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Abstract Conditions
Diffusion models (DMs) have shown great potential for high- A,g.erson =
quality image synthesis. However, when it comes to produc- m:)lt;?c%/ 21e 3 ;
ing images with complex scenes, how to properly describe with mountain
both image global structures and object details remains a in the ?§
challenging task. In this paper, we present Frido, a Feature background |~
Pyramid Diffusion model performing a multi-scale coarse- ~  ~=-"7777
to-fine denoising process for image synthesis. Our model de- Wall-other g
wy =]

composes an input image into scale-dependent vector quan-
tized features, followed by a coarse-to-fine modulation for
producing image output. During the above multi-scale rep-
resentation learning stage, additional input conditions like
text, scene graph, or image layout can be further exploited.
Thus, Frido can be also applied for conditional or cross-
modality image synthesis. We conduct extensive experiments
over various unconditioned and conditional image generation
tasks, ranging from text-to-image synthesis, layout-to-image,
scene-graph-to-image, to label-to-image. More specifically,
we achieved state-of-the-art FID scores on five benchmarks,
namely layout-to-image on COCO and Openlmages, scene-
graph-to-image on COCO and Visual Genome, and label-to-
image on COCO.

Introduction

Generating photo-realistic images is a critical task in com-
puter vision research. In this task, a generative model is
designed to learn the underlying data distribution of a
given set of images and to be capable of synthesizing
new samples from the learned distribution. To this end, se-
ries of methods were proposed, including VAEs (Kingma
and Welling 2014; Van Den Oord, Vinyals et al. 2017),
GANSs (Goodfellow et al. 2014; Radford, Metz, and Chin-
tala 2015), flow-based methods (Dinh, Krueger, and Bengio
2014; Kingma and Dhariwal 2018), and the trending diffu-
sion models (DMs) (Sohl-Dickstein et al. 2015; Ho, Jain,
and Abbeel 2020). The quality of the generated images has
been improved rapidly with the contribution of these lines
of works. Moreover, the task itself also evolves from object-
centric image synthesis without conditions to complex scene
image generation, and sometimes based on multi-modal
conditions (e.g., texts, layouts, labels, and scene-graphs).
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Figure 1: Illustration of Frido. Given a cross-modal con-
dition, Frido generates images in () a coarse-to-fine man-
ner from structure to object details, producing outputs with
@ high semantic correctness and quality. Note that existing
models such as the LDMs are not designed to distinguish
between high/low-level visual information.

Recently, diffusion models (Ho, Jain, and Abbeel 2020;
Nichol and Dhariwal 2021; Ho et al. 2022; Rombach et al.
2022; Ramesh et al. 2022) have demonstrated a remarkable
capability of high-quality image synthesis and outperform
other classes of generative approaches on multiple tasks, in-
cluding but not limited to unconditional image generation,
text-to-image generation, and image super-resolution. De-
spite the encouraging progress, diffusion models may fall
short when targeted images are more complex and condi-
tioning inputs are highly abstractive. The composition of
objects and parts, along with high-level semantic relations
are prevailing in those tasks, which are less seen in earlier
object-centric benchmarks and may be essential to higher
quality generation.

In particular, we point out two major challenges in exist-
ing DM works. First, most of existing DMs deal with fea-
ture maps or image pixels at a single scale/resolution, which
might not be able to capture image semantics or composi-
tions in real-world complex scenes. Take the first row of Fig-
ure 1 as examples, it can be seen that while LDM (Rombach
et al. 2022) generates images containing a “person” given
the text condition, semantic structures of “riding a motorcy-
cle” and “mountain in the background” are not sufficiently



produced. Second, expensive computational resources are
typically required for DMs during training and testing due
to the iterative denoising processes, especially for produc-
ing high-resolution outputs. This not only limits the acces-
sibility but also results in massive carbon emissions. There-
fore, a computationally efficient diffusion model that lever-
ages coarse/high-level synthesized outputs for introducing
multi-scale visual information would be desirable.

