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Abstract
Human has the remarkable ability of learning novel objects
by browsing extremely few examples, which may be at-
tributed to the generic and robust feature extracted in the ven-
tral stream of our brain for representing visual objects. In this
sense, the tuning characteristics of ventral stream’s neurons
can be useful prior knowledge to improve few-shot classifi-
cation. Specifically, we computationally model two groups of
neurons found in ventral stream which are respectively sensi-
tive to shape cues and color cues. Then we propose the hierar-
chical feature regularization method with these neuron mod-
els to regularize the backbone of a few-shot model, thus mak-
ing it produce more generic and robust features for few-shot
classification. In addition, to simulate the tuning character-
istic that neuron firing at a higher rate in response to fore-
ground stimulus elements compared to background elements,
which we call belongingness, we design a foreground seg-
mentation algorithm based on the observation that the fore-
ground object usually does not appear at the edge of the pic-
ture, then multiply the foreground mask with the backbone
of few-shot model. Our method is model-agnostic and can be
applied to few-shot models with different backbones, training
paradigms and classifiers.

Introduction
Few-shot image classification aims to learn new visual con-
cepts from extremely limited examples, which can’t be
achieved without prior knowledge. As for human beings,
we can learn a novel object quickly with only a glance at
it. This remarkable ability implies that there is a generic
and robust encoder in our brain which can extract features
to effectively represent the visual information of an object.
According to the two-streams hypothesis (Schneider 1969;
Mishkin and Ungerleider 1982; Goodale et al. 1991), hu-
man’s brain possesses two distinct pathways for visual per-
ception - the ventral stream and the dorsal stream. Of these
two pathways, the ventral stream is thought to be responsi-
ble for transform-invariant visual object and face recogni-
tion, which can be seen as the generic and robust encoder
mentioned previously. As a result, tuning characteristics of
ventral stream’s neurons can be useful prior knowledge to
improve existed few-shot models with different backbones,
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training paradigms and classifiers, which are not fully ex-
plored in few-shot image classification.

Briefly speaking, tuning characteristics of ventral stream’s
neurons can be divided into 5 groups (Kruger et al. 2012)
- tuning characteristics about shape, color, motion, depth
and belongingness. We don’t consider tuning characteristics
about motion and depth in this paper, as the data used in
image classification is static and monocular.

For tuning characteristics about shape and color, we com-
putationally model the neurons in ventral stream tuned to
shape cues and color cues, which are summarized in Fig-
ure 1. With these neuron models, we can regularize the back-
bone of a few-shot model to make it produce more generic
and robust features. To the best of our knowledge, we are
the first to utilize the computational models of neurons to
benefit few-shot learning, thus building a bridge to fertilize
few-shot learning from the development of computational
neuroscience. To achieve this, one way is to use distillation:
firstly we use neuron models’ responses to images and their
corresponding labels to train a classification model. Then
we distill the knowledge from this classification model to a
normally trained classification model fed by original image
data to get the improved few-shot model. While this distil-
lation method can successfully transfer the knowledge from
ventral stream to few-shot model, it omits the hierarchy of
ventral stream’s neurons (V1→V2→V4). To also exploit the
hierarchy information, we propose the hierarchical feature
regularization method, as shown in the lower part of Fig-
ure 2. Firstly we group the neuron models according to the
visual areas they lie in. Then we use the responses of neu-
rons from V1, V2, V4 areas to respectively regularize fea-
tures of different layers in the backbone of few-shot model
and these layers regularized should have the same hierar-
chy as the neurons, by which the backbone not only cap-
tures the tuning characteristics of ventral stream’s neurons,
but also maintains the same hierarchical structure of the ven-
tral stream. If this hierarchy is reversed, the effect of feature
regularization will be discounted, which can be seen from
the experiment section.

For tuning characteristic of belongingness, existed
method (Luo et al. 2021) has explored the similar problem of
detecting the foreground object without supervision. Their
method is based on the prior knowledge that features of fore-
ground objects in images should be the most common fea-
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V4

Curve Cell:
tuned to curve with 
specific curvature 
and specific orient-
ation.

Hue Cell:
tuned to hue and
invariant to lumi-
nance.

V2

Curvature Endstopped Cell:
tuned to endstopped
edge and curve with 
specific curvature.

Sign Endstopped Cell:
tuned to the sign of 
curvature.

V1

Simple Cell:
tuned to edge in the
exact position.

Complex Cell:
also tuned to edge but has
a larger receptive field.

Double Opponent Cell:
sensitive to a spot of 
one color on a back-
ground of its oppon-
ent color.

