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Abstract

Vision-language alignment learning for video-text retrieval
arouses a lot of attention in recent years. Most of the existing
methods either transfer the knowledge of image-text pretrain-
ing model to video-text retrieval task without fully exploring
the multi-modal information of videos, or simply fuse multi-
modal features in a brute force manner without explicit guid-
ance. In this paper, we integrate multi-modal information in
an explicit manner by tagging, and use the tags as the anchors
for better video-text alignment. Various pretrained experts are
utilized for extracting the information of multiple modalities,
including object, person, motion, audio, etc. To take full ad-
vantage of these information, we propose the TABLE (TAg-
ging Before aLignmEnt) network, which consists of a vi-
sual encoder, a tag encoder, a text encoder, and a tag-guiding
cross-modal encoder for jointly encoding multi-frame visual
features and multi-modal tags information. Furthermore, to
strengthen the interaction between video and text, we build a
joint cross-modal encoder with the triplet input of [vision, tag,
text] and perform two additional supervised tasks, Video Text
Matching (VTM) and Masked Language Modeling (MLM).
Extensive experimental results demonstrate that the TABLE
model is capable of achieving State-Of-The-Art (SOTA) per-
formance on various video-text retrieval benchmarks, includ-
ing MSR-VTT, MSVD, LSMDC and DiDeMo.

Introduction
Vision-language alignment learning for video-text retrieval
becomes an emerging requirement with the increasing of
videos and short videos uploaded online, and has attracted
great attention in recent years. In the research field, it re-
turns the most relevant videos for a given text query to
facilitate large-scale videos searching and management. In
the recommendation field, it recommends the most rele-
vant text queries for the video that the user is watching to
prompt more searching and browsing. Although a lot of re-
cent works (Zhu and Yang 2020; Gabeur et al. 2020; Dz-
abraev et al. 2021; Lei et al. 2021; Liu et al. 2021; Luo
et al. 2021; Fang et al. 2021; Cheng et al. 2021; Chen, Liu,
and Albanie 2021; Cao et al. 2022) have made remarkable
progress, the cross-modal alignment between video and text
remains a challenging task.
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Figure 1: The multi-modal information is able to motivate
the video-text alignment in an explicit manner, i.e., tagging.

Most of the existing video-text retrieval models use multi-
layer transformers to learn generic representations from
massive video-text pairs, which can be roughly divided into
two categories. The first category uses only frame features
to transfer the knowledge of image-text pretrained model to
video-text retrieval task without fully exploring the multi-
modal information of videos (Lei et al. 2021; Luo et al.
2021; Fang et al. 2021; Cheng et al. 2021; Cao et al. 2022). A
representative method is CLIP4Clip (Luo et al. 2021), which
utilizes the knowledge of the CLIP (Contrastive Language-
Image Pretraining) (Radford et al. 2021) model to visually
encode multi-frame information. The model achieves good
performance on multiple benchmarks, demonstrating the ef-
fectiveness of the knowledge transferring. The second cate-
gory is to jointly encode the information of various modal-
ities in the video, such as objects, actions, scenes, audio,
etc. (Gabeur et al. 2020; Dzabraev et al. 2021; Wang, Zhu,
and Yang 2021; Hao et al. 2021). A typical representative
method is MMT (Multi-Modal Transformer) (Gabeur et al.
2020), which uses multiple pretrained experts to obtain em-
beddings of different modalities, and builds a multi-modal
transformer for feature fusion. The performance of this
model demonstrates the advantage of using multi-modal in-
formation over using single visual information of the video.
However, most of these methods simply fuse multi-modal
features in a brute force manner without explicit guidance,
which increases the difficulty of the learning process.

In this paper, we introduce a novel approach which not
only transfers image-text knowledge, but also fully exploits
multi-modal information in an explicit manner. A set of pre-
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trained experts are utilized to extract features from multiple
modalities, including object, person, scene, motion, and au-
dio. Object and person focus on instance features or local
features of the video; scene focuses on background or global
features. The motion features reveal the behavior or action
happening in the video, which extract temporal information
from consecutive frames. The audio provides supplementary
descriptions, which may not appear in visual features. The
most challenging part of the proposed approach is how to
fuse the features of different modalities effectively and ef-
ficiently. In this work, we utilize tagging as bridge, whose
advantages lie in the following two aspects. First, embed-
dings from various modalities generated by different experts
are not compatible from each other; while tagging gener-
ates unified representations for different modalities. Second,
multi-modal tags can be treated as anchor points to make the
visual-language alignment learn the local feature, the global
feature, the temporal feature, and other supplementary fea-
tures comprehensively, which eases the learning process sig-
nificantly. For example, in Fig. 1, by using multiple pre-
trained experts, we can extract object, person, motion, scene
and audio tags from video. These tags provide abundant in-
formation from multi-modality of the video, which bridge
the gap between vision and language, making the alignment
learning more efficiently and precisely.

