailed derivation is in Appendix):

P (Y|do(X)) =

n∑
i

P (Y|X,S = si)P (si), (2)

where the n is the length of the set of learnable social environ-
ment {si}ni=1 and each si is a d-dimensional vector. P (Y|X)
is essentially different from P (Y|do(X)). According to the
law of total probability, P (Y|X) has the conditional prob-
ability P (si|X) rather than the marginal probability P (si).
According to Eq. (2), the future trajectory is calculated by
incorporating every social environment si into the scene with
weights P (si). Hence, each pattern of the social environ-
ment would be considered (subject to the prior P (si)) in the
prediction and the spurious correlation would not dominate.
Specifically, the backdoor path X ← S → Y is cut off
and social environment S and history trajectory X would be
independent (Figure 3 (b)).

Eq. (2) requires the estimation of P (Y|X,S = si) and
P (si). However, there exists difficulties in strictly estimat-
ing the high dimensional conditional distribution P (Y|X,S)
and a probability distribution dependent on the learnable
variables {si}. Considering HTP requires 2D trajectory pre-
diction, we propose to predict future trajectories with the
intervention: ŷ =

∑n
i=1 fy(x, si)P (si), compared with con-

ventional methods: ŷ = f(x). We would formulize the proce-
dure of predicting the future trajectories ŷ with intervention
into a Social Cross Attention module.

Social Cross-Attention Module
Since fy(x, si) requires modeling the features of both tra-
jectory and social environment, we propose a Social Cross
Attention (SCA) module to fuse these features because cross
attention is adopted at modeling the connections between
trajectory x and social environment s. Different from self-
attention, our Social Cross Attention module incorporates
both internal trajectory variables x and external model vari-
ables s. Hence, the overall implementation is:

SCA(x, s) = Es[(fy(x, s))]. (3)

𝐬𝐬𝐢𝐢 𝑖𝑖=1𝑛𝑛

Linear Linear Linear

MatMul

SoftmaxMatMul

𝐱𝐱

Linear LayerScale +

Figure 4: The structure of our proposed Social Cross Atten-
tion module.

We tailor backdoor adjustment into HTP by introducing
the details. The trajectory features and social environment
variables are first projected into the same space. Then the
similarity between x and s is calculated by matrix multipli-
cation. Finally, we aggregate the features with the similarity
matrix and project the feature maps into the original space.
Specifically, the Social Cross Attention module is formulated
as follows (Figure 4):

q = Wqx,ki,vi = Wksi,Wvsi, (4)

z = Es[fy(x, s)] = Wo

n∑
i

Softmax(
qTki√

d
)viP (si), (5)

where z denotes the output tensor of SCA and Wq,Wk,Wv

are learnable linear transformation of SCA to project x and s
into the same space. The linear transformation Wo is applied
to project the output into the 2D location space. The scaling
factor is

√
d here. The LayerScale is applied for convergence

and we omit it for brevity in Eq. (5).
According to Eq. (5), our SCA module requires the distri-

bution of P (s). However, we do not have knowledge of the
social environment distribution of each group P (si). Hence,
we assume that each group si could be fairly incorporated
into each scene. The probability of social environment fol-
lows a uniform distribution P (si) = 1/n. Besides, if P (s)
does not subject to the dataset statistics, our method could
generalize well.

According to the physical information in the feature maps,
our SCA module incorporates multi-head attention mecha-
nism. The feature maps for STGAT is designed for forecast-
ing 2D locations and Social-STGCNN for 2D locations, vari-
ance and covariance. Specifically, the feature map is divided
into 2 heads for STGAT and 5 heads for Social-STGCNN.
Finally, the output of SCA z is fused with trajectory features
x and the overall prediction for the future trajectory is:

ŷ = h(x+ Es[fy(x, s))] = h(x+ z), (6)

where h(·) represents the trajectory predictor.

