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Abstract

Most existing light field (LF) disparity estimation algorithms
focus on handling occlusion, texture-less or other areas that
harm LF structure to improve accuracy, while ignoring other
potential modeling ideas. In this paper, we propose a novel
idea called Bad Pixel (BadPix) correction for method model-
ing, then implement a general post-refinement network for LF
disparity estimation: Bad-pixel Correction Network (BpC-
Net). Given an initial disparity map generated by a specific
algorithm, we assume that all BadPixs on it are in a small
range. Then BpCNet is modeled as a fine-grained search strat-
egy, and a more accurate result can be obtained by evaluating
the consistency of LF images in this limited range. Due to
the assumption and the consistency between input and out-
put, BpCNet can perform as a general post-refinement net-
work, and can work on almost all existing algorithms itera-
tively. We demonstrate the feasibility of our theory through
extensive experiments, and achieve remarkable performance
on the HCI 4D Light Field Benchmark.

Introduction
By collecting the lights from different directions of a scene,
the light field (LF) is formed as regular and dense images
sampled (Shi, Jiang, and Guillemot 2019). With these im-
ages, people can alleviate the problems caused by multi-
view stereo matching effectively, and estimate scene depth
information quickly and accurately (Johannsen, Sulc, and
Goldluecke 2016; Chen et al. 2022). Moreover, with the
advent of modern hand-held LF cameras, data acquisition
becomes a simple task, then LF is naturally considered for
depth estimation of real scenes. Since the scene depth infor-
mation is directly related to the disparity between images,
people usually estimate disparity map instead of directly cal-
culating depth map in LF (Mishiba 2020; Sheng et al. 2022).

Although researchers recently have made significant
progress in this field, especially with the rise of the convo-
lutional neural network(Wang et al. 2022a; Yang and Tong
2022; Sheng et al. 2020), learning-based algorithms have
improved the accuracy of disparity estimation to a new level
(Wang et al. 2022c; Shin et al. 2018; Tsai et al. 2020; Chen,
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Zhang, and Lin 2021). However, when reviewing these al-
gorithms, it can be found that most works, whether con-
ventional or learning-based, focus on handling occlusion,
texture-less or other areas that harm LF structure to improve
accuracy, such as occlusion-aware cost construction (Park,
Lee et al. 2017; Han et al. 2021) and edge detection (Chen
et al. 2018; Huang et al. 2021), since these issues have been
a pain point in this field (Neri, Carli, and Battisti 2018). And
with the targeted research in previous years (Chen, Zhang,
and Lin 2021; Wang, Lin, and Zhang 2021; Chen et al.
2014), such issues have been handled very well, but there
is very little dedicated research to solve the problem of bad
pixels for LF disparity estimation.

As shown in Fig. 1, nine high ranking algorithms are se-
lected from the Benchmark (Johannsen et al. 2017) and ana-
lyzed. It can be found that 1) these algorithms still have some
room for improvement in terms of BadPix, where still nearly
5-7% BadPixs in (0.10, 1.0) interval even for these high
ranking algorithms. 2) there are nearly 99% BadPix(<1.0),
so it can be assumed that all BadPixs are in a small range δ
for simplicity. 3) As these BadPixs can cause mse error, cor-
recting them also has a positive effect on MSE×100. Fol-
lowing these observations, we propose a novel idea called
BadPix correction for LF disparity estimation, which is the
first time to the best of our knowledge, and implement a
general post-refinement network–Bad-pixel Correction Net-
work (BpCNet), which could work on almost all existing
algorithms for disparity refinement.

To achieve our goal, there exist some challenges needed
to be overcome. Firstly, since the distribution of BadPix is ir-
regular, a reasonable strategy needs to be considered. Here,
we model our BpCNet as: a fine-grained search strategy to
find the best result in a limited range δ, composed of hy-
pothesis disparities generation, feature extraction, cost vol-
ume construction and disparity fusion modules. Secondly,
in BpCNet, some warp functions are needed to construct the
cost volume of hypothesis disparities for consistency evalu-
ation. However, as δ is small (≤ 1) and the number of dis-
parities generated is large (≥ 9), ensuring that nearly close
disparities are discriminative is another challenge. Conven-
tional bilinear or bicubic-based warp function may cause the
misjudgment between adjacent disparities if used, as their
interpolated features are very similar. Here, we propose a
novel phase shift-based warp function and get more accu-
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Figure 1: An illustration of Bad Pixel and our analysis. (a)
A sample visualization of BadPix, whose value equals to
|gt−algo|, gt is the ground truth, algo is provided by a spe-
cific algorithm. (b) BadPix analysis of existing algorithms
on HCI 4D Light Field Dataset. Nine high ranking algo-
rithms are selected and we analyze their performance on
BadPix(α): the percentage of pixels with |gt−algo|>α. α is
the threshold predefined. It can be seen that these algorithms
still have some room for improvement on BadPix.

rate warped features by applying phase shift theory within a
local window. Thirdly, as a post-refinement network, BpC-
Net needs an initial disparity map as input. Take HCI 4D
Light Field Dataset as an example, only 16 or fewer dispar-
ity maps can be provided, making network training a diffi-
culty. To solve it, a unique training strategy based on data
augmentation is proposed for BpCNet offline training, and
experiments have shown that it does work.