Specifically, we construct a TABLE (TAgging Before
aLignmEnt) network, where a cross-modal encoder is con-
structed to jointly learn multi-frame visual features and
multi-modal tags features of the video. It uses multi-modal
tags as anchors to guide the visual-text alignment, and learns
the temporal information between frames. Further, we in-
troduce two auxiliary tasks, namely Video Text Matching
(VTM) and Masked Language Modeling (MLM). The goal
of VTM is to judge whether the [visual, tag] matches the
[text], and the objective of MLM is to recover the masked
word according to [vision, tag, unmasked text].

In summary, the contributions of this work lie in four-fold:

• We propose a novel method for video-text retrieval,
which not only transfers image-text knowledge, but also
fully exploits the multi-modal information of video, in-
cluding object, person, scene, motion and audio.

• We integrate multi-modal information by an explicit and
unified method, tagging, and use them as anchors for
guiding visual-text alignment.

• We build a TABLE network to jointly encode multi-
frame visual features and multi-modal tag information.
And we introduce VTM and MLM as auxiliary supervi-
sions to strengthen video-text interaction.

• TABLE achieves SOTA performance on several bench-
marks, i.e., MSR-VTT, MSVD, LSMDC and DiDeMo.

Related Work
Video Representation Learning
A lot of approaches have been proposed for video repre-
sentation learning, which can be classified into convolution-
based methods and transformer-based methods. Many pre-
vious works (Tran et al. 2015; Xie et al. 2018; Feichten-

hofer et al. 2019) employed 2D or 3D convolutional network
to encode spatial and temporal information of the videos.
Recently, the Vision Transformer (ViT) was proposed and
attained excellent results on image classification compared
to convolutional methods. Since then, many recent works
applied ViT to encode the visual features of videos, such
as ViViT (Arnab et al. 2021) and TimeSformer (Bertasius,
Wang, and Torresani 2021), which generally decoupled the
spatial and temporal information by designing two-stage
transformer structures. Most of the above approaches ex-
ploited temporal information by improving image represen-
tation, however, the abundant multi-modal information of
videos were not fully utilized. Our work performs tempo-
ral encoding with cross-modal interaction and exploits com-
prehensive information from multiple modalities, which are
extracted by various pretrained experts.

Video-Text Retrieval
Recent video-text retrieval approaches can be divided into
two types according to whether the multi-modal information
of videos is utilized or not. The first type simply adopted
the visual features for video-text alignment, where CLIP-
based methods (Luo et al. 2021; Fang et al. 2021; Cheng
et al. 2021; Cao et al. 2022) show obvious advantages in re-
cent years. CLIP4Clip (Luo et al. 2021) firstly transferred
the knowledge of large-scale image-text pretraining to the
task of video-text retrieval with fine-tuning. Based on it,
CLIP2VIDEO (Fang et al. 2021) proposed a temporal dif-
ferent block to capture video’s motion feature, and a tem-
poral alignment block to re-align the tokens of video clips
and phrases. The second type used multi-modal informa-
tion contained in videos for enhancing video-text alignment
(Gabeur et al. 2020; Dzabraev et al. 2021; Wang, Zhu, and
Yang 2021; Hao et al. 2021). MMT (Gabeur et al. 2020)
exploited multi-modal information extracted by seven pre-
trained experts but only fused them in a brute force manner
without explicit guidance. Wang et al. (Wang, Zhu, and Yang
2021) and Hao et al. (Hao et al. 2021) performed local align-
ment between multi-modal features and text features, but the
gap between the embeddings of different modalities is too
huge to bridge. To solve this problem, we propose to inte-
grate multi-modal information by an explicit method, i.e.,
tagging. Tagging generates unified representations to erase
the gap between different modalities, and can be treated as
anchors to guide the visual-language alignment more explic-
itly. Some image-text retrieval methods (Zhen et al. 2019;
Qian et al. 2021) also used tag to boost performance, but our
work is different in many ways. Firstly, these work only used
the unimodal tag of image, while our work fully extracts the
multi-modal tags of video, which is more comprehensive.
Secondly, these work used classification loss as extra super-
vision, while our method does not directly use tag as training
target, but regards it as anchor for video-text alignment.

