Improving Dynamic HDR Imaging with Fusion Transformer

Rufeng Chen, Bolun Zheng, Hua Zhang, Quan Chen, Chenggang Yan, Gregory Slabaugh, Shanxin Yuan

1Hangzhou Dianzi University, Xiasha No.2 Street, Hangzhou, 310018, Zhejiang, China
2Queen Mary University of London, London, UK

\{chenrufeng, blzheng, zhangh, chenquan, cgyan\}@\{hdu.edu.cn\}
\{g.slabaugh, shanxin.yuan\}@\{qmul.ac.uk\}

Abstract

Reconstructing a High Dynamic Range (HDR) image from several Low Dynamic Range (LDR) images with different exposures is a challenging task, especially in the presence of camera and object motion. Though existing models using convolutional neural networks (CNNs) have made great progress, challenges still exist, e.g., ghosting artifacts. Transformers, originating from the field of natural language processing, have shown success in computer vision tasks, due to their ability to address a large receptive field even within a single layer. In this paper, we propose a transformer model for HDR imaging. Our pipeline includes three steps: alignment, fusion, and reconstruction. The key component is the HDR transformer module. Through experiments and ablation studies, we demonstrate that our model outperforms the state-of-the-art by large margins on several popular public datasets.

Introduction

Dynamic range is used to define the ability of the camera to capture a range of brightness, usually between the lowest and highest values of the same image. Scenes with a large difference in lighting may pose a challenge to capture. If the dynamic range is not large enough and the illumination is too bright, an overexposed image will be produced; and if the scene is too dark, the image will appear underexposed. Both over- and under-exposure will lead to loss of details in the image. While most sensors can record 8-bit, 10-bit, or slightly higher depth images, those that can record 16-bit depth images are too expensive to be widely used in everyday devices, and standard displays only support 8-bit prompting the need for HDR imaging (Meylan, Daly, and Süsstrunk 2006; Dong et al. 2021).

However, capturing multiple low dynamic range images at different exposures poses some challenges. This typically requires capturing multiple exposures at different times using a single sensor. However motion due to the camera or objects in the scene will result in misalignment between LDR images. If unaddressed, this misalignment will result in obvious ghosting artifacts (Bogoni 2000; Li et al. 2020; Ma et al. 2017; Zheng et al. 2019) in the merged HDR image.

The task is to synthesize a single HDR image that preserves the details of the scene using multiple LDR images (Debevec and Malik 2008; Jacobs, Loscos, and Ward 2008; Reinhard et al. 2010; Sen et al. 2012; Dai et al. 2021; Li et al. 2022).

However, capturing multiple low dynamic range images at different exposures poses some challenges. This typically requires capturing multiple exposures at different times using a single sensor. However motion due to the camera or objects in the scene will result in misalignment between LDR images. If unaddressed, this misalignment will result in obvious ghosting artifacts (Bogoni 2000; Li et al. 2020; Ma et al. 2017; Zheng et al. 2019) in the merged HDR image.

To solve this problem, many recurrent networks and lightweight networks have been proposed, such as AHDR-Net, HDRRNN, Kalantari, NHDRRNet (Yan et al. 2019; Prabhakar, Agrawal, and Babu 2021; Kalantari, Ramamoorthi et al. 2017; Yan et al. 2020). All of these models aim to build higher-performing architecture, and follow a similar design of LDR CNN-based alignment and fusion to reconstruct the HDR image. At present, the proposed methods are aimed at the alignment between images, the reconstruction of HDR images, and the use of various model structures of recurrent neural networks through attention orientation,
but they cannot handle the task of LDR-to-HDR well as unresolved motion results in ghosting artifacts, blurring, and color defects. Due to the specific nature of this task, using transformer (Vaswani et al. 2017; Dosovitskiy et al. 2020), which has recently received much attention in computer vision, can be difficult due to hardware and GPU memory limitations. However, traditional convolutional neural network themselves have limitations in terms of receptive field.