Area Shape Color

- -+

Figure 1: Ventral stream’s cells utilized in this paper and
their tuning characteristics.

tures within one class, thereby can be identified via a clus-
tering algorithm. However, this method is not applicable in
one-shot setting because it is hard to cluster foreground ob-
ject’s features with only one image in each class. Applicable
for both one-shot and few-shot settings, our method is based
on another prior knowledge that the foreground object usu-
ally does not appear at the edge of the picture, which means
the image feature from the edge region can be used to find
background region. Based on this observation, we use HSV
color model and K-means clustering to get the representative
image features of the edge region and use these features to
pick background region, then the foreground region will be
the rest of the image. The procedure is shown in the upper
part of Figure 2. Our main contributions in this paper can be
summarized as follows:

• We propose the novel hierarchical feature regularization
method with computational models of ventral stream’s
neurons to improve few-shot classification models, thus
building a bridge to fertilize few-shot learning from the
development of computational neuroscience.

• We propose a foreground segmentation algorithm to sim-
ulate the tuning characteristic of belongingness by mul-
tiplying the segmentation mask with the feature maps of
the few-shot model’s backbone, which can further im-
prove few-shot models.

• We apply our method on few-shot models with different
backbone, classifier and training setting. The consistent
improvements over these models demonstrate the effec-
tiveness and generality of our method.

Related Works
Few-shot classification. Recent few-shot classification
methods can be roughly grouped into three categories.
Hallucination-based method learns a generator from data

in the base classes and use the learned generator to gener-
ate new novel class data for data augmentation (Chen et al.
2019; Hariharan and Girshick 2017; Li et al. 2019, 2020).
Metric-based method aims to learn an embedding function
that maps images to a metric space such that the relevance
between a pair of images can be measured based on their dis-
tance (Oreshkin, Rodrı́guez López, and Lacoste 2018; Snell,
Swersky, and Zemel 2017; Vinyals et al. 2016; Zhang et al.
2014, 2020). Optimization-based method aims to learn how
to optimize the gradient descent procedure so that the learner
can have a good initialization or update direction or learning
rate (Finn, Abbeel, and Levine 2017; Jamal and Qi 2019;
Munkhdalai and Yu 2017; Zheng et al. 2021; Zhu et al. 2021;
Rajeswaran et al. 2019). Our method is in spirit similar to the
optimization-based method, in that we tend to alter the gra-
dient descent procedure to find a better update direction by
using regularization techniques.

Regularization techniques. Regularization techniques
have been widely used in the deep learning community for
training deep neural network to prevent it from overfitting
and improve their generalization performances (Srivastava
et al. 2014; DeVries and Taylor 2017). Overfitting is a typ-
ical issue for few-shot models, due to the extremely limited
examples of novel class and the disjoint distribution between
training data and testing data. In this sense, regularization
techniques are suitable to be used on few-shot classification.
In fact, there are quite a few methods utilizing regulariza-
tion to improve few-shot model (Yoo et al. 2018; Mangla
et al. 2020; Osahor and Nasrabadi 2022). In this paper, we
present a novel regularization technique which exploits the
tuning characteristics and the hierarchy of ventral stream’s
neurons to benefit few-shot models.

Approach

Modelling Ventral Stream’s Neurons

Ventral stream is a multistage pathway with the hierarchy of
V1→V2→V4→IT. The learning of novel object is thought
to be achieved in the inferotemporal cortex (IT) through the
experience-induced changes such that neurons become more
selective for learned visual object (Hasegawa and Miyashita
2002; Sakai and Miyashita 1991; Sigala and Logothetis
2002). Compared to the function of IT, the function of ar-
eas before IT (V1, V2, V4) is more like feature extractor
in the sense that they have persistent selectivity for specific
visual cues such as local orientation, curvature and color
contrast (Pasupathy 2006; Kruger et al. 2012). To benefit
few-shot models from these generic and robust features used
by our brain’s visual system, we manage to computationally
model neurons in V1, V2, V4 areas firstly.

V1 area. The most typical cells found in V1 are sim-
ple cell and complex cell which are found by Hubel and
Wiesel (Hubel and Wiesel 1959). They are both tuned to
oriented edge or bar, while the complex cell has a degree
of spatial invariance. Fisrtly we use Difference of Gaussians
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Figure 2: Illustration of our proposed method, which comprises two parts: one (bottom) is the hierarchical feature regularization
method using computational models of ventral stream’s neurons tuned to shape cues and color cues to regularize the backbone of
few-shot model; the other (top) is a foreground segmentation algorithm to simulate the tuning characteristic of belongingness.
Here we show the methods in fine-tuning setting with backbone of ResNet-12. To avoid clutter, we simplify the training
procedure by only showing the pre-training stage and omitting the fine-tuning stage and classification loss.

to model the odd simple cell:

Gsimple(x, y) =
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2πσxσy
e
− 1

2 ((
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e
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x′
2

σx
)2+(

y′
2

σy
)2)

,

(1)

(x′
1, y

′
1) = Rotate(x− x1, y − y1, θs),

(x′
2, y

′
2) = Rotate(x− x2, y − y2, θs),

(2)

(x1, y1) = Rotate(−S

2
, 0, θs),

(x2, y2) = Rotate(
S

2
, 0, θs).