Methodology
Given a set of videos and texts, our goal is to learn accurate
representations and calculate their similarities. The video (or
text) candidates are then ranked by their similarities with the
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Figure 2: Overall framework of our proposed TABLE (TAgging Before aLignmEnt) model.

query text (or video) in the field of text-to-video (or video-
to-text) retrieval. To achieve this goal, video and text need
to be aligned in a joint embedding space, which is difficult
due to the independence of the two feature extraction pro-
cesses. In this paper, we propose to fully employ the multi-
modal tags of the video by using them as anchors to mo-
tivate the visual-text alignment. Specifically, we construct
a TABLE (TAgging Before aLignmEnt) network to jointly
encode multi-frame visual information and multi-modal tag
information. As shown in Fig. 2, our model consists of a
visual encoder, a tag encoder, a text encoder, a tag-guiding
(TG) cross-modal encoder and a joint cross-modal encoder.
The two cross-modal encoders share paramteters with each
other and performs multi-modal information integration.

Multi-Modal Tag Mining
In this paper, multiple pretrained experts are used to ex-
tract related tag information of individual modality. Firstly,
we adopt the yolov5s model pretrained on the COCO (Lin
et al. 2014) dataset for video object detection. Main ob-
jects appearing in multiple frames with high confidence
score are selected with object tags tobj . In particular, we
choose the detection model pretrained on Open Image
dataset (Kuznetsova et al. 2020) to distinguish person into
man, woman, boy and girl, obtaining specific person tags
tper . Secondly, we employ the COCO pretrained ViT-B-
16 (Dosovitskiy et al. 2020) model to perform image clas-
sification of video frames, where predicted categories with
high confidence score are regarded as the scene tags tsce.
Object and person tags focus on instance or local features,
while scene tags put attention to global information of video

frames. Thirdly, we adopt the S3D (Xie et al. 2018) net-
work pretrained on Kinetics-400 dataset (Carreira and Zis-
serman 2017) to obtain the motion tags tmot, which is
important for video understanding. Furthermore, we apply
the Automatic Speech Recognition (ASR) API of iFLY-
TEK to get video transcripts and then employ the KeyBert
(Grootendorst 2020) to extract transcript keywords as au-
dio tags taud. The audio modality usually provides com-
plementary information which is always not included in vi-
sual features. At last, we concatenate the above tags and
obtain the whole multi-modal tag information of the video,
tmul = [tobj , tper, tsce, tmot, taud].

Visual and Text Encoder
Visual Encoder. We uniformly sample N frames to
form a sequence as the video representation, fi ={
f1i , f

2
i , ..., f

N
i

}
. Inspired by previous image-text pretrain-

ing work, we adopt the ViT model in CLIP (Radford
et al. 2021) to extract visual features, which processes non-
overlapping image patches of individual frame and linearly
project them to 1D token sequence. The patch tokens are
then passed through a 12-layer transformer to realize self-
attention procedure. The [CLS] embedding is projected into
a normalized lower-dimensional embedding space to obtain
the overall representation of each frame. In Fig. 2, the output
of the visual encoder represents sequential representations of
multiple frames, vi =

{
v1i ,v

2
i , ..., v

N
i

}
.

Text Encoder. We apply the BERT-base encoder in CLIP
(Radford et al. 2021) to obtain tag and caption embed-
ding, which is a 12-layer transformer with 512 dimensional
width and 8 attention heads. The transformer output of tag
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and caption can be expressed as ti =
{
t1i , t

2
i , ..., t

K
i

}
and

ci =
{
c1i , c

2
i , ..., c

M
i

}
respectively, where K and M repre-

sents the token length of tag and caption. The [EOS] embed-
ding of the last layer is passed through a linear projection
layer and regarded as the overall representation of the text
(e.g., tag and caption). Particularly, the parameters of trans-
former blocks are shared between tag and caption encoders,
except the linear projection layer.