To address these limitations, we propose Frido, a Feature
Pyramid Diffusion model for complex scene image gener-
ation.! Frido is a novel multi-scale coarse-to-fine diffusion
and denoising framework, which allows synthesizing images
with enhanced global structural fidelity and realistic object
details. Specifically, we introduce a novel feature pyramid
U-Net (PyU-Net) with a coarse-to-fine modulation design,
enabling our model to denoise visual features from multiple
spatial scales in a top-down fashion. These multi-scale fea-
tures are produced by our MS-VQGAN, a newly designed
multi-scale variant of VQGAN (Esser, Rombach, and Om-
mer 2021) that encodes images into multi-scale visual fea-
tures (discrete latent codes). As can be seen in Figure 1, as
the feature gradually being denoised, the images are recon-
structed in a coarse-to-fine manner (decoded by our MS-
VQGAN decoder), from global structures to fine-grained
details. On the other hand, a recent competitive diffusion
model (Rombach et al. 2022) reconstructs images uniformly
across spatial scales.

Frido is a generic diffusion framework that can synthesize
images from diverse, multi-modal inputs, including texts,
box-layouts, scene-graphs, and labels. Moreover, our model
introduces minimal extra parameters while allowing us to
speed up the notoriously slow inference of conventional
DMs. Extensive experiments are done to demonstrate the ef-
fectiveness of the new designs. Our contributions are sum-
marized as follows. () We propose Frido, a novel diffusion
model to generate photo-realistic images from multi-modal
inputs, with a coarse-to-fine prior that is under-explored in
the DM paradigm. (i7) Empirically, we achieve 5 new state-
of-the-art results, including layout-to-image on COCO and
Openlmages, scene-graph-to-image on COCO and Visual
Genome, and label-to-image on COCO, all are complex
scenes with highly abstractive conditions. (#¢7) In practice,
Frido inferences fast, shown by a head-to-head comparison
with an already fast diffusion model, the LDM.

Preliminary

Multiple lines of works to generate photo-realistic images
have been proposed, including VAEs, GANSs, and Invertible-
Flows, and achieved impressive results for object-centric
images. However, VAEs suffer from blurry outputs. GANs
are notoriously hard to train and lack diversity. Flow-based
model suffers shape distortions due to imperfect inverse
transform. Our work belongs to the paradigm of diffusion
models (DMs), which have been shown to best synthe-
size high quality images among all deep generative meth-
ods. For completeness, we summarize the fundamentals of

!Frido is pronounced as “free-dow”.
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DMs and a recent improvement, Latent Diffusion Mod-
els (LDMs) (Rombach et al. 2022).

Diffusion Models for Image Generation A diffusion
model (DM) contains two stages: forward (diffusion) and
backward (denoising) processes. In the forward process, the
given data xg ~ ¢(xg) is gradually destroyed into an ap-
proximately standard normal distribution x ~ p(x7) over
T steps, where ¢ and p denote the given data manifold and
the standard Gaussian distribution, respectively; and x de-
notes a data point from g. The diffusion process, formulated
by Ho, Jain, and Abbeel (2020), are shown as follows:

T
q(x1:7[%0) = HQ(Xt|Xt—1)7 and
t=1

q(x¢|xe—1) = N(V/1 = Bexi—1, Bed).

, where (3 denotes the noise schedule. Can be fixed or
learned. By reversing the forward process, Ho, Jain, and
Abbeel (2020) obtained the backward process:

T

peo(xo.T) = p(x) Hpe(xtfﬂxt), and
=1

Po(xe—1]xt) = N(xi—1; po(xe, 1), 00(x¢, 1)).

(1)

2

, where 6 denotes the learnable parameters, a U-Net (Ron-
neberger, Fischer, and Brox 2015) in Ho, Jain, and Abbeel
(2020). This is implemented by a neural network predict-
ing each of the denoising steps; and it can be viewed as a
Markov chain with a learned Gaussian transition distribu-
tion (Dhariwal and Nichol 2021; Pandey et al. 2022).

In practice, we randomly sample a timestep ¢ in [0, 7], and
then compute x; by interpolating xy and e with the weight
schedule (3;, where € is sampled Gaussian noise. The denois-
ing network ey is trained by the following loss:

Lom =By e [[l€ — eo(xe)]?] - 3)

At a higher level, this loss trains the network to predict the
step noise € applied on x;_; given x;. To synthesize an im-
age, one can run this denoising network for 7" steps to grad-
ually denoise a random noise image.