(3)

Rotate(x, y, θ) is an operation which rotates the point
(x, y) around origin by θ degree clockwise and obtain a new
point (x′, y′):

x′ = xcos(θ) + ysin(θ),

y′ = −xsin(θ) + ycos(θ).
(4)

σx and σy control the width and height of gaussian func-
tion. θs is the orientation of simple cell. S is the distance
between centers of two gaussian functions. We set S = 4σx.
For RGB image, we should integrate the information from
three color channels:

rsimple =
√

rsimpleR
2 + rsimpleG

2 + rsimpleB
2, (5)

{rsimpleEi
= Gsimple ⊗ cEi}E={R,G,B}, (6)

where rsimpleR , rsimpleG , rsimpleB are the responses of odd
simple cells to R, G, B color channels cR, cG, cB . rsimple is
the response of simple cells to a RGB image. ⊗ represents
convolution operation.

The complex cell receives signals from simple cells and
integrates them. The typical model of complex cell is the
sum of several laterally displaced simple cells (Spitzer and
Hochstein 1985). Following this idea, we model the complex
cell as the summation over responses of simple cells with
gaussian weights:

rcomplex =
Gcomplex ⊗ rsimple

ρ
, (7)

Gcomplex(x, y) = e
− 1

2 ((
x′
σ′
x
)2+( y′

σ′
y
)2)

, (8)

(x′, y′) = Rotate(x, y, θc +
π

2
), (9)

where σ′
x is a small value which we set as 0.5. As a re-

sult, complex cell is actually the sum of several laterally
displaced simple cells. θc is the orientation of complex
cell which is also the orientation of simple cells and per-
pendicular to the orientation of elongated gaussian func-
tion. ρ is a normalization factor which we set as ρ =
Max(Gcomplex⊗rsimple)

Max(rsimple)
. Max is the operation of taking max-

imum value.
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Besides shape, another important cue for visual percep-
tion is color. One type of color-coding cell named double-
opponent cell is found exist widely in V1 (Gegenfurtner
2003; Livingstone and Hubel 1984), which encodes color
contrast on two color axises of blue-yellow and red-green.
We follow Gao et al. (2013) to model double-opponent cells.
Signals are first transformed from the RGB space to the
single-opponent space according to Ebner (2007):

oRG =
cR − cG√

2
, oGR = −oRG,

oY B =
cY − 2cB√

6
, oBY = −oY B ,

(10)

where cY represents the yellow channel of input color im-
age, given by cY = (cR + cG)/2, which is constructed for
the computation of blue-yellow (B-Y) opponency. The re-
sponses of simple-opponent cells (SO) can be computed as:

rSOR+G−(σ) = GSO(σ)⊗ oRG, (11)

GSO(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 , (12)

where σ controls the scale of simple-opponent cell’s recep-
tive field we set as 1. Other SO cells rSOG+R− , rSOB+Y − ,
rSOY +B− can be obtained in the similar way. Note that in
the expression of A+B−, the sign + and − denote the ex-
citation and inhibition, respectively. Then the responses of
double-opponent cells (DO) can be computed as:

rDOR+G− = rSOR+G−(σ) + k ∗ rSOG+R−(λσ), (13)

where σ and λσ respectively define the scales of the recep-
tive field center and its surround of a double-opponent cell. k
is a weight to control the contribution of receptive field sur-
round. We set λ = 3 and k = 0.8. Other DO cells rDOG+R− ,
rDOB+Y − , rDOY +B− can be obtained in the similar way.

V2 area. V2 contains endstopped cells (hypercomplex
cells) which are characterized by inhibitory areas (end-
zones). End-zones endow endstopped cells with the capac-
ity to identify edges with limited length and curves (for
cells stopped at both ends). Apart from the degree of cur-
vature, another contour characteristic that V2 cells seem
to encode is the sign of curvature (Dobbins, Zucker, and
Cynader 1987; Hegdé and Van Essen 2000). To simulate
these tuning characteristics, we use the computational mod-
els of curvature endstopped cell and sign endstopped cell
from Rodrı́guez-Sánchez and Tsotsos (2012). Curvature
endstopped cell (CE) is modelled as an excitatory center
simple cell with two inhibitory displaced complex cells:

rCE(x, y) =Φ(αc ∗ rsimple(x, y)−
αd1 ∗ rcomplex(xd1, yd1)−
αd2 ∗ rcomplex(xd2, yd2)),