Tag-Guiding Cross-Modal Encoder
To bridge the visual-text semantic gap for alignment, we in-
troduce multi-modal tags as anchors. As shown in Fig. 2,
we concatenate multi-frame visual features and multi-modal
tag embeddings as the input of the cross-modal encoder.
Specifically, the concatenated input can be represented by{
v1i ,v

2
i , ..., v

N
i ; tei

}
, where tei represents the [EOS] em-

bedding of the tag encoder output and the overall infor-
mation of the multi-modal tags. The TG cross-modal en-
coder is composed of 4-layer transformer with 512 dimen-
sional width and 8 cross-attention heads. The position em-
bedding and transformer parameters are initialized by the
weights of first four layers of the CLIP’s text encoder. The
TG cross-modal encoder conducts deep fusion of multi-
frame visual features with multi-modal tag embeddings,
meanwhile modelling the temporal information of the video.
The fused output can be expressed as

{
g1i , g

2
i , ..., g

N
i ; gei

}
.

We then apply an average pooling layer to acquire the
overall representation, which can be formulated as goi =
ρ(
{
g1i , g

2
i , ..., g

N
i ; gei

}
). In addition, to fully exploit the

pretrained image-text knowledge, we adopt residual con-
nection between the pooled visual features and the over-
all cross-modal representation, which can be represented by
ĝoi = λgoi + ρ(

{
v1i ,v

2
i , ..., v

N
i

}
). λ is a learnable weight

factor.
The output of text encoder can be denoted by ci ={
c1i , c

2
i , ..., c

N
i

}
, where the [EOS] embedding cei is selected

as the overall representation of caption. We define a sim-
ilarity function as s(Vi, Ti) = φ(ĝoi )

Tψ(cei ), where φ(·)
and ψ(·) are the linear projection functions that project vi-
sual and caption embedding into the shared semantic space.
Then, we construct in-batch similarity between video and
text:

Lt2v = − 1

B

B∑
i

log
exp(s(Vi, Ti)/τ)∑B
j=1 exp(s(Vj , Ti)/τ)

, (1)

Lv2t = −
1

B

B∑
i

log
exp(s(Vi, Ti)/τ)∑B
j=1 exp(s(Vi, Tj)/τ)

, (2)

Lcon =
1

2
(Lt2v + Lv2t), (3)

where τ is a learnable temperature parameter, B is batch
size, Lt2v and Lv2t represents the text-to-video loss and
video-to-text loss. Lcon is the total contrastive loss.

Video Text Matching and Masked Language
Modeling
VTM determines whether the pair of [visual, tag] and [text]
is matched, where [visual, tag] is the TG cross-modal fu-

sion output of multi-frame visual features and multi-modal
tag information, [text] is the overall representation of text.
This pair is then fed into a joint cross-modal encoder, which
shares parameters with the TG cross-modal encoder. The
first output token embedding is regarded as the joint video-
text representation Vi, and passed through a fully connected
layer for binary prediction (match or not match with the text
representation Ti). Defining the precition as pvtm(Vi, Ti),
the VTM loss is:

Lvtm = − 1

O

O∑
i

1∑
t=0

yvtmit log2(p
vtm
t (Vi, Ti)), (4)

where yvtmit is a sign function which has the value of 1 if t=1
else 0 if t = 0. (Vi, Ti) is a positive pair when t=1, and a
negative pair otherwise. pvtmt (Vi, Ti) denotes the prediction
probability of t. O is the total number of video-text pairs for
VTM task, which is composed of positive and negative pairs.
We perform hard negative mining strategy when construct-
ing the triplet sample. For each [visual, tag] in mini-batch,
we sample a negative [text] according to the in-batch sim-
ilarity matrix calculated in Equation 1. Likewise, for each
[text], we sample a negative [visual, tag] in the mini-batch.

MLM predicts the masked word based on the [visual, tag]
representations and the unmasked context, which is also a
classification task. To be specific, we randomly mask the
text tokens with a probability of 15%, and the replacement is
the [MASK] token with an 80% probability, a random token
with a 10% probability, original token with a 10% probabil-
ity. Supposing T̂i denotes the masked text and pmlm(Vi, T̂i)
denotes the prediction result of the masked word, the loss
function of MLM can be expressed as:

Lmlm = − 1

Q

Q∑
i

V∑
v=1

ymlm
iv log2(p

mlm
v (Vi, T̂i)), (5)

where ymlm
iv is a sign function which has the value of 1 if

the masked word of sample i is v. V is the vocabulary size
and Q is the total number of video-text pairs for MTM task.
Finally, the overall loss function of the TABLE model is:

L = Lcon + Lvtm + Lmlm (6)

Inference Strategy
During the inference stage, the joint cross-modal encoder
with VTM and MLM loss is discarded, and the similarity
confidences between video and text are only calculated by
the TG encoder and the text encoder. To further improve the
performance, we also adopt the inference strategy proposed
in CAMoE (Cheng et al. 2021), which conduct SoftMax op-
eration to revise the similarity matrix.