In order to solve the above problems, this paper proposes a multi-exposure LDR-to-HDR converter called HDR Fusion Transformer (HFT), which uses a transformer to capture long-range context dependence while ensuring the support of hardware devices. Notably, it uses a “CNN+Transformer” architecture. Specifically, HFT can be divided into three parts: a Shallow Feature Alignment (SFA), a Pyramid Fusion Module (PFM), and an Image Reconstruction Module (IRM). For SFA, more attention is paid to reducing the depth of the features of the middle layer and using Deformable Convolution (DCN) (Dai et al. 2017; Zhao et al. 2021) to correct the problem of alignment between images. In the PFM, a HDR Fusion Module (HFM) is used in three scales and HDR Transformer (HT) is used in the smallest scale, which simultaneously removes the decoder part of traditional transformer to reduce GPU memory consumption by using a multi-head attention mechanism. It is worth noting that HT takes into account the global information of the image, and it has a much larger receptive field than conventional convolution and can extract more useful contextual information. Therefore, HFT can effectively repair the fused defects through long-distance features after image fusion, making it more competitive. For image reconstruction, a novel Channel Attention Dilated Block (CADB) is proposed as the basic feature extraction unit, which can adaptively adjust the weight of each channel to eliminate the ghost caused by misalignment. The main contributions are as follows:

- We propose a new Pyramid Fusion Module (PFM) with Transformer. The HDR Fusion Module (HFM) fuses the higher scale features; while the smallest scale features are fused with Self-Attention Fusion (SAF) which includes a lightweight transformer. With this approach, the features can be fused with less computation and according to the global information.
- We propose a Channel Attention Dilated Block (CADB) to reduce ghosting artifacts.
- We propose HDR Fusion Transformer (HFT), which can better learn non-local features for the HDR fusion.

Related Work

CNN-Based HDR Models

CNNs have been widely used for image restoration (Zhao et al. 2021; Liu et al. 2020b,a; Isobe et al. 2020). Recently, many CNN-based models have been proposed for HDR. For example, Kalantari et al. (Kalantari, Ramamoorthi et al. 2017) use an optical flow algorithm to compensate for motion and merge the resulting images using a simple CNN. ADNet (Liu et al. 2021) was proposed to align the dynamic frames with a deformable alignment module. Wu et al. (Wu et al. 2018) use homographies to align the background motion prior to fusion. Yan et al. use spatial attention to rule out misaligned components and build a deep convolutional neural network to merge features. Prabhakar et al. (Prabhakar, Agrawal, and Babu 2021) propose a scalable CNN architecture to efficiently handle the varying LDR inputs. In addition, earlier work by Prabhakar et al. (Prabhakar et al. 2020) uses the optical flow of aligned images prior to fusion. Niu et al. (Niu et al. 2021) use a GAN to create images and video from the adjustable part of a data stream based on an event camera. Zhang et al. (Zhang and Lalonde 2017) use a depth self coding architecture to regress linear and high dynamic range panoramic images from nonlinear, saturated and low dynamic range panoramic images.

Vision Transformer

Transformers, which started out in natural language processing, have made a major breakthrough in NLP, leading the computer vision community to consider their application. Transformer’s core idea is the multi-head self-attention mechanism, which can capture long-range information without the limitation of narrow receptive field in traditional CNNs. The pioneering work of the Vision Transformer (ViT) demonstrated the potential of transformers to replace traditional CNNs, by representing 2D image features into a one-dimensional sequence, which can be fed into a Transformer. Transformers have been fully used in image classification (Li et al. 2021; Touvron et al. 2021), target detection (Carion et al. 2020; Wang et al. 2022), super-resolution (Lu et al. 2022; Liang et al. 2021; Yang et al. 2020) and other tasks (Qu et al. 2022; Bai et al. 2022; Liu et al. 2022b,a, 2023). However, in the LDR-to-HDR task, transformers have not yet been applied due to the limitation of hardware devices and insufficient GPU memory. Our goal was to develop an effective HDR Fusion Transformer for LDR-to-HDR reconstruction.

Proposed Method

As shown in Figure 2, the HDR Fusion Transformer (HFT) is mainly composed of three parts: Shallow Feature Alignment (SFA), the Pyramid Fusion Module (PFM), and the Image Reconstruction Module (IRM). We define \([L_{-1}, L_0, L_1]\) and \(H\) as the input and output, where \(L_0\) is the reference image, \(L_{-1}, L_0\) and \(L_1\) are the supporting images. In SFA, the features of the two supporting images are aligned with the features of the reference image.

\[
F_i = \text{SFA}(L_r, L_i)
\]

where \(L_r\) denotes the reference image, \(L_i\) denotes the supporting image, SFA denotes the shallow feature alignment layer. \(F_i\) is the extracted shallow aligned feature, which is then used as the input to the PFM module.

\[
P = \text{PFM}(F_{-1}, F_0, F_1)
\]

where \(P\) denotes the fused features, which are are sent to the IRM for HDR image reconstruction.

\[
H = \text{IRM}(P)
\]
Figure 2: The architecture of the proposed HDR Fusion Transformer (HFT). Among them, SFA, PFM, IRM and CADB stand for the Shallow Feature Alignment, Pyramid Fusion Module, Image Reconstruction Module and Channel Attention Dilated Block, respectively.