(14)

Φ(r) =
1− e−r/ϵ

1 + 1/Γe−r/ϵ
, (15)

where αc, αd1, αd2 are the gains for the center and displaced
cells. rsimple(x, y), rcomplex(xd1, yd1), rcomplex(xd2, yd2)
are the responses of the center simple cell and two displaced

complex cells. These cells have the same orientation and two
complex cells are placed on either side of the center simple
cell with the same distance d = 2σy . Φ is the rectification
function and ϵ is the maximum response of the set of neurons
for a given scale divided by 8.5, a factor that provided a good
normalization approximation for this rectification.

sign endstopped cell (SE) uses the same structure as
curvature endstopped cell except that two displaced com-
plex cell are rotated by 45 degrees with opposite direc-
tion (Rodrı́guez-Sánchez and Tsotsos 2012):

rSE+(x, y) =ϕ(rsimple(x, y)−
rcomplex45

(xd145 , yd145)−
rcomplex135(xd2135 , yd2135)),

(16)

rSE−(x, y) =ϕ(rsimple(x, y)−
rcomplex135

(xd1135 , yd1135)−
rcomplex45(xd245 , yd245)).

(17)

V4 area. By combining responses of curvature end-
stopped cells and sign endstopped cells, we obtain the curve
cell tuned to curve with specific orientation and curvature,
which is able to represent various contour fragments. We
adopt the same method as Rodrı́guez-Sánchez and Tsotsos
(2012) to model curve cell:

rcurvei = rCEi ∩ (rSE+ > rSE−),

rcurvei+n
= rCEi

∩ (rSE− > rSE+),
(18)

where n is the number of curvature endstopped cell types
(with different orientation). The number of curve cell types
is 2n (with different orientation and sign).

Color coding cells in V4 differ from those in V1, V2 in
that they code for hue, instead of color opponency along the
two principal color axes, and that the tuning to hue is in-
variant to luminance (Conway, Moeller, and Tsao 2007). To
encode hue representation, we firstly transform RGB image
into HSV image with channels of hue cH , saturation cS and
value (brightness) cV . Then the hue of a pixel can be repre-
sented by its distance to the pixels of seven ‘standard colors’
(from red to purple). To achieve luminance invariance, only
hue and saturation are considered:

rcolori = e
− 1

2 (
(cH−ηi)

2

σ2
h

+
(cS−1)2

σ2
s

)
, (19)

where rcolori represents one hue from {red, orange, yellow,
green, cyan, blue, purple}. ηi is the standard hue of one
color. In addition, we add white and black as extra hues.
Implementation Details are described in appendix. All hue
representations are combined to obtain the response of hue
cells rhue with 9 channels.

Hierarchical Feature Regularization
Since we have the computational models of neurons, we
can use them to regularize the backbone of few-shot model
so that the backbone can produce more generic and ro-
bust features for few-shot classification. In addition, neurons
from different visual areas have the hierarchical structure
of V1→V2→V4. To capture both the tuning characteristics
and the hierarchy of ventral stream’s neurons, we propose
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the hierarchical feature regularization (HFR) method. Hier-
archy makes sense in that neurons in different visual areas
have different complexity. Tuning characteristics of lower
areas should be learned in shallow layer to prevent overfit-
ting. Tuning characteristics of higher areas should be learned
in deep layer in case the network has enough capacity.

For each image in training set, we can get the responses
of V1 neurons: {rsimplei}

i=ns
i=1 , {rcomplexi

}i=nc
i=1 , rDOR+G− ,

rDOG+R− , rDOB+Y − , rDOY +B− . In our experiments, we
use 4 orientations and 3 different sizes, thus ns = 12 and
nc = 12. Combining all responses of V1 neurons, we ob-
tain the V1 feature fV 1 ∈ RW×H×nV 1 , where W and H
are the width and height of input image, nV 1 is the num-
ber of channels and nV 1 = 28. In the same way, we can
obtain fV 2 ∈ RW×H×nV 2 and fV 4 ∈ RW×H×nV 4 , where
nV 2 = 36 and nV 4 = 33. Because all computational models
can be transformed into convolution layers with fixed kernel,
the computations of these models can be accelerated by GPU
so that the use of these neuron models will not cost much.