Experiments
Datasets
MSR-VTT (Xu et al. 2016) dataset is widely studied in
video-text retrieval task, which contains 10,000 videos of
10-32 seconds, each corresponding to 20 captions. We fol-
low the data split in previous method (Gabeur et al. 2020),
i.e., 9000 videos for training and 1,000 videos for testing.
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Text-to-Video (T2V) Video-to-Text (V2T)

Type Method R@1 R@5 R@10 MdR MnR R@1 R@5 R@ 10 MdR MnR

NO-CLIP JSFusion (Yu, Kim, and Kim 2018) 10.2 31.2 43.2 13.0 - - - - - -
NO-CLIP HT-Pretrained (Miech et al. 2019) 14.9 40.2 52.8 9.0 - - - - - -
NO-CLIP CE (Liu et al. 2019) 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
NO-CLIP MMT-Pretrained (Gabeur et al. 2020) 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
NO-CLIP TACo (Yang, Bisk, and Gao 2021) 26.7 54.5 68.2 4.0 - - - - - -
NO-CLIP SUPPORT-SET (Patrick et al. 2020) 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -
NO-CLIP FROZEN (Bain et al. 2021) 31.0 59.5 70.5 3.0 - - - - - -
NO-CLIP HIT-Pretrained (Liu et al. 2021) 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -

CLIP-based CLIP (Portillo-Quintero and Ortiz-Bayliss 2021) 31.2 53.7 64.2 4.0 - 27.2 51.7 62.6 5.0 -
CLIP-based MDMMT (Dzabraev et al. 2021) 38.9 69.0 79.7 2.0 16.5 - - - - -
CLIP-based CLIP4Clip-meanP (Luo et al. 2021) 43.1 70.4 80.8 2.0 16.2 43.1 70.5 81.2 2.0 12.4
CLIP-based CLIP4Clip-seqTransf (Luo et al. 2021) 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CLIP-based VCM (Cao et al. 2022) 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7
CLIP-based CLIP2VIDEO (Fang et al. 2021) 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2
CLIP-based CAMoE (Cheng et al. 2021) 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0
CLIP-based TABLE (ours) 47.1 74.3 82.9 2.0 13.4 47.2 74.2 84.2 2.0 11.0
CLIP-based CAMoE∗ (Cheng et al. 2021) 47.3 74.2 84.5 2.0 11.9 49.1 74.3 84.3 2.0 9.9
CLIP-based CAMoE-online∗ (Cheng et al. 2021) 48.8 75.6 85.3 2.0 12.4 50.3 74.6 83.8 2.0 9.9
CLIP-based TABLE∗ (ours) 52.3 78.4 85.2 1.0 11.4 51.8 77.5 85.1 1.0 10.0

Table 1: Retrieval results on the MSR-VTT dataset. ∗ indicates methods with inference strategy (as in subsequent tables).

MSVD (Chen and Dolan 2011) dataset contains 1,970
videos, each video has nearly 40 titles. Train, validation and
test sets have 1,200, 100 and 670 videos respectively. Fol-
lowing previous works (Luo et al. 2021), we report the result
on testing set with multiple captions per video. The limited
training data makes the learning on this dataset challenging.

LSMDC (Rohrbach, Rohrbach, and Schiele 2015) dataset
consists of 118,081 short videos clips extracted from 202
movies. Similar to previous work (Luo et al. 2021), we vali-
date the performance on the test set containing 1,000 videos.

DiDeMo (Anne Hendricks et al. 2017) dataset involves
about 10,000 videos and each video has about 4 annotated
sentences. Following previous works (Luo et al. 2021), we
conduct video-paragraph retrieval task on the test split (with
1,004 videos) by concatenating all sentences of each video
into a single query. The challenge of this dataset lies in the
alignment of long videos and long texts.

Metrics
We evaluate the model performance with standard retrieval
metrics, i.e., Recall at rank K (R@K, K=1,5,10), Median
Rank (MdR) and Mean Rank (MnR). R@K represents the
proportion of the ground-truth result included in the top-K
recalled results. MdR and MnR represent the median and
mean rank of correct results respectively. Therefore, higher
R@K, lower MdR and MnR indicates better performance.