Experiments
We evaluate our proposed SEAD in terms of performance
quantitatively. The datasets, evaluation metrics and imple-
mentation details are introduced. We demonstrate the effec-
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Setting Performance (ADE/FDE)
ETH HOTEL ZARA1 ZARA2 UNIV AVG

(Q1)

STGAT 0.83/1.74 0.31/0.59 0.39/0.85 0.31/0.68 0.50/1.08 0.47/0.99
MHSA 0.82/1.74 0.32/0.61 0.39/0.86 0.32/0.70 0.50/1.08 0.47/1.00
SCA 0.68/1.40 0.29/0.56 0.35/0.79 0.30/0.70 0.48/1.04 0.42/0.90

Social-STGCNN 0.67/1.13 0.40/0.62 0.34/0.53 0.30/0.48 0.52/0.96 0.45/0.75
MHSA 0.67/1.16 0.44/0.75 0.34/0.55 0.31/0.49 0.50/0.94 0.45/0.77
SCA 0.66/1.12 0.36/0.58 0.33/0.51 0.29/0.47 0.46/0.85 0.42/0.71

(Q2)

d = 8 0.80/1.72 0.33/0.64 0.38/0.84 0.31/0.67 0.50/1.09 0.46/0.99
d = 12 0.74/1.71 0.30/0.57 0.38/0.86 0.31/0.69 0.50/1.09 0.45/0.98
d = 16 0.74/1.58 0.30/0.57 0.37/0.81 0.31/0.68 0.50/1.09 0.44/0.95
d = 24 0.68/1.40 0.29/0.56 0.35/0.79 0.30/0.70 0.48/1.04 0.42/0.90
d = 32 0.74/1.57 0.31/0.60 0.36/0.86 0.31/0.68 0.50/1.09 0.44/0.96

(Q3)

n=8 0.82/1.71 0.31/0.57 0.38/0.83 0.32/0.70 0.50/1.09 0.46/0.98
n=16 0.77/1.60 0.31/0.60 0.39/0.87 0.30/0.65 0.50/1.09 0.46/0.96
n=32 0.68/1.40 0.29/0.56 0.35/0.79 0.30/0.70 0.48/1.04 0.42/0.90
n=64 0.74/1.49 0.30/0.56 0.39/0.86 0.31/0.68 0.50/1.08 0.45/0.93
n=128 0.76/1.61 0.31/0.56 0.38/0.82 0.31/0.68 0.49/1.08 0.45/0.95

(Q4)
z 0.81/1.34 0.77/1.66 0.44/0.83 0.44/0.83 0.75/1.42 0.62/1.19

[x, z] 0.98/2.18 1.23/2.61 0.56/1.22 0.48/1.00 0.73/1.62 0.80/1.72
x+ z 0.68/1.40 0.29/0.56 0.35/0.79 0.30/0.70 0.48/1.04 0.42/0.90

Table 1: Ablation study of our SEAD on the ETH-UCY dataset. Apart from Q1, the ablations are conducted with STGAT. The
rows with gray highlight the settings we use. The lower is the better. The standard deviation of our implemented experiments is
less than 0.003.

tiveness of SEAD on 4 baseline models and compare them
with existing methods.

Experimental Settings
Datasets: Our results are trained on the ETH (Pellegrini,
Ess, and Gool 2010) and UCY (Lerner, Chrysanthou, and
Lischinski 2007) datasets. The human trajectories in these
datasets are captured in real-world scenes and transformed
into sequences of locations. These datasets contain five do-
mains: ETH, HOTEL, UNIV, ZARA1 and ZARA2 with a total
of 1536 pedestrians detected. All the trajectories are sampled
every 0.4 seconds (one frame). We leverage the leave-one-out
protocol to split the training, validation and test dataset. Train
and validate on four domains and test on the remaining one.
We use 3.2 seconds (8 frames) of data as history trajectory
and the next 4.8 (12 frames) as the ground truth.
Evaluation Metrics: We use Average Displacement Er-
ror (ADE) and Final Displacement Error (FDE) as the eval-
uation metrics following the previous methods. ADE is the
mean square error of the predicted trajectory and ground truth
trajectory. FDE is the L2 distance between the final position
of the predicted trajectory and the ground truth trajectory:

ADE =

∑m
i=0

∑Th+Tf

t=Th+1∥p̂t
i − pt

i∥2
m× Tf

(7)

FDE =

∑m
i=0∥p̂t

i − pt
i∥2

m
, t = Th + Tf . (8)

Since the baseline methods, Social-STGCNN, STAGT are
generative methods, we follow their evaluation protocol. For
each predicted distribution, we sample 20 evaluation trajecto-
ries. The one closest to the ground truth trajectory is used for
the computation of ADE and FDE.