Latent Diffusion Models Most DMs (Nichol et al. 2022;
Dhariwal and Nichol 2021) operate on the original image
pixels, yielding high dimensional data manifold with in-
put xg € R¥>*H*W_Such high-dimensional inputs cost
huge computation for the diffusion and denoising processes
at both training and inference. Very recently, Latent Diffu-
sion Models (LDMs) (Rombach et al. 2022) are proposed
to adopt DMs to learn the low-dimensional latent codes, en-
coded by a VQGAN (Esser, Rombach, and Ommer 2021) or
KL-autoencoder (Rombach et al. 2022). Given an image X
and the pre-trained autoencoder, containing encoder £ and
decoder D, the corresponding latent codes zg = £(xg) can
be produced, where zy € Rexhxw g usually set to 4; and
h,w are downsampled 8 — 16 times from H, . By replac-
ing the image data point x in Eq. (1) and Eq. (2) with the
encoded latent z, the diffusion and denoising processes of a



LDM can be derived:
T
q(z1.7|20) = H (z¢|z¢—1), and
=t 4
po(zoT) = p(z1) Hpe (Zz¢—1]2e).

At inference, the final output 1mage can be reconstructed
from the denoised latent Xg = D(Zg), where Zg is sam-
pled and denoised using Eq. (4). Since T is typically set to
500 — 1000 in practice, and the autoencoding is a one-time
operation per image, the overall computation is greatly re-
duced due to the much lower resolution of z.

Methodology

Although existing DMs generate high-resolution images for
a single object with outstanding quality, most of them only
deal with feature maps or image pixels at a single resolution.
Since they treat high and low-level visual concepts equally, it
is not easy for such DM models to describe the correspond-
ing image semantics or composition. This might limit their
uses for synthesizing complex scene images.

To enhance DMs with global structural modeling, we pro-
pose to model the latent features in a coarse-to-fine fash-
ion via feature pyramids. We first introduce the Multi-Scale
Vector Quantization model (MS-VQGAN), which encodes
the image into latent codes at several spatial levels. Next,
we propose the feature pyramid diffusion model (Frido),
extending the diffusion and denoising into a multi-scale,
coarse-to-fine fashion. To achieve these, we design a new
feature Pyramid U-Net (PyU-Net), equipped with a special
modulation mechanism to allow coarse-to-fine learning. In
this section, we introduce each component in detail.

Learning Multi-Scale Perceptual Latents

Before we model an image in a coarse-to-fine fashion, we
first encode it into latent codes with several spatial resolu-
tions. Extending from VQGAN (Esser, Rombach, and Om-
mer 2021), we train a multi-scale auto-encoder, named MS-
VQGAN, with a feature pyramid encoder £ and decoder
D. As shown in Figure 2a, given an image X, the en-
coder & firstly produces a latent feature map set of IV scales
Z = &(xo) = {z"N}, where z' € R°* 2T %77 Note
that N and c denote the number of feature maps (stages) and
the channel size of the feature, respectively; and s represents
the size of the largest feature map. In this design, we are en-
couraging z' to preserve lower-level visual details and z"V
to represent higher-level shape and structures. Secondly, af-
ter quantizing and fusing, we upsample these features to the
same shape, concat them, and feed them into the decoder D
and reconstruct the image D(Z) = Xo. The objective for
this auto-encoder module is the weighted sum of /5 loss be-
tween xg and X, and other perceptual losses? in VQGAN.
We highlight that, with this design, MS-VQGAN can not
only encode the input image into multi-scale codes of dif-
ferent semantic levels but also preserve more structure and
detail, as later analyzed in Section of model ablation.

2Patch discriminator loss and perceptual reconstruction loss.
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Feature Pyramid Latent Diffusion Model

After the MS-VQGAN is trained, we can use it to encode
an image into multi-level feature maps Z. Next, we intro-
duce the feature Pyramid Diffusion Model (Frido) to model
the underlying feature distribution and then generate images
from noises. Similar to other DMs, Frido contains two parts:
the diffusion process and the denoising process.

Diffusion Process of Frido Instead of naively adding
noises simultaneously on all N feature scales Z =
{z!,...,z"V} at each of the T steps, we conduct diffusion
process sequentially from low-level (z') to high-level (z"),
and each level takes T' diffusion steps (total of N x T
timesteps). See the top half of Figure 2b for an illustration.