Implementation Details
The visual encoder, tag and text encoder of our TABLE
model are initialized by the pretrained CLIP (ViT-B/32)
(Radford et al. 2021) model. The parameters of tag and text
encoder are shared in the transformer blocks but individually
learned in the linear projection layer. The position embed-
ding and the blocks of the cross-modal encoders are initial-

ized by the first four layers of the CLIP’s text encoder. The
initial learning rate is 1e-7 for visual and text encoder, and
1e-4 for cross-modal encoders. The TABLE model is trained
for 5 epoches by Adam optimizer and warmup scheduler.
The batch size is 128, except on DiDeMo is 48. For MSR-
VTT, MSVD and LSMDC, the max token length of cap-
tion and tag, and the frame length are set to 32, 32, 12,
respectively. For DiDeMo, the value of the above parame-
ters are 64, 32, 32, respectively. To prevent the tag informa-
tion from being overwhelmed by a larger number of video
frames on DiDeMo, we adopt all token output of the tag en-
coder instead of the [EOS] output as the input of TG cross-
modal encoder. We adopt 5 pretrained experts (object, per-
son, scene, motion and audio) to extract multi-modal tags
on MSR-VTT and DiDeMo dataset, and 4 experts (without
audio) on MSVD and LSMDC dataset.

Comparisons to the State of the Art
In this subsection, we compare our model with state-of-the-
art methods on four representative benchmarks.

As shown in Table 1, without inference strategy, our TA-
BLE model achieves great performance on the MSR-VTT
dataset. For example, our method surpasses CAMoE (Cheng
et al. 2021) by a large margin of 2.5 and 2.1 on R@1 in text-
to-video (T2V) and video-to-text (V2T) task respectively. It
not only demonstrates the importance of multi-modal in-
formation, but also proves the superiority of our tagging
method for enabling cross-modal alignment. Furthermore,
with the inference strategy, our method achieves SOTA per-
formance, i.e., 52.3 R@1 in T2V and 51.8 R@1 in V2T
task. For the MSVD dataset, as illustrated in Table 2, our
TABLE method surpasses CAMoE by 3.0 on R@1 in T2V
task without inference strategy, and finally achieves SOTA
performance of 52.3 R@1. We believe that on scale-limited
datasets, the explicit guidance of multi-modal tags is more
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Text-to-Video (T2V)

Method R@1 R@5 R@10 MdR MnR

VSE (Kiros 2014) 12.3 30.1 42.3 14.0 -
CE 19.8 49.0 63.8 6.0 23.1

SSML (Amrani et al. 2020) 20.3 49.0 63.3 6.0 -
SUPPORT-SET 28.4 60.0 72.9 4.0 -

FROZEN 33.7 64.7 76.3 3.0 -
CLIP 37.0 64.1 73.8 3.0 -

CLIP4Clip-seqTransf 45.2 75.5 84.3 2.0 10.3
CLIP4Clip-meanP 46.2 76.1 84.6 2.0 10.0

CLIP2VIDEO 47.0 76.8 85.9 2.0 9.6
CAMoE 46.9 76.1 85.5 - 9.8
TABLE 49.9 79.3 87.4 2.0 9.1

CAMoE∗ 49.8 79.2 87.0 - 9.4
TABLE∗ (ours) 52.3 80.5 87.9 1.0 9.8

Table 2: Retrieval results on the MSVD dataset.

Text-to-Video (T2V)

Method R@1 R@5 R@10 MdR MnR

JSFusion 9.1 21.2 34.1 36.0 -
CE 11.2 26.9 34.8 25.3 96.8

HIT-Pretrained 14.0 31.2 41.6 18.5 -
FROZEN 15.0 30.8 39.8 20.0 -

CLIP 11.3 22.7 29.2 56.5 -
MDMMT 18.8 38.5 47.9 12.3 58.0

CLIP4Clip-meanP 20.7 38.9 47.2 13.0 65.3
CLIP4Clip-seqTransf 22.6 41.0 49.1 11.0 61.0

CAMoE 22.5 42.6 50.9 - 56.5
TABLE (ours) 24.3 44.9 53.7 8.0 52.7

CAMoE∗ 25.9 46.1 53.7 - 54.4
TABLE∗ (ours) 26.2 45.9 55.0 7.0 51.0

Table 3: Retrieval results on the LSMDC dataset.