Implementation Details
As shown in Figure 2, the conventional pipeline of the tra-
jectory prediction models is shown in yellow. Our method
shown in green could be integrated into the conventional
framework. Generally, SEAD employs the output of the tra-
jectory encoder and leverages causal intervention to remove
the negative effect of the social environment. To validate the
effectiveness and universality of our proposed SEAD method,
we implement our method based on three baseline mod-
els, RNN-based STGAT, CNN-based Social-STGCNN and
Transformer-based Trajectory Forecasting Transformer (TF).
In addition, since our work and Counterfactual analysis(Chen
et al. 2021) are complementary, we also conduct experiments
with Causal-STGAT with the trajectory predictor h(·) re-
placed by the counterfactual predictor (in Eq. (6)).
STGAT+SEAD. STGAT is comprised of a M-LSTM, a G-
LSTM and a graph attention model (GAT). Specifically, the
M-LSTM is used for encoding the trajectory features while
GAT and G-LSTM are for encoding social interaction fea-
tures. Then these features x are connected and fed into the
predictor. To implement our method, we employ these fea-
tures as the input of our SCA module before they are fed
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RNN-based Method Performance (ADE/FDE)
ETH HOTEL ZARA1 ZARA2 UNIV AVG

LSTM 1.09/2.41 0.86/1.91 0.41/0.88 0.52/1.11 0.61/1.31 0.70/1.52
S-LSTM (Alahi et al. 2016) 1.09/2.35 0.79/1.76 0.47/1.00 0.56/1.17 0.67/1.40 0.72/1.54
SGAN (Gupta et al. 2018) 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18
Sophie (Sadeghian et al. 2019) 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15
SR-LSTM (Zhang et al. 2019) 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10 0.45/0.94
Social-BiGAT (Kosaraju et al. 2019) 0.69/1.29 0.49/1.01 0.30/0.62 0.36/0.75 0.55/1.32 0.48/1.00
MATF (Zhao et al. 2019) 1.33/2.49 0.51/0.95 0.44/0.93 0.34/0.73 0.56/1.19 0.64/1.26
MATF GAN (Zhao et al. 2019) 1.01/1.75 0.43/0.80 0.26/0.45 0.26/0.57 0.44/0.91 0.48/0.90
IDL (Yamaguchi et al. 2011) 0.59/1.30 0.46/0.83 0.22/0.49 0.23/0.55 0.51/1.27 0.40/0.89
PIF (Liang et al. 2019) 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
STGAT (Huang et al. 2019) 0.65/1.12 0.35/0.66 0.34/0.69 0.29/0.60 0.52/1.10 0.43/0.83
Causal-STGAT (Chen et al. 2021) 0.60/0.98 0.30/0.54 0.32/0.64 0.28/0.58 0.52/1.10 0.40/0.77

STGAT∗ (Huang et al. 2019) 0.83/1.74 0.31/0.59 0.39/0.85 0.31/0.68 0.50/1.08 0.47/0.99
+SEAD 0.68/1.40 0.29/0.56 0.35/0.79 0.30/0.70 0.48/1.04 0.42/0.90
Causal-STGAT∗ (Chen et al. 2021) 0.69/1.20 0.31/0.58 0.32/0.64 0.30/0.62 0.54/1.15 0.43/0.86
+SEAD 0.61/1.08 0.32/0.60 0.33/0.64 0.27/0.53 0.51/1.10 0.40/0.79

Table 2: Comparison with RNN-based methods. The * denotes the results are reproduced with the officially released code.
The better result between baseline method and ours is shown in bold. The lower is the better. The standard deviation of our
implemented experiments is less than 0.003.