Then we choose three layers l1, l2, l3 in the backbone
of few-shot model to do feature regularization, where l1
is lower than l2 and l2 is lower than l3. For convolutional
networks (CNN), the model can be divided into several
modules. Each module consist of several repetitive build-
ing blocks with a max pooling layer, especially for ResNets,
which are widely used by few-shot classification task (Ore-
shkin, Rodrı́guez López, and Lacoste 2018; Rusu et al.
2018). In our experiments, we choose outputs of these mod-
ules to regularize. Take the example of ResNet-12, it has
four modules that each consist of three conv layers with 3x3
kernel and a 2x2 max pooling layer applied at the end of
each module. We choose the first three modules’ outputs to
regularize, as shown in Figure 2. We use fV 1, fV 2, fV 4 to
regularize l1, l2, and l3 respectively, with Mean Squared Er-
ror (MSE) loss:

LV 1 = ∥fp
l1
− Pool1(fV 1)∥2,

LV 2 = ∥fp
l2
− Pool2(fV 2)∥2,

LV 4 = ∥fp
l3
− Pool3(fV 4)∥2,

(20)

where fp
ln

is part of the output of ln. Because the number
of channels is not matched between fln (the full output of
ln) and its corresponding ventral feature, we only regularize
part of fln , which is represented as fp

ln
. Regularizing only

part of the feature in the backbone is reasonable in the sense
that neurons modelled by us is only part of the neurons in
ventral stream which can’t represent all aspects of visual ob-
jects. Pool is average pooling function used to down-sample
ventral feature so that their size can match the corresponding
backbone feature. We combine these losses into one:

Lventral = LV 1 + w1LV 2 + w2LV 4, (21)
where w1, w2 are hyper-parameters to adjust the weights of
each loss. We simply set both w1, w2 as 1. To use hierar-
chical feature regularization (HFR), you just need to simply
combine the cross-entropy classification loss with Lventral.

Foreground Segmentation for Belongingness
Experiments have shown that some neurons in ventral
stream fire at a higher rate in response to foreground stim-

ulus elements compared to background elements (Lamme
1995). We call this tuning characteristic belongingness. To
simulate belongingness, we propose a foreground segmen-
tation algorithm without any supervision. According to Luo
et al. (2021), although background knowledge has positive
impact on the performance of in-class classification tasks, it
serves as a source of shortcut knowledge which harms the
evaluation performance in few-shot classification. As a re-
sult, belongingness serves to rectify the shortcut learning of
background for few-shot learning.

For the task of image classification, the object usually
does not appear at the edge of the picture. If we can obtain
the representative image features of the edge region, then
we can use these features to pick background region and the
rest of the image will be foreground region. To achieve this,
we firstly divide the input image into little square patches
with length of Lpatch = ⌊Max(W,H)

K ⌋, where K is set as
32. We only use the image patches at the edge of the image.
Therefore, we obtain npatch = 2 ∗ (⌊ W

Lpatch
⌋ + ⌊ H

Lpatch
⌋)

patches. For each patch, we transform the color space from
RGB into HSV, with channels of hue, saturation and value
(brightness). Then we use the channels of hue and satura-
tion to represent this image patch, thus obtaining the patch
feature invariant to luminance:

Hpatch = Pool(cH), Spatch = Pool(cS), (22)

where cH ∈ RLpatch×Lpatch and cS ∈ RLpatch×Lpatch are
the channels of hue and saturation of this image patch. Pool
is the average pooling function. Next, we use K-means al-
gorithm to cluster patches at the edge of the image based on
(Hpatch, Spatch). We choose the clusters with more than τg
patches to represent background. The centers of these clus-
ters {zi}

i=ng

i=1 can be seen as the features of background. We
set τg = ⌊npatch

6 ⌋. Finally, foreground region can be ex-
tracted utilizing {zi}

i=ng

i=1 . We use a sliding window with
size of Lpatch × Lpatch and stride of ⌊Lpatch

2 ⌋. For each
window, we extract its hue-saturation feature and compute
its euclidean distance to {zi}

i=ng

i=1 . If one of these distances
is less than the threshold τd, then this window is classified
as background, otherwise it is classified as foreground. The
overall foreground region is the union of all foreground win-
dows. By multiplying the segmentation mask with the fea-
ture maps of few-shot model’s backbone, we can simulate
the tuning characteristic of belongingness and rectify the
shortcut learning of background for few-shot learning. No-
tice that we use the segmentation mask both in training and
evaluation, which can maximize the effectiveness according
to Luo et al. (2021). In fact, the edge region of image can
be represented by more complicated neural representation,
which we leave for future works.