important for visual-text alignment. LSMDC dataset con-
tains the most videos and each video matches only one cap-
tion, and thus most methods perform pooly. But our method
still improves 1.8 on R@1 and achieves SOTA performance
(26.2 R@1) in T2V task, as shown in Table 3. Finally, for
the video-paragraph retrieval task on DiDeMo, our method
obtains 5.3 R@1 gains over SOTA method CAMoE, as pre-
sented in Table 4. The alignment of long videos and long text
meets greater challenge compared to short video-text pairs,
and thus the introduction of multi-modal tags shows greater
advantages on this dataset. In conclusion, our TABLE model
proves to be effective and superior by achieving SOTA per-
formance on various benchmarks.

Abalation Studies
Effects of Multi-Modal Tags. In this subsection, we delve
into the impact of multi-modal tags on model’s performance.

As shown in Table 5, our backbone model achieves R@1
of 45.2 for text-to-video (T2V) retrieval, which is already
a comparable performance on the MSR-VTT dataset. The
R@1 of T2V is improved to 45.6 after the object tags are in-
troduced by our TABLE model, and the R@1 of V2T is fur-
ther improved to 45.9 with object and person tags. It proves
that the visual-text alignment benefits from additional tag in-

Text-to-Video (T2V)

Method R@1 R@5 R@10 MdR MnR

S2VT (Venugopalan et al. 2014) 11.9 33.6 - 13.0 -
FSE (Zhang and Hu 2018) 13.9 36.0 - 11.0 -

CE 16.1 41.1 - 8.3 43.7
TT-CE (Croitoru et al. 2021) 21.6 48.6 62.9 6.0 -

FROZEN 34.6 65.0 74.7 3.0 -
ClipBERT (Lei et al. 2021) 20.4 48.0 60.8 6.0 -

CLIP4Clip-seqTransf 42.8 68.5 79.2 2.0 18.9
CLIP4Clip-meanP 43.4 70.2 80.6 2.0 17.5

TABLE (ours) 47.9 74.0 82.1 2.0 14.3
CAMoE∗ 43.8 71.4 79.9 2.0 16.3

TABLE∗ (ours) 49.1 75.6 82.9 2.0 14.8

Table 4: Retrieval results on the DiDeMo dataset.

formation. The object and person tags contain local informa-
tion, which can guide the local attention of visual features.
After adding motion tags, the performance is obviously im-
proved, i.e., the T2V R@1 reaches 46.2. It is further pro-
moted to 46.5 with scene tags, which usually describe the
background information. Finally, the T2V R@1 is improved
to 46.8 with audio tags, which contain information not in-
cluded in visual features, which is helpful for the retrieval of
videos like news report. To sum up, introducing multi-modal
tags is beneficial for video-text retrieval task.

Effects of VTM and MLM. In this subsection, we ex-
plore the effect of VTM and MLM on model’s performance.

As shown in Table 5, with the help of VTM, the video-to-
text retrieval performance is improved from 45.9 to 46.6 at
R@1. Using both VTM and MLM, the model performance
is further promoted. The R@1 of text-to-video reaches 47.1,
and the R@1 of video-to-text achieves 47.2. Although VTM
is a binary classification task, the model can only make well
judgment on hard negative with profound understanding of
video and text content. MLM is a more complex task which
requires fine-grained alignment between the visual features
and text tokens for inferring masked words. In general, these
two tasks strengthen the interaction between video and text,
and thus effectively improves the model performance.

Visual Analysis
To clearly reveal the anchor role of multi-modal tags, we
present some visualization results of the TG cross-modal en-
coder and the joint cross-modal encoder using the Attention
Rollout (Abnar and Zuidema 2020) method.

In Fig. 3(a) and Fig. 3(b), the multi-modal tags are treated
as an entirety for calculating cross attention with visual fea-
tures. As shown, the cross attention focuses on frames that
highly correlated with multi-modal tags. For example, in
Fig. 3(a), the 1st frame (highly correlated with “man” and
“ballplayer”) and the 10th frame (highly correlated with
“catching or throwing baseball” and “baseball glove”) are
highlighted, while the 2rd-4th frames are suppressed. In
each frame, important spatial regions like head, body, base-
ball glove are getting more attention. Although the multi-
modal tags might contain noise, e.g., “bird” in Fig. 3(a), they
can still guide the model to pay more attention to key frames
and key regions. We also find that the motion modality show
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Tag Modalities Task Text-to-Video (T2V) Video-to-Text (V2T)