into the predictor. We follow the original implementation
details of STGAT. The only difference is that the learning
rate for our SCA module is 0.04 while other LSTM and GAT
modules keep the same learning rate with STGAT.
Causal-STGAT+SEAD. Similar to STGAT+SEAD, we
employ the difference between the factual features and
counterfactual features as the input of SCA for Causal-
STGAT+SEAD. The learning rate for SCA module in Causal-
STGAT is set to 0.01. The hyper-parameters for other mod-
ules keep the same with Causal-STGAT.
Social-STGCNN+SEAD. A spatial-temporal graph neural
network (STGCNN) is leveraged for trajectory features and
social interaction features by Social-STGCNN(Mohamed
et al. 2020). To better model the sequential features, time-
extrapolator Convolution Neural Networks (TPCNN) are
leveraged(Nikhil and Morris 2018). We feed the output of
the last TPCNN to our SCA module to adjust the social
environment. We follow the original implementations to train
Social-STGCNN+SEAD. The initial learning rate is 0.01,
and decayed to 0.002 after 150 epochs.
TF+SEAD. Forecasting transformer leverages a transformer
encoder to process the observed history positions and a trans-
former decoder to generate a future trajectory. Our designed
SCA module incurs the output of transformer encoder and
adjust the social environment. We follow the original imple-
mentations to train the whole model.

Ablation Study
Our ablation studies aim to answer the following questions.
Q1: Does our SEAD module merely benefit from attention
mechanism, rather than causal intervention? Is learnable S
indispensable? We demonstrate this by replacing the SCA

module with a normal MHSA module and comparing the
performance with our method. We conduct such experiments
on two baselines: STGAT and Social-STGCNN. Q2: What
is the proper dimension of s? We conduct experiments with
different d. Q3: What is the proper number of learnable vari-
ables si? We conduct experiments with different n. Q4: How
to make use of the features of SCA module? We experiment
on directly feedforward z, concatenation [x, z] and residual
connection x + z. Specifically, the number of channels is
mapped to 2 after the concatenation for prediction.

the
A1: Results are shown in Table 1 (Q1). Compared with base-
line models, MHSA module even performs worse. This is
because the social interactions have been well learned by
the graph neural networks and an extra self attention module
could not be beneficial. On both baseline models, our SCA
module performs better than the MHSA. Hence, these ex-
perimental results show that the superiority of SCA module
does not come from the attention mechanism but from causal
intervention. The backdoor adjustment is indispensable.
A2: We apply different dimensions d for variable si and
modify the dimension of Wk,Wv respectively. As shown
in Table 1 (Q2), d varies from 8 to 32. We could observe
that the performance begins to drop when the dimension is
larger that 24. In particular, when d = 24 our SEAD method
achieves the best performance. Therefore, we choose d = 24
for the following experiments.
A3: In addition to dimension of si, the size of the learnable
set {si} also matters. The results in Table 1 (Q3) shows that
when n = 32, our SEAD method has the best performance.
However, when larger and smaller than 32 the ADE would
decrease by 0.03 − 0.04. This is probably due to that the
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CNN/Transformer-based Method Performance (ADE/FDE)
ETH HOTEL ZARA1 ZARA2 UNIV AVG

CNN (Nikhil and Morris 2018) 1.04/2.07 0.59/1.17 0.43/0.90 0.34/0.75 0.57/2.32 0.59/1.22
TF (Giuliari et al. 2021) 1.03/2.10 0.36/0.71 0.44/1.00 0.34/0.76 0.53/1.32 0.54/1.17
Social-STGCNN (Mohamed et al. 2020) 0.64/1.11 0.49/0.85 0.34/0.53 0.30/0.48 0.44/0.79 0.44/0.75
Causal-STGCNN (Chen et al. 2021) 0.64/1.00 0.38/0.45 0.34/0.53 0.32/0.49 0.49/0.81 0.43/0.66