Experiments
Implementation Details
We implement our method over advanced few-shot mod-
els of RENet (Kang et al. 2021) and Distribution Cali-
bration (DC) (Yang, Liu, and Xu 2021), which use differ-
ent paradigms of meta-learning and fine-tuning. Besides,
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method CUB miniImageNet CIFAR-FS tieredImageNet
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

RENet 79.49 91.11 67.60 82.58 74.51 86.60 71.61 85.28
RENet-ventral 83.33 (+3.84) 92.97 (+1.86) 69.71 (+2.11) 84.23 (+1.65) 75.82 (+1.31) 87.45 (+0.85) 73.94 (+2.33) 87.15 (+1.87)

KNN-DC 79.88 88.73 67.07 79.17 73.23 83.91 76.18 87.41
KNN-DC-ventral 82.41 (+2.53) 90.75 (+1.92) 69.10 (+2.03) 81.00 (+1.83) 74.63 (+1.40) 85.01 (+1.10) 78.35 (+2.17) 89.08 (+1.67)

SVM-DC 79.49 90.26 67.31 82.30 74.55 86.05 77.93 89.72
SVM-DC-ventral 82.12 (+2.63) 91.93 (+1.67) 69.12 (+1.81) 83.57 (+1.27) 75.69 (+1.14) 86.97 (+0.92) 79.27 (+1.34) 90.91 (+1.19)

LR-DC 79.56 90.67 68.57 82.88 74.71 86.35 78.19 89.90
LR-DC-ventral 82.26 (+2.70) 92.60 (+1.93) 69.98 (+1.41) 84.22 (+1.34) 75.78 (+1.07) 87.09 (+0.74) 79.48 (+1.29) 91.03 (+1.13)

Table 1: 5-way 1-shot and 5-shot classification accuracy (%) on four standard benchmarks before and after applying our method.

method backbone CUB miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchNet (Vinyals et al. 2016) ResNet-12 71.87 ± 0.85 85.08 ± 0.57 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71
ProtoNet (Snell, Swersky, and Zemel 2017) ResNet-12 66.09 ± 0.92 82.50 ± 0.58 62.39 ± 0.21 80.53 ± 0.14 68.23 ± 0.23 84.03 ± 0.16

DeepEMD (Zhang et al. 2020) ResNet-12 75.65 ± 0.83 88.69 ± 0.50 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
RENet (Kang et al. 2021) ResNet-12 79.49 ± 0.44 91.11 ± 0.24 67.60 ± 0.44 82.58 ± 0.30 71.61 + 0.51 85.28 ± 0.35
COSOC (Luo et al. 2021) ResNet-12 - - 69.28 ± 0.49 85.16 ± 0.42 73.57 ± 0.43 87.57 ± 0.10

CSEI (Li, Wang, and Hu 2021) ResNet-12 - - 68.94 ± 0.28 85.07 ± 0.50 73.76 ± 0.32 87.83 ± 0.59
SetFeat (Afrasiyabi et al. 2022) ResNet-12 79.60 ± 0.80 90.48 ± 0.44 68.32 ± 0.62 82.71 ± 0.46 73.63 ± 0.88 87.59 ± 0.57

DeepBDC (Xie et al. 2022) ResNet-12/18 84.01 ± 0.42† 94.02 ± 0.24† 67.83 ± 0.43 85.45 ± 0.29 73.82 ± 0.47 89.00 ± 0.30
S2M2 (Mangla et al. 2020) WRN-28-10 80.68 ± 0.81 90.85 ± 0.44 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14

MetaQDA (Zhang et al. 2021) WRN-28-10 - - 67.83 ± 0.64 84.28 ± 0.69 74.33 ± 0.65 89.56 ± 0.79
LR-DC (Yang, Liu, and Xu 2021) WRN-28-10 79.56 ± 0.87 90.67 ± 0.35 68.57 ± 0.55 82.88 ± 0.42 78.19 ± 0.25 89.90 ± 0.41

RENet-ventral ResNet-12 83.33 ± 0.40 92.97 ± 0.24 69.71 ± 0.45 84.23 ± 0.29 73.94 ± 0.48 87.15 ± 0.35
LR-DC-ventral WRN-28-10 82.26 ± 0.89 92.60 ± 0.34 69.98 ± 0.56 84.22 ± 0.42 79.48 ± 0.26 91.03 ± 0.41

Table 2: Performance comparison on CUB, miniImage, and tieredImageNet, with 95% confidence intervals. † denotes the
method uses ResNet-18 and higher resolution of 224×224 instead of 84×84.

shape color belongingness CUB† miniImageNet
× × × 79.56 67.60
✓ × × 80.83 (+1.27) 68.73 (+1.13)
✓ ✓ × 81.17 (+1.61) 68.98 (+1.38)
✓ ✓ ✓ 82.26 (+2.70) 69.71 (+2.11)

Table 3: Effects of different tuning characteristics. †Here
we use ‘LR-DC-ventral’ method on CUB dataset for clearer
comparison, considering that RENet use cropped images on
CUB which can’t show the effect of belongingness.

they use different backbones of ResNet-12 and WRN-28-10,
which are the most used in few-shot classification. We also
implement different classifiers on DC model. We use three
groups of parameters {σi

x} = {0.5, 1, 2}, {σi
y} = {1, 2, 4},

{σ′i
y } = {1, 2, 4} to encode shape cues with neurons of dif-

ferent scales. Orientations are set as {0◦, 45◦, 90◦, 135◦}. To
use foreground masks, we adopt the same fusion sampling
strategy as (Luo et al. 2021). We use the same data process-
ing method as RENet and DC. Introduction to datasets and
more implementation details are given in appendix.