Different from the classical diffusion process that corrupts
pixels into noise in an unbiased way, we observe that Frido’s
diffusion process starts from corrupting the object details,
object shape, and finally the structure of the entire image.
This allows Frido to capture information in different seman-
tic levels. See Fig 1 for qualitative examples.

Denoising Process of Frido In the denoising phase, a se-
quence of neural function estimator €y ; ,, is trained, where
t =1,2,....,Tandn = N,N —1,...,1. In order to
denoise scale-by-scale, we introduce a novel feature pyra-
mid U-Net (PyU-Net) as the neural approximator. PyU-Net
can denoise the multi-scale features from high-level z"V to
low-level z! sequentially, achieving a coarse-to-fine genera-
tion. We highlight that, different from the LDMs, our PyU-
Net is more suitable for coarse-to-fine diffusion with these
two novel features: (1) shared U-Net with lightweight level-
specific layers that project features of different levels to a
shared space so that the heavier U-Net can be reused across
all levels, reducing the trainable parameters, and (2) coarse-
to-fine modulation to condition the denoising of low-level
features on high-level ones that are already generated.

Feature Pyramid U-Net The proposed PyU-Net learns
the denoising process in a coarse-to-fine fashion. Take N =
2 (Z = {z}, z&}) as an example (shown in Figure 2(b)),
PyU-Net takes 4 inputs: (1) stage s and timestep ¢ embed-
dings, (2) high-level feature conditions z%, (3) target feature
map z}, and (4) other cross-modal conditions c. By jointly
observing these inputs, PyU-Net predicts the noise e applied
on the target feature ztl, as shown in Figure 2b.

Instead of using a separate U-Net for each stage n, we opt
for a single shared U-Net to reduce the parameter count. The
input denoising target z; is first projected by level-specific
layers ®! into a shared space so that a shared U-Net can
be applied. Finally, another level-specific projection ® de-
codes the U-Net output to predict the noise ¢ added on z;},
with the following objective similar to Eq. (3):

‘CFrido = Ezg7e,t [HE - 69(2?7 Zn+1 N t)” ] (5)
We note that PyU-Net not only reduces the trainable pa-
rameters but also improves the results compared to vanilla
per-stage U-Nets. For analysis, please refer to the experi-
ments. Also, for training efficiency, we adopt the teacher
forcing trick similar to sequence-to-sequence language mod-
els (Brown et al. 2020), where ground truth feature condi-
tions are used while denoising the low-level map.
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Figure 2: Overview of Frido (best viewed in color). How MS-VQGAN encodes an image into multi-scale feature maps z}, z3
is illustrated in (a). The quantization enables VQ-VAE learning; and the fusion allows merging all representations from high
to low level for the decoder to reconstruct an image. The upper half of (b) demonstrate the coarse-to-fine process, where the
denoising is completed for high-level first, and then the lower one. The lower half of (b) details each denoising step. A U-Net
is shared not only across timestep ¢ but also the scale level s. Coarse-to-fine gating will be explained in Figure 3.
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Figure 3: Framework of coarse-to-fine modulation in PyU-
Net. Note that we ignore some intermediate convolution lay-
ers and SiL.U layers for simplification.

Coarse-to-Fine Modulation Frido produces the latent
codes sequentially from high-level to low-level feature
maps. For example, while generating z} (low-level), the
model is conditioned on z% (high-level). We, therefore, in-
troduce a coarse-to-fine modulation as shown in Figure 3.
Our coarse-to-fine modulation (CFM) is designed to in-
corporate (1) 2D high-level features, and (2) 1D stage and
time embedding into residual blocks, allowing Frido to have
the high-level feature as well as stage-temporal awareness.
Therefore, in our proposed CFM, there are two types of
modulation conducted upon normalized features sequen-
tially, between which an extra convolution (conv) and SiLU
layer (Elfwing, Uchibe, and Doya 2018) are inserted.
Specifically, given the high-level ground truth zZ, we ap-
ply noise augmentation by M (z3) = f., where M(z})
a-zl + (1 — ) - e. We note that € ~ A(0, 1), and the scaler
o is a hyper-parameter. After that, assume the input of CFM
to be f;, in the first modulation, we modulate the normal-
ized feature norm( f;) with 2D scaling and shifting parame-
ters from high-level feature f, with two convs respectively,
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producing intermediate representation h as follows:
h = conv o SiLU(conv(f,) x norm(f;) 4+ conv(f.)). (6)

In the second modulation, to equip U-Net with stage-
temporal awareness, we further modulate h with 1D
stage+time embedding and produce output f,, similar to
Eq. 6. Note that we use linear layers to transform s + ¢ and
also add a conv and SiL.U after the AdaIN (Huang and Be-
longie 2017).