Social-STGCNN∗ (Mohamed et al. 2020) 0.67/1.13 0.40/0.62 0.34/0.53 0.30/0.48 0.52/0.96 0.45/0.75
+SEAD 0.66/1.12 0.36/0.58 0.33/0.51 0.29/0.47 0.46/0.85 0.42/0.71
TF∗ (Giuliari et al. 2021) 1.04/2.19 0.43/0.90 0.41/0.92 0.34/0.72 0.59/1.28 0.56/1.20
+SEAD 1.01/2.07 0.35/0.72 0.40/0.88 0.31/0.68 0.57/1.24 0.52/1.12

Table 3: Comparison with CNN/Transformer-based methods. The * denotes the results are reproduced with the officially released
code. The better result between baseline method and ours is shown in bold. The lower is the better. The standard deviation of our
implemented experiments is less than 0.003.

proper size of the social environment set is 32. A smaller size
could not fully model the diversity of the social environment
and a larger size would impact the representativeness of the
learned variables. We apply n = 32 in our experiments.
A4: From Table 1 (Q4), we could observe that directly lever-
aging the output z and concatenation both perform poor. The
residual connection mode has a much better performance
than them. The reason for this is probably the optimization
complexity of these structures. Therefore, we choose to feed
x+ z into the predictor in our experiments.

Quantitative Analysis
To verify the effectiveness of our method, we reproduce
four baseline models and implement our SEAD with their
official released code. We compare the performance of the
four baseline methods as follows.
Evaluation of RNN-based method. The comparison of our
method and RNN-based method and other existing method
is summarized in Table 2. Note that results reproduced with
officially released code are marked by *. Due to the differ-
ent implementation environments, the results reported in the
original paper are slightly higher than our reproduced results.
As shown in Table 2, our implementations could consistently
improve the performance of STGAT and Causal-STGAT. Our
two implementations improve the ADE/FDE performance by
0.15/0.34 and 0.08/0.12 respectively on the ETH domain.
SEAD has improved the average performance among the 5
domains with 0.05/0.09 and 0.03/0.08 respectively.

Besides, we also compare our proposed method with exist-
ing sota methods, e.g., MATF (Zhao et al. 2019) and IDL (Ya-
maguchi et al. 2011). As shown in Table 2, our method
achieves better performance than IDL on the FDE metric
and competitive performance on the ADE metric.
Comparison with Counterfactual Analysis. Even Counter-
factual Analysis (Chen et al. 2021) incorporates a similar-
looking structural causal model, our method and their method
are essentially different. They leverage mediation analysis
to subtract the natural direct effect of training data while
our method incorporates causal intervention to remove the
confounding effect of the social environment. These methods

are orthogonal. Hence, our method could further improve the
performance of Causal-STGAT.
Evaluation of CNN/Transformer-based method. The com-
parison of our method and CNN/Transformer-based method
and other existing method is summarized in Table 3. Our
method also achieves consistent improvement over Social-
STGCNN. In addition, the ADE and FDE metrics on all the
5 domains have been improved. On the HOTEL and UNIV
domain, our method improves the performance of 0.04/0.04
and 0.06/0.11 respectively and achieves an average im-
provement of 0.03/0.04 among the 5 domains. Besides, our
method outperforms baseline method TF by 0.04/0.08 in total.
Our method significantly improves the performances on the
HOTEL domain by 0.08/0.18.

Conclusion
In this paper, we analyze how the social environment in-
fluences human trajectory prediction and we observe that
the social environment is a confounder misleading the neu-
ral networks to learn spurious correlations between history
and future trajectory. Then, we propose a structural causal
model to investigate the causalities among social environ-
ment, history and future trajectories. Based on causal inter-
vention rather than conventional likelihood, we propose a
backdoor adjustment method, named Social Environment
Adjustment, to remove the confounding effect according to
the proposed structural causal model. We implement the core
of our method as a Social Cross Attention module, which is
simple yet effective. In addition, the SCA module is univer-
sal to improve the performance of various baseline models.
Extensive results have demonstrated the effectiveness of our
SEAD method. Since we make approximations to implement
our method, future work could develop a more advanced
confounder representation discovery method.
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