Results and Analysis
Effectiveness of our method. We report the accuracy
and the improvements after applying our method on 5-
way 1-shot and 5-way 5-shot settings for CUB, miniIma-

geNet, CIFAR-FS, and tieredImageNet, as shown in Table 1.
‘KNN-DC’, ‘SVM-DC’ and ‘LR-DC’ represent Distribution
Calibration methods with classifier of KNN, SVM and Lin-
ear Regression respectively. Results of ‘KNN-DC’ are pro-
duced by us. The suffix ‘-ventral’ means the methods ben-
efit from knowledge of ventral stream, by using our hierar-
chical feature regularization (HFR) and foreground segmen-
tation algorithm. As shown in Table 1, our method consis-
tently improves all models with different backbones, train-
ing paradigms and classifiers, which demonstrate the effec-
tiveness and generality of our method. Our method works
best on CUB dataset, with a remarkable improvement on
RENet (79.49%→83.33%). However, our method has rel-
atively limited improvements on CIFAR-FS, due to the low
resolution and already cropped images.

Comparison to State-Of-The-Art Methods. We choose
‘RENet-ventral’ and ‘LR-DC-ventral’ to compare with cur-
rent few-shot classification methods on CUB, miniImageNet
and tieredImageNet. As shown in Table 2, our methods
achieve state-of-the-art performances on all datasets except
the 5-way 5-shot setting of miniImageNet.

Ablation Studies. We use ’RENet-ventral’ method to con-
duct extensive ablation studies on CUB and miniImageNet,
either in the absence of each module or by replacing them
with others and compare the results in 5-way 1-shot setting.

Firstly, we evaluate the effectiveness of each tuning char-
acteristic of ventral stream’s neurons we utilize. As shown
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V1 V2 V4 reverse CUB miniImageNet
× × × × 79.49 67.60
✓ × × × 81.76 (+2.27) 68.21 (+0.61)
✓ ✓ × × 82.57 (+3.08) 68.67 (+1.07)
✓ ✓ ✓ × 83.14 (+3.65) 68.98 (+1.38)
✓ ✓ ✓ ✓ 82.17 (+2.68) 68.34 (+0.74)

Table 4: Effects of different visual areas’ neurons.

method CUB miniImageNet
original 79.49 67.60

fusion-input 77.65 (-1.84) 66.13 (-1.47)
fusion-fc 79.11 (-0.38) 67.26 (-0.34)

distillation 81.01 (+1.52) 68.14 (+0.54)
HFR (ours) 83.14 (+3.65) 68.98 (+1.38)

Table 5: Performance comparison of methods utilizing neu-
ron computational models for few-shot classification.

in Table 3, the biggest performance gain is brought by the
usage of tuning characteristics to shape cues.

Next, we evaluate the effectiveness of each visual area’s
neurons tuned to shape and color cues in Table 4. When the
hierarchical structure of ventral stream’s neurons utilized to
regularize is reversed, which means we use V4, V2, V1 neu-
rons to regularize l1, l2, l3 respectively, the performance is
degraded, which demonstrates the importance of hierarchy.

Finally, we evaluate various methods utilizing computa-
tional models of ventral stream’s neurons for few-shot clas-
sification. In Table 5, ‘fusion-input’ represents the method
fusing the input image with responses of all neurons and use
it as new input to few-shot model for training and evaluation.
‘fusion-fc’ represents the method fusing the feature before
fc layer with responses of all neurons. We use concatena-
tion as the fusion method. ‘distillation’ represents the distil-
lation method mentioned in introduction section. As we can
see, simply combing responses of all neurons with few-shot
model’s input or feature doesn’t make sense. On the con-
trary, it may harm the model’s performance. Distillation can
improve few-shot models by transferring knowledge from
ventral stream’s neurons. However, to use distillation, we
need to firstly train a classification model using responses
of neurons. Our HFR method can be directly used without
extra training stage. In addition, our HFR method is more
effective than distillation with a greater performance gain.