Shallow Feature Alignment

The Shallow Feature Alignment (SFA) module aligns the features of \(L_r \) and \(L_i \) through deformable convolution (Liu et al. 2021). Due to the motion between the reference image and supporting image, it is necessary to align the features to minimize ghosting effects.

\[
y(p_0) = \sum_{p_n \in \mathcal{R}} w(p_n) \cdot x(p_0 + p_n)
\]

where \(y \) is the result of the convolution, \(p_n \) is the \(n \)th pixel and \(w \) is the convolutional kernel, \(x \) is the input feature and \(\mathcal{R} = \{(-1,-1), (-1,0), ..., (0,1), (1,1)\} \) denotes the sampling area at a shifted pixel. However, the traditional convolutions as shown in Eq. 4 are limited by the size of receptive field, which struggles with longer range dependencies. Therefore, we add a learnable offset \(\Delta p_n \) to learn more complete information. The convolution model with the offset can be expressed as:

\[
y(p_0) = \sum_{p_n \in \mathcal{R}} w(p_n) \cdot x(p_0 + p_n + \Delta p_n)
\]

where \(\Delta p_n \) denotes the offset to be learned.

After the initial alignment, the aligned features are concatenated with \(L_r \). The concatenated features are sent to PFM.

Pyramid Fusion Module

The second difficulty in synthesizing an HDR image is to combine the features of three different exposures. Therefore, we propose a new pyramid model (PFM), which is more capable of high quality fusion than other models.

In HFT, patches surrounding the image can be used as a reference image, so that the real details of the current image block can be fused using the reference features around the image. Due to the large size of the image, we adopt a multi-scale fusion mechanism, which can effectively reference information around the image. In addition, although traditional transformers such as ViT have been applied in the field of computer vision, there is no transformer suitable for HDR reconstruction because of the high GPU memory required. In this paper, an novel lightweight Self-Attention Fusion (SAF) module based on transformer is proposed, and its effectiveness is proved.

Figure 3 shows the architecture of the PFM. The input feature \(F_1 \) is downsampled to a smaller scale, and \(F_1 \) is fused to the feature through the HFM module. Between two different scales, the input features are down-sampled through average pooling, the processed features (through HFM or SAF) up-sampled through bicubic interpolation. After up-sampling, the feature of the smaller scale \(S_i \) is added to the feature \(B_{i-1} \) of the larger scale, then the combined features are sent to deformable convolution. HFM and SAF are used for fusion in the first three scales and the last scale, respectively.
HDR Fusion Module (HFM) The HFM module’s structure is shown in Figure 3. The main purpose of HFM is to initially fuse the features of different exposed images. The outputs of SFAs are taken as the input of HFM in the first scale. In HFM, F_0 is concatenated with F_i ($i = -1, 1$) respectively, and then the concatenated features are sent into the convolution layer. We speculate that exposure is affected by ambient brightness and belongs to global information. Therefore, in order to capture the missing information of the reference image, we multiply F_i and the convolution features to F_i, obtaining the refined feature F_i^t. After the F_i^t are concatenate with F_0, they enter the convolution layer, and H_n is the output of HFM.

$$F_i^t = F_i \cdot \text{Conv}((\text{Cat}(F_i, F_0))_{i=-1,1}$$ \hspace{1cm} (6)

$$H_n = \text{Conv}((\text{Cat}(F_{i}^{t}, F_0, F_1^{t}))$$ \hspace{1cm} (7)

HDR Transformer (HT) ViT divides the two-dimensional image into several small patches and combines them into a one-dimensional representation. This allows the transformer to be applied to visual tasks, but has some disadvantages such as a large demand for training data and a large amount of calculation.

Inspired by ESRT (Lu et al. 2022), we apply an unfold operation to the feature map in the HDR-Transformer, as shown in the upper right corner of Figure 3. This turns the original two-dimensional features into a one-dimensional sequence H_n. Considering the shortcomings of ViT (Yu et al. 2022), we focus on reducing the computational burden and complexity of the transformer in the visual domain. We directly map the features into 1D features, which greatly reduces the computation and ensures that the hardware can support subsequent processing. And when used at the smallest scale, it can ensure that the GPU memory can meet its needs. Then, the method of up-sampling using a pixel-shuffle, residual structure and deformable convolution is used to ensure that sufficient information can be retained, so that satisfactory feature information can be obtained.