Method Object Person Motion Scene Audio VTM MLM R@1 R@5 R@10 MdR MnR R@1 R@5 R@ 10 MdR MnR

Baseline - - - - - - - 45.2 72.0 81.3 2.0 14.3 45.4 73.8 83.8 2.0 11.5
TABLE 4 - - - - - - 45.6 72.8 81.7 2.0 13.8 45.3 73.6 83.9 2.0 11.1
TABLE 4 4 - - - - - 45.6 72.8 81.9 2.0 14.1 45.9 74.9 83.4 2.0 11.1
TABLE 4 4 4 - - - - 46.2 73.0 82.2 2.0 13.8 45.9 74.7 83.8 2.0 11.0
TABLE 4 4 4 4 - - - 46.5 73.4 82.2 2.0 13.9 45.6 74.8 83.6 2.0 11.2
TABLE 4 4 4 4 4 - - 46.8 73.5 82.2 2.0 13.9 45.9 75.1 84.1 2.0 11.1
TABLE 4 4 4 4 4 4 - 46.7 73.9 82.1 2.0 13.6 46.6 75.0 84.7 2.0 10.6
TABLE 4 4 4 4 4 4 4 47.1 74.3 82.9 2.0 13.4 47.2 74.2 84.2 2.0 11.0

Table 5: Abaltion Results on MSR-VTT dataset.

Multi-Modal Tags: 1) man; 2) baseball glove,  bird; 3) catching or throwing baseball; 4) ballplayer, scoreboard, snorkel; 5) pitch, doolittle

1.00 0.81 0.79 0.78 0.94 0.90 0.74 0.84 0.87 0.99 0.73 0.72

0.68 0.66 0.62 0.62 0.75 0.82 0.75 0.77 1.00 0.85 0.74 0.91

Multi-Modal Tags: 1) man, woman; 2) chair; 3) dancing ballet; 4) theater curtain, stage; 5) inspiration

1.00 0.72 0.68 0.87 0.74 0.69 0.44 0.47 0.46 0.47 0.43 0.45

Caption: a man is driving a car through the countryside

Caption: a group of people are swimming in a boat a monkey is walking on the tree

0.91 0.88 0.90 0.91 0.83 0.64 0.62 0.69 0.85 0.99 1.00 0.70

(a)

(b)

(c)

(d)

Figure 3: We visualize the spatial and temporal attention of TABLE, where brighter regions in each frame represent higher
spatial attention, and redder color in the color bar represents higher temporal attention.

dominant role in the cross-modal attention. For example, in
Fig. 3(b), the 9th and 12th frames describing standard “danc-
ing ballet” are highlighted, while the first few frames about
scene and person are suppressed. To sum up, the TG cross-
modal encoder is capable of selecting key frames and key
regions from redundant visual features with the guidance of
multi-modal tags, which is beneficial for video-text retrieval.

In Fig. 3(c) and Fig. 3(d), we visualize the cross attention
in the joint cross-modal encoder. Note that the cross atten-
tion is calculated between visual features and specific word
token of the caption, not the entire text. In Fig. 3(c), given
the “car” word, the 1st frame is highlighted as it gives the
whole picture of the car, while the last few frames about seat
belts are suppressed. In Fig. 3(d), the 10th and 11th frames
are getting more temporal attention because they describe
the monkey with a close view. The other frames describing
about “people” or “swiming” are suppressed. It can be con-
cluded that the proposed joint cross-modal encoder is capa-

ble of modeling the fine-grained correlation between video
and a single word of text, which is inherited from VTM and
MLM tasks. Moreover, it reveals the strong capability of TG
cross-modal encoder as their parameters are shared.

Conclusion
In this paper, we propose to integrate multi-modal tags as
anchors to motivate the video-text alignment. Specifically,
we construct a TABLE model to jointly encode multi-frame
visual features and multi-modal information. To further en-
hance the video-text interaction, we introduce VTM and
MLM tasks with the triplet input of [visual, tag, text] as aux-
iliary supervisions. TABLE achieves SOTA performance on
various benchmarks, including MSR-VTT, MSVD, LSMDC
and DiDeMo, which indicates the superiority of introduc-
ing multi-modal tags as anchors for video-text retrieval task.
The ablation studies and visualization results further reveal
the anchor role of multi-modal tags in visual-text alignment.
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