To summarize, we highlight that our PyU-Net frame-
work equips DM with the ability to learn in a coarse-to-fine
fashion with a moderate increase of parameters compared
to classical hierarchical learning strategy (Razavi, Van den
Oord, and Vinyals 2019). Frido inherits three generative
paradigms, VAE, GAN, and DM, and is further embedded
with a coarse-to-fine prior. Moreover, the diffusion operates
on lower-resolution maps first, resulting a speedup at infer-
ence. Later, we show that SOTA results can be achieved un-
der a similar compute budget to a strong, fast DM.

Experiments

In this section, we empirically demonstrate that Frido gener-
ates high-quality complex scene images that are also consis-
tent to the multi-modal conditions, through the lens of text-
to-image, scene-graph-to-image, and label-to-image genera-
tion tasks. Moreover, to emphasize the capability of captur-
ing multiple objects in the images globally, we conduct ex-
periments on layout-to-image generation. Lastly, extensive
analyses are performed to validate design choices. We show
that Frido achieved state-of-the-art FID scores on multiple
tasks under 5 settings with improved inference speed.

Notations Frido can be trained with different feature reso-
lutions and levels. For simplicity and readability, a latent fea-
ture map where each feature corresponding to n X n original
image pixels is denoted fn. For example, a Frido to generate



Methods \ FID] ISt CLIPt Methods COCO Visual Genome
Methods under standard T2I setting ) FID| ISt CLIPT|FID| ISt CLIPT

AttnGAN (Xu et al. 2018) 33.10 23.61 - GT - - 0.766 - - 0.662

Obj-GAN (Li et al. 2019) 36.52  24.09 - Sg2Im 127.0 6.179 - - - -

DM-GAN (Zhu et al. 2019) 27.34 3232 - WSGC 119.1 7.235 - 45.7 10.69 -

DF-GAN (Tao et al. 2022) 21.42 - - LDMs-8" | 49.14 13.33 0.627 | 36.88 14.60 0.611

LDM-8' (Rombach et al. 2022) 17.61 19.34 0.6500 Frido-f16f8 | 46.11 13.41 0.642 | 31.61 15.07 0.613

VQ-diffusion? (Gu et al. 2022) 14.06 21.85 0.6770

LDM-8-G' 12.27 27.86 0.6927 Table 2: Scene-graph-to-image generation on COCO and Vi-

Frido-f16f8 1538 19.32 0.6607 sual Genome. ': reproduced with official code and configs.

Frido-f16£8-G 11.24 26.82 0.7046 Note that both LDM and Frido are inferenced with classifier-

Methods with external pre-trained CLIP free guidance.
LAFITE-CLIP? (Zhou et al. 2022) | 8.12 32.24 0.7915
Frido-f16f8-G-CLIPr 897 2743 0.7991

Table 1: Text-to-image generation on COCO. For LDM
scores, 1° = 250; for Frido, T" = 200. f: reproduced with
official code and configs. *: obtained from official model
checkpoints. G: classifier-free guidance with scale = 2.0.
Note that LAFITE used CLIP at training, while Frido uses it
at inference only (CLIPr).

256256 images using 32X 32 high-level and 64 X 64 low-
level latent code is denoted Frido-f8f4. For LDM baselines,
LDM-n encodes n X n pixels per feature.