The traditional transformer requires heavy computation. For the sake of simplicity and efficiency, we remove the decoder part in our HT, instead only retaining the encoder structure as shown in the bottom right of Figure 3. This plot shows the multi-head self-attention module, layer normalization, and MLP. Although batch normalization has beneficial effects when dealing with two-dimensional features, layer normalization is preferred after the two-dimensional features are compressed into one dimension.

In the HDR-Transformer, the 2D features are transformed into 1D sequential features through the unfolding operation and become H_n. As shown in Figure 3, H_n go through layer normalization and MLP layer to obtain three categories of Q, K, V, and each category was segmented into N pieces again, which enters the multi-head self-attention module.

These serve as inputs for the scaled dot-product attention module. The output H_m is multiplied by Q and K and then multiplied by V. After passing through a concatenation, H_n are output of the multi-head self-attention module through the full connection layer. After residual operations are performed on H_n and H_m in the HT, then go through layer normalization and MLP layer, and then perform residual operation with the previous residual result to obtain H_s. The one-dimensional feature H_s output from HT is folded to the two-dimensional feature of the corresponding size image. The specific formula is as follows.

$$Q, K, V = \text{MLP}(\text{Norm}(\text{Unfold}(H_n)))$$ \hspace{1cm} (8)

$$S_v = \text{MLP}((\text{SoftMax}(Q \cdot K^T) \cdot V) + H_n$$ \hspace{1cm} (9)

$$H_s = \text{Fold}((\text{MLP}(\text{Norm}(S_v)) + S_v)$$ \hspace{1cm} (10)

Image Reconstruction Module

After the initial alignment of features, although the ghosting is greatly reduced, it is inevitable that there will be local misalignments that may result in residual ghosting. At the same time, the high dynamic range image must be reconstructed. Image Reconstruction Module (IRM) is designed to address these challenges.

As shown in Figure 2, the IRM is composed of several Channel Attention Dilated Block (CADB) modules whose purpose is to eliminate the small amount of ghosting caused by residual misalignment and reconstruct the HDR image. In the process of training, HPT cannot effectively distinguish the ghosting caused by feature misalignment from the aligned part of the real scene. CADB can effectively reduce the influence of the features learned from the ghosting in the model at the level of feature channel, so that it can eliminate the ghosting that cannot be solved through alignment to the greatest extent.

The CADB structure is shown in the bottom of Figure 2, with H_c as the input. First, global pooling is carried out to obtain the weight of channels at each layer, and then feature extraction is performed. The extracted feature H is used as the weight of channels at each layer and attached to H_s to achieve the effect of reducing the weight of virtual shadows and obtain ghost-free feature H_{gw}. The formula is as follows:

$$H_{gw} = \text{Conv}(\text{AvgPool}(H_s)) \cdot H_s$$ \hspace{1cm} (11)

Then, the features are sent into several dilated residual modules. Due to the small receptive field of the common convolution layer, some local patches of the HDR image require a large range of information for reconstruction. Therefore, dilated convolution is used for concatenation after traditional convolution is applied, and helps make full use of local and non-local feature information. This effectively expands the receptive field and better reconstructs the details of under- and over-exposed regions producing high quality results.
Experiments

Training Loss
Since HDR images are usually displayed after tone mapping, it is more effective to train the network on a tone mapped image than directly in the HDR domain. Given the HDR image H in the HDR domain, we use the μ-law to compress H within the range of $[0,1]$, with $\mu=5000$.

$$T(H) = \frac{1}{\log(1 + \mu)} (1 + H)$$ \hspace{1cm} (12)

where μ is the parameter that defines the amount of compression, and $T(H)$ represents the tone mapped image.