Visualization

Regularized features vs. non-regularized features. Fig-
ure 3 shows l1 features regularized by simple cells (left)
and l2 features regularized by curvature endstopped cells
(right). As we can see, regularized features have the property
of representational adequacy, thanks to the various orienta-
tions (shown in different column) and scales (shown in dif-
ferent row) designed systematically. However, features with-
out regularization are disorganized and biased to the training
set, which are less robust to the disjoint test set in few-shot
classification compared to regularized features.

Figure 3: Regularized features of l1 (left) and l2 (right) with
non-regularized features shown in the bottom line.

Figure 4: Example results of foreground segmentation.

Results of foreground segmentation. Left column of Fig-
ure 4 shows segmentation results of images with simple ho-
mochromatic background. Images in middle column have
more complicated background. Foreground objects can’t be
extracted seperately in the images of right column, however
part of their background can be removed.

Conclusion

In this paper, we study the problem of how to utilize tuning
characteristics of ventral stream’s neurons as prior knowl-
edge to improve few-shot classification models. To utilize
the tuning characteristics about shape and color, we pro-
pose the novel hierarchical feature regularization method
with computational neuron models to regularize the back-
bone of few-shot model. To utilize the tuning characteristic
of belongingness, we propose a foreground segmentation al-
gorithm and multiply the segmentation mask with few-shot
model’s backbone, based on the prior knowledge that the
foreground object usually does not appear at the edge of
the picture. The consistent improvements over models with
different backbone, training paradigm and classifier demon-
strate the effectiveness and generality of our method.
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Oreshkin, B.; Rodrı́guez López, P.; and Lacoste, A. 2018.
Tadam: Task dependent adaptive metric for improved few-
shot learning. Advances in neural information processing
systems, 31.
Osahor, U.; and Nasrabadi, N. M. 2022. Ortho-Shot: Low
Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
2200–2209.
Pasupathy, A. 2006. Neural basis of shape representation in
the primate brain. Progress in brain research, 154: 293–313.
Rajeswaran, A.; Finn, C.; Kakade, S. M.; and Levine, S.
2019. Meta-learning with implicit gradients. Advances in
neural information processing systems, 32.

541



Rodrı́guez-Sánchez, A. J.; and Tsotsos, J. K. 2012. The roles
of endstopped and curvature tuned computations in a hierar-
chical representation of 2D shape. PloS one, 7(8): e42058.
Rusu, A. A.; Rao, D.; Sygnowski, J.; Vinyals, O.; Pas-
canu, R.; Osindero, S.; and Hadsell, R. 2018. Meta-
learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960.
Sakai, K.; and Miyashita, Y. 1991. Neural organization
for the long-term memory of paired associates. Nature,
354(6349): 152–155.
Schneider, G. E. 1969. Two visual systems: Brain mecha-
nisms for localization and discrimination are dissociated by
tectal and cortical lesions. Science, 163(3870): 895–902.
Sigala, N.; and Logothetis, N. K. 2002. Visual categoriza-
tion shapes feature selectivity in the primate temporal cor-
tex. Nature, 415(6869): 318–320.
Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical net-
works for few-shot learning. Advances in neural information
processing systems, 30.
Spitzer, H.; and Hochstein, S. 1985. A complex-cell
receptive-field model. Journal of Neurophysiology, 53(5):
1266–1286.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1): 1929–1958.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. Advances
in neural information processing systems, 29.
Xie, J.; Long, F.; Lv, J.; Wang, Q.; and Li, P. 2022. Joint Dis-
tribution Matters: Deep Brownian Distance Covariance for
Few-Shot Classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
7972–7981.
Yang, S.; Liu, L.; and Xu, M. 2021. Free lunch for
few-shot learning: Distribution calibration. arXiv preprint
arXiv:2101.06395.
Yoo, D.; Fan, H.; Boddeti, V.; and Kitani, K. 2018. Efficient
k-shot learning with regularized deep networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 32.
Zhang, C.; Cai, Y.; Lin, G.; and Shen, C. 2020. Deep-
emd: Few-shot image classification with differentiable earth
mover’s distance and structured classifiers. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 12203–12213.
Zhang, H.; Zha, Z.-J.; Yang, Y.; Yan, S.; and Chua, T.-S.
2014. Robust (semi) nonnegative graph embedding. IEEE
transactions on image processing, 23(7): 2996–3012.
Zhang, X.; Meng, D.; Gouk, H.; and Hospedales, T. M.
2021. Shallow bayesian meta learning for real-world few-
shot recognition. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 651–660.
Zheng, K.; Lan, C.; Zeng, W.; Zhang, Z.; and Zha, Z.-J.
2021. Exploiting sample uncertainty for domain adaptive

person re-identification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, 3538–3546.
Zhu, K.; Cao, Y.; Zhai, W.; Cheng, J.; and Zha, Z.-J.
2021. Self-promoted prototype refinement for few-shot
class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
6801–6810.

542