Datasets and Evaluation

The main tasks we considered are text-to-image gener-
ation (T2I) on COCO (Lin et al. 2014), scene-graph-
to-image generation (SG2I) on COCO-stuff and Visual
Genome (VG) (Krishna et al. 2017), label-to-image gen-
eration (Label2l) (Jyothi et al. 2019) on COCO-stuff (Lin
et al. 2014), and layout-to-image generation (Layout2I) on
COCO-stuff and Openlmages (Kuznetsova et al. 2020). The
standard metrics used to evaluate image synthesis tasks
are Fréchet inception distance (FID) (Heusel et al. 2017)
and Inception score (IS) (Salimans et al. 2016). In addi-
tion, we considered other task-specific metrics such as CLIP
score (Hessel et al. 2021), Precision and Recall (Sajjadi et al.
2018), SceneFID (Sylvain et al. 2021), YOLO score (Li et al.
2021), PSNR (Hore and Ziou 2010), and SSIM (Wang et al.
2004) when applicable. Please see the supplementary® for
detailed settings. For completeness, we also conducted user
preference studies and experimented on unconditional im-
age generation (UIG), including LSUN-bed (Yu et al. 2015),
CelebA-HQ (Lee et al. 2020), and Lanscape (Skorokhodov,
Sotnikov, and Elhoseiny 2021). Due to the page limit, please
refer to the supplementary for more results.

Conditional Complex Scene Generation

Text Conditional Image Generation We first experiment
on the standard text-to-image (T2I) generation for COCO,
and the results are shown in Table 1. We consider stan-
dard setting of training on COCO train2014 split. Orthog-
onal to recent T2I models pre-trained on huge image-text
pairs, our goal is to synthesize images from diverse condi-
tions. In this setting, FID measures the image quality and

3https://arxiv.org/abs/2208.13753
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CLIP-Score assesses the image-text consistency. For com-
pleteness, IS is also reported, though FID is known for a
stronger correlation with human judgment than IS (Zhang
et al. 2021; Sylvain et al. 2021). Besides standard diffu-
sion inference, we also report the variant with classifier-free
guidance (Nichol et al. 2022). As shown in Table 1, for both
inference types, Frido significantly outperforms the previous
best model LDM by =~ 2 points for FID and ~ 1 point for
CLIP-Score, achieving state-of-the-art scores on FID (15.38
vs. 11.24) and CLIP-Score (0.6607 vs. 0.7046). In a differ-
ent setting, LAFITE (Zhou et al. 2022) incorporated pre-
trained CLIP (Radford et al. 2021), which contained abun-
dant text-image knowledge from web-scale data pairs. As an
initial step for incorporating CLIP knowledge with Frido,
we report the results with a test-time only CLIP ranking
trick (Ding et al. 2021) (10 inferences). We can see that
CLIPr further improves all metrics significantly, achieving
comparable FID and CLIP-Score to LAFITE. An orthogo-
nal direction to utilize CLIP at training similar to LAFITE is
left to future works.

Image Generation from Scene Graph To further ver-
ify the claimed semantic relation capturing, we run SG2I
on COCO-stuff and VG datasets, and the results are
shown in Table 2. Clearly, Frido outperforms all previous
methods, including sg2im (Johnson, Gupta, and Li 2018),
WSGC (Herzig et al. 2020), and LDMs, in terms of FID
and IS, achieving new state-of-the-art. Moreover, to quanti-
tatively measure the semantic correctness of the image w.r.t.
its SG condition, we transform the SG to captions by con-
catenating the relation triplets (i.e., subject-predicate-object)
and report the CLIP-score of the resulting image-caption
pairs. Our model surpasses previous work by =~ 2% on
COCO and ~ 0.2% on VG. This empirically verifies that,
with the feature pyramid and coarse-to-fine generation strat-
egy, Frido improves modeling of complex relations.

Label-to-Image Generation Label-to-image produces
scene image conditioned on image-level labels. Unlike T2I
or SG2I, where scene structure is specified by the text con-
ditions, this task requires a model to combine objects more
freely and synthesize a coherent image. In addition to FID
and IS, precision and recall are reported for object-level
quality and diversity measurement, respectively. We conduct
experiments on Label2] with COCO-stuff. As the shown in
Table 3, our model outperforms all previous approaches, in-



Name | FID IS  Precision Recall
3-8 labels in the image
LayoutVAE | 60.7 - - -
+LostGAN | 74.06 11.66  0.231 0.473
LDMs-8f 5145 15.05 0434 0.576
Frido-f16f8 | 47.39 14.73 0437  0.595
2-30 labels in the image
LDMs-8F 29.17 18.00 0.563  0.554
Frido-f16f8 | 27.65 17.70  0.573  0.542

Table 3: Label-to-image generation on COCO. T: reproduced
with official code and configs.