To train our HFT, we adopt the L1 loss as the base loss function. However, as the L1 loss is a point-wise loss, it does not capture edge information important particularly to minimize ghosting in the HDR reconstruction. Following the novel training strategy of CNN (Zheng et al. 2020, 2021, 2022a), we adopt the Advanced Sobel Loss (ASL) and combine it with the L1 loss to formulate the loss function for to enhance the edge information, which can be expressed as:

$$\text{Loss} = L1\left(\frac{\hat{Z}}{Z}, Z\right) + \frac{1}{N} \sum_{i=1}^{N} \text{ASL}_{i}\left(\frac{\hat{Z}}{Z}, Z\right)$$ \hspace{1cm} (13)

where \hat{Z} and Z represent the generated HDR image and the ground truth (GT) image respectively, $L1$ represents the L1 Loss, N represents the number of Sobel Loss kernels, and ASL_{i} represents Advanced Sobel Loss function. Here four convolution kernels are used to optimize edge information on \hat{Z} and Z in four directions. The specific optimization process is as follows:

$$\text{ASL}_{i}\left(\frac{\hat{Z}}{Z}, Z\right) = L1\left(K_i(\hat{Z}), K_i(Z)\right)$$ \hspace{1cm} (14)

where K_i denotes Sobel loss kernel (Vincent, Folorunso et al. 2009; Gao et al. 2010).

Implementation and Details
Due to the multi-scale architecture, the model must be a multiple of 16, so we zero-pad the image as necessary. A 64-channel, 3×3 convolution kernel is used in the Conv layer. We use an Adam optimizer, with the initial learning rate set to 10^{-4}. LDR images and corresponding images were split into patches of 128×128 size for training, however validation and test images were full resolution. In order to avoid over-fitting in the training stage, patches were randomly rotated for data augmentation. During training, we measured the validation set at using PSNR-$.\mu$. If the model performance was not improved after five epochs, the learning rate is halved. When the learning rate is less than 10^{-6}, the training ends. We implemented our HFT using Pytorch on single NVIDIA RTX3090 GPU.

Comparisons with Advanced HDR Models

Datasets and Metrics Kalantari’s dataset is used as the basic training data set. All models are trained on this dataset. In addition, we performed supplementary experiments using the Prabhakar’s dataset (Prabhakar et al. 2019)

$$1\text{https://cseweb.ucsd.edu/ viscomp/projects/SIG17HDR/}$$

to prove the generalization of the proposed model. Tursun's (Tursun et al. 2016) dataset are widely used in the related studies, which is a dataset without ground truth. The PSNR and SSIM of predicted HDR images were measured in the linear domain (-L) and HDR domain (-μ) for quantitative evaluation. We also used HDR-VDP-2 (Mantiuk et al. 2011; Marnerides et al. 2018) as another indicator in the comparison.

We compare our results with previous state-of-the-art methods, including three patch-based methods Sen, Hu, SPD-MEF (Sen et al. 2012; Hu et al. 2013; Ma et al. 2017) and eight CNN based methods, Kalantari (Kalantari, Ramanmoorthy et al. 2017), DeepHDR (Wu et al. 2018), HDRRNN (Prabhakar et al. 2019), HDR-GAN (Ni et al. 2021), Prabhakar (Prabhakar et al. 2020), HFNet (Xiong and Chen 2021), HDRRNN (Prabhakar, Agrawal, and Babu 2021). We generated Sen, SPD-MEF, DeepHDR, HDRRNN, HDR-GAN results and compared them, and we replicated them for all other methods (if open source was available). For methods without publicly available code we did not reproduce their results and instead use the results reported in their papers. The HDR-VDP-2 score is only for reference because it may vary depending on the parameters assessed and is not described in the details of the paper. Quantitative evaluation was calculated for five indicators.

Quantitative evaluations: as shown in the Table 1, our HFT achieves excellent performance across all indicators, and reaches a new SOTA on PSNR-μ, PSNR-L and SSIM-μ. Based on Kalantari’s benchmark dataset, the performance of HFT is qualitatively compared with other models. As shown in Figure 4, our experimental results show that HFT is better than other methods in reconstructing the dynamic range including darker and brighter regions, better preserving details and colors more realistically matching the ground truth.