COCO 256 Openlmage 256
Methods FID] YOLOT sEID]|FID] sFID]
LoSIGAN-V?2 055 - - -
OC-GAN 4165 - - -
SPADE RTE S - ]
VQGAN+T 56.58 - 24.07/4533 1585
LDM-8 (100 steps) 42.06 - - - -
LDM-8' (100 steps)  |41.02 14.67 21.63| - -
LDM-4 (200 steps)  |40.91 - S22 -
Frido-TT618 (100 steps)[38.95 16,71 17.69] - -
Frido-f8f4 (200 steps) |37.14 1722 14.91|29.04 12.77

Table 4: Layout-to-image generation on COCO (segmenta-
tion challenge split) and OpenImages. ': reproduced with
official code and configs. sFID denotes scene FID.

cluding LayoutVAE (Jyothi et al. 2019)* and LDMs, on not
only FID but also precision and recall under the more com-
mon 3-8 labels setting. This indicates that, Frido achieves
better image quality and data manifold modeling of multi-
object images. We further challenge Frido with a harder 2-
30 labels setting and still establish SOTA FID.

Layout-to-Image Generation Our Layout2] results
show-cases that multiple objects’ shapes and details can
be synthesized. Specifically, we compare our Frido with
previous methods under two different settings. Firstly, we
follow LDM and perform experiments on COCO stuff
segmentation challenge split and Openlmage datasets. The
results are shown in Table 4. One can find that Frido outper-
forms previous methods, including LostGAN-v2 (Sun and
Wu 2019), OC-GAN (Sylvain et al. 2021), SPADE (Park
et al. 2019), VQGAN+T (combining Esser, Rombach,
and Ommer 2021 and Brown et al. 2020), and LDM, on
FID by at least 2 points, achieving new state-of-the-art
for both COCO and Openlmages. Moreover, we achieve
the best YOLO scores and sceneFID, indicating the most
visually realistic instance-level objects. Secondly, we follow
TwFA (Yang et al. 2022) and conduct experiments on
standard COCO stuff and Visual Genome datasets. Please
refer to the supplementary material for more detail.

“LayoutVAE implements Label2I as Label2Layout + Layout2I
and reported 128 resolution result. We follow Yang et al. (2021) to
adopt LostGAN (Sun and Wu 2019) to achieve 256 resolution.
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Figure 4: Model ablation on COCO T2I and VG SG2I. CFM
denotes our coarse-to-fine modulation.

Model Analysis

Model Ablation To verify the key novel designs of Frido,
we perform ablation studies on two tasks: text-to-image
(T2I) on COCO and scene-graph-to-image (SG2I) on Vi-
sual Genome. Figure 4 showcases the contribution of each
deployed component in Frido. For ablations and hyper-
parameter tunings, we train for 250K iterations to allow
more experiments. Models with the best dev scores are fur-
ther trained to obtain the final test scores in Sec. . We re-
port mean and the corresponding 95% confidence interval by
conducting the bootstrap test (Koehn 2004) and the sample
size equals to test set size; resampled for 100 times. For the
baseline, we use two LDMs and perform a simple sequen-
tial learning strategy. More specifically, the first LDM learns
the distribution of the high-level feature map (LDM-16); and
the second LDM is deployed to model the low-level feature
of 8 (LDM-8). In this baseline model, we concat LDM-8’s
output feature map and the denoising target feature feed into
the LDM-8 for denoising. To justify the shared U-Net design
of PyU-Net, we first apply this module without CFM to the
baseline. Sharing U-Net reduces the model parameters from
1.18B (baseline) to 590M (baseline + PyU-Net). Finally, the
coarse-to-fine modulation is added, with only a minor in-
crease in parameter count (total of 697M), and performance
is further boosted for all metrics. We can see that each com-
ponent significantly improves the generation results; mod-
els with PyU-Net and CFM are significantly better than the
LDMs on all metrics.

Computation Cost Analysis Here we analyze the infer-
ence cost of our model. In Fig. 5, we compare Frido with
LDM on the speed-quality trade-off. In this figure, we in-
ference each model with different inference timesteps 7" and
then plot the FID scores and against the per-image inference
cost. Note that the experiments are done on validation splits
with batch size of 32 using 1 V100. It is demonstrated that
under similar inference budget, Frido achieve decent per-
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Figure 5: Speed-quality trade-off analysis. Lower FID indi-
cates better image quality.

formance gain comparing to LDM, confirming the claimed
efficiency of our model. For other comparisons on FLOPs,
parameter counts, and inference time, please see the supple-
mentary. Note that by operating in the latent space, LDM is
among the faster ones within the DM model class. Frido fur-
ther reduce the cost by putting part of the denoising load at
lower-resolution.