Experiments on Additional Datasets In addition to Kalantari’s dataset, we also performed experiments on Prab-
Table 1: Quantitative results of our HFT method compared with other advanced methods on Kalantari’s dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Publication</th>
<th>Quantitative Results</th>
<th>Computational Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PSNR-µ</td>
<td>PSNR-L</td>
</tr>
<tr>
<td>Sen</td>
<td>TOG 2012</td>
<td>40.95</td>
<td>38.31</td>
</tr>
<tr>
<td>Hu</td>
<td>CVPR 2013</td>
<td>32.18</td>
<td>31.88</td>
</tr>
<tr>
<td>SPD-MEF</td>
<td>TIP 2017</td>
<td>43.34</td>
<td>40.77</td>
</tr>
<tr>
<td>Kalantari</td>
<td>TOG 2017</td>
<td>42.74</td>
<td>41.22</td>
</tr>
<tr>
<td>DeepHDR</td>
<td>ECCV 2018</td>
<td>41.65</td>
<td>40.86</td>
</tr>
<tr>
<td>AHDRNet</td>
<td>CVPR 2019</td>
<td>43.62</td>
<td>41.03</td>
</tr>
<tr>
<td>Prabhakar</td>
<td>ECCV 2020</td>
<td>43.08</td>
<td>41.68</td>
</tr>
<tr>
<td>HDR-GAN</td>
<td>TIP 2021</td>
<td>43.92</td>
<td>41.57</td>
</tr>
<tr>
<td>HFNet</td>
<td>ACM MM 2021</td>
<td>44.28</td>
<td>41.48</td>
</tr>
<tr>
<td>HDRRNN</td>
<td>TCI 2021</td>
<td>42.82</td>
<td>41.68</td>
</tr>
<tr>
<td>HFT</td>
<td>-</td>
<td>44.45</td>
<td>42.14</td>
</tr>
</tbody>
</table>

Figure 5: Visual comparison on Prabhakar’s dataset.

Figure 6: Visual comparison on Prabhakar’s dataset.

hakar’s dataset. Quantitative results are shown in Table 2 and qualitative results are shown in Figure 5 and Figure 6. ‘Our Cross Result’ denotes the model is trained on Kalantari’s dataset. The results on Prabhakar’s dataset are similar to those on Kalantari’s dataset, with our method outperforming others.

Additionally, we also provide the results of all compared results on our hand-captured images in Figure 7. From the visual comparison, only our method is able to produce a ghosting-free result, while the ghosting effects more or less exist in results produced by the other compared methods.

Ablation Study

We verify the key parts of the HFT model, including (1) the initial alignment is improved by using the SFA module compared with concatenating the two LDR images directly; (2) the use of the SAF module in the fourth scale of PFM instead of the original HFM module; and (3) CADB has the advantage over ordinary DRDB in the IRM module. We also explore the number of CADB in IRM required, and the gap between the L1 and DSL in the loss function.

As shown in Table 3, we quantitatively compared the effects of the three modules relative to the whole model, listing eight cases respectively in Kalantai’s and Prabhakar’s dataset. The SFA, HT, and CADB are all required to achieve

3https://val.eds.iisc.ac.in/HDR/ICCP19/, MIT License
the best results. Figure 8 provides visual results of our ablation studies. We compared all combinations of the three modules to objectively demonstrate the role of each module and prove its value.

Loss Function Table 4 shows the results of using the Kalantari’s dataset on several IRM modules using different loss functions (L1 or ASL). As shown in Table 4, we conducted quantitative ablation experiments on the number of CADBs in IRM and the loss function used. Under the condition that other parameters remain unchanged, the ASL loss outperforms the L1 loss, and the model achieves the best results when the number of CADBs is 3. Qualitative results shown in Figure 9 demonstrate that compared to the L1 loss, the ASL better preserves details and more faithfully reconstructs colors.

Shallow Feature Alignment The main purpose of Shallow Feature Alignment module is to better align the moving image to the reference image and reduce ghosting as much as possible in the initial stage. We perform an ablation study by removing the SFA and replacing it with an ordinary concatenation of the two input feature maps.

HDR Transformer The purpose of using HDR Transformer at the smallest scale is to repair the defects of the fused features with long-distance information. We conducted an ablation study which removes the HT at the minimum scale.

Channel Attention Dilated Block Our IRM module is composed of several CADBs, which reconstruct the HDR image and eliminate ghosting. We performed a study to explore the number of CADBs on the performance. As shown in Figure 10, we compare the changes of features when they pass through CADB, and intuitively show that the CADB is successful in eliminating ghosting artifacts which caused by misalignment of features.

Conclusion In this paper, we propose a combined CNN and Transformer model for end-to-end HDR generation. Input multi-exposure LDR images are combined to produce a high quality HDR.
Table 3: Ablation experiments on the Kalantari’s and Prabhakar’s dataset were performed to compare the effects of using three modules (SFA, HT, and CADB).

Table 4: Quantitative comparison of using two loss functions (ASL and L1) on model performance, where N denotes the number of CADB in IRM.

Acknowledgements

This work is supported by the National Nature Science Foundation of China (U21B2024, 62001146). This work is also supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang under Grants GK229909299001-009, and the National Nature Science Foundation of China 62271180.

References