Takeaways The empirical studies have shown that Frido
significantly outperforms the baseline LDM for complex
scene image synthesis, and even achieves SOTA in 5 set-
tings. Our modeling novelty, including PyU-Net and the
coarse-to-fine modulation, are statistically effective. Last but
not least, Frido is more efficient, as can be seen in a head-
to-head comparison to LDM, which mitigates the notorious
heavy inference cost for diffusion models.

Related Work

More Generative Models for Image Synthesis The com-
munity has witnessed great progress of image synthesis in
the past decade. Other than the previously discussed works,
the families of GANs (Liao et al. 2022; Xu et al. 2018;
Brock, Donahue, and Simonyan 2019; Gafni et al. 2022;
Zhang et al. 2021; Hinz, Heinrich, and Wermter 2020; Kar-
ras et al. 2021), VAEs (Sohn, Lee, and Yan 2015), au-
toregressive models (Razavi, Van den Oord, and Vinyals
2019; Chang et al. 2022; Yu et al. 2022), flow-based meth-
ods (Dinh, Sohl-Dickstein, and Bengio 2017), and diffusion-
based models (Saharia et al. 2022; Gu et al. 2022) have
all made great contribution to shape this field. Frido is a
hybrid of the VAE and DM family, combining the best
of both worlds for outstanding image quality on complex
scenes, and significantly improved DM inference. Very re-
cently, large-scale pre-training for text-to-image genera-
tion (Ramesh et al. 2022) has gained vast attention and
achieved superior results. Frido is orthogonal to these mod-
els, as we investigate coarse-to-fine synthesis and multi-
modality inputs beyond text.

Two-Stage Generative Models Recently, many two-
stage generative models (Van Oord, Kalchbrenner, and
Kavukcuoglu 2016; Jahn, Rombach, and Ommer 2021;
Pandey et al. 2022; Zhou et al. 2022) are proposed to tackle
the drawbacks of the one-stage models. The representative
VQ-VAE (Van Den Oord, Vinyals et al. 2017) first encodes
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an image into a discrete latent space with a lower spatial res-
olution and then uses an auto-regressive network to model
such space. The first step is called Vector Quantization (VQ),
which reduces the input information to allow auto-encoder
learning. In addition, VQ bridges images to other modali-
ties, such as language (Ding et al. 2021; Chen et al. 2020)
and audio (Yan et al. 2021), seamlessly by converting to
discrete tokens. In the second stage, an auto-regressive(e.g.
PixelCNN (Van den Oord et al. 2016), VQGAN) or diffusion
model (LDM, VQ-Diffusion (Tang et al. 2022)) is adopted
to model the encoded latent space. Frido contributes to both
stages by proposing MS-VQGAN and PyU-Net for DM.

Coarse-to-Fine Image Generation Approaches Instead
of generating a full-resolution image in one step, coarse-to-
fine generation synthesizes an image with multiple steps,
from low to high resolution in pixel space (Gregor et al.
2015; Mansimov et al. 2016; Ho et al. 2022) or from
high-level to low-level information in latent space (Razavi,
Van den Oord, and Vinyals 2019; Child et al. 2019). These
allow model to better capture the information in different
levels and have shown to achieve higher quality. For in-
stance, AttnGAN (Xu et al. 2018) and StackGAN (Zhang
et al. 2017, 2018) first produce an image in low resolution
(e.g., 1/8 of the full-size) and then iteratively scale up the
generated image until achieving the final resolution. Differ-
ent from the above works, we share the core network for
each scale. Therefore, the overhead compared to single-scale
models is minimized.

Conclusion

We propose Frido, a new image generative model, empow-
ering an under-explored coarse-to-fine prior in the diffusion
model family. Key designs such as multi-scale codebooks, a
single shared U-Net, and the special modulation mechanism
are shown to be effective via extensive experiments. Empir-
ically, we apply this model to a diverse set of cross-modal
image synthesis tasks and achieve 5 new state-of-the-art re-
sults. From a practical aspect, Frido also mitigates the well-
known slow inference pain-point of diffusion methods.
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