Let us summarize our main contributions:
a. We propose a novel BadPix correction-based idea for

LF disparity estimation, and implement a general post-
refinement network–BpCNet.

b. A phase-shift-based warp function and a data
augmentation-based training strategy are raised separately
to solve the problems of adjacent disparity blur and little
training data.

c. We demonstrate the feasibility of our theory through
extensive experiments, and achieve remarkable performance
on the HCI 4D Light Field Benchmark.

Related Work
In this section, previous algorithms are reviewed, includ-
ing conventional and learning-based algorithms. Then some
post-refinement algorithms are introduced.

Conventional Algorithms
Wanner et al. (Wanner and Goldluecke 2012) used structure
tensor to compute the line slopes of EPI and got high-quality
disparity maps. Zhang et al. (Sheng et al. 2018) applied a
spinning parallelogram operator (SPO) on EPIs for disparity
estimation. There also exist some algorithms not EPI-based.
Tao et al. (Tao et al. 2013) computed dense depth estimation

by combining both defocus and correspondence depth cues
using LF cameras.

However, most conventional algorithms focus on han-
dling occlusion, texture-less or other areas that harm LF
structure to improve accuracy, as such problems are im-
portant factors leading to incorrect estimation. Wang et al.
(Wang, Efros, and Ramamoorthi 2015) proposed to treat
occlusion explicitly and improves their results by divid-
ing regions into occluded and non-occluded. Williem et al.
(Williem and Park 2016) proposed an angle entropy mea-
surement and adaptive defocus response for data costs con-
struction, which is robust to occlusion. Chen et al. (Chen
et al. 2014) applied a bilateral consistency metric (BCM) on
surface camera to tackle occlusions. Han et al. (Han et al.
2021) proposed a occlusion-aware vote cost (OAVC) to han-
dle occlusion, with such assumption that unoccluded pixels
are highly consistent with the central-view pixel.

Learning-Based Algorithms
Recently some learning-based algorithms have been pro-
posed (Piao et al. 2021a,b). Luo et al. (Luo et al. 2017) pro-
posed to train the network with EPI patch for disparity gen-
eration. Feng et al. (Feng et al. 2018) utilized synthetic LFs
and designed a two-stream CNN network. Shin et al. (Shin
et al. 2018) proposed a data augmentation method to address
the lack of training data for LF . Leistner et al. (Leistner
et al. 2019) introduced an idea to virtually shift the LF stack.
Wang et al. (Wang et al. 2022c) proposed a generic mecha-
nism to disentangle the coupled spatial and angular informa-
tion for LFs processing.

Similar to conventional algorithms, more attention is paid
to handle occlusion or texture-less areas with networks,
such as AttMLNet, LFattNet, OACC-Net. Chen et al. (Chen,
Zhang, and Lin 2021) designed an intra-branch fusion strat-
egy and inter-branch fusion strategy to select features of
views with fewer occlusions and richer textures. Tsai et al.
(Tsai et al. 2020) proposed a view selection module to make
LFattNet pay more attention to those views with less oc-
clusion and more textures. OACC-Net(Wang et al. 2022b)
constructed an occlusion-aware data cost for LF disparity
estimation by dynamically modulating pixels from different
views, making it robust to occlusions.

Post-refinement Algorithms
Some post-refinement algorithms are usually selected for re-
finement, such as multi-label-optimization-based and filter-
based algorithms.

Multi-label-optimization-based algorithms formulate the
problem as an energy model and solve it by global ap-
proaches, such as graph cuts (Boykov and Funka-Lea 2006)
or belief propagation (Yedidia, Freeman, and Weiss 2000).
Jeon et al. (Jeon et al. 2015) used graph cuts to correct
disparity via neighboring estimation. Nevertheless, such al-
gorithms are computationally expensive, especially with a
large number of views and disparity labels. For filter-based
algorithms, Zhang et al. took guided filter (He, Sun, and
Tang 2012) as an edge-preserving operator to smooth the
results. OAVC used weighted median filter (WMF) (Brown-
rigg 1984) and joint bilateral filter (Le, Jung, and Won 2014)
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Figure 2: The structure of BpCNet, including ① Data Augmentation ② Hypothesis Disparity Generation ③ Feature Extraction
④ Cost Volume Construction and ⑤ Disparity Fusion. The input is Dc and LFs, and the output is Df . Here, ① is used for
more diverse LFs and Dc; ② aims to generate hypothesis disparities Di

h for searching; ③ extracts the feature F from LFs; In
④, we warp the Fu,v to W i

u,v , then concatenate Wu,v together to construct the cost volume Cd. Finally, we fuse all Di
h into a

better result Df with the attention map A in ⑤. Another, we can also take Df as a new Dc , and input it into BpCNet again for
iterative training.

for a smoother result. But these algorithms only use the cen-
tral view as a guide, which bring good visualization but are
not reliable, while BpCNet utilizes all views and is more
reliable. There also exist some learning-based networks for
disparity refinement(Feng et al. 2018; Leistner et al. 2019),
but only works with their methods and are not general.

Methodology
In this section, we propose a novel idea of BadPix cor-
rection, and implement a general post-refinement network
which could work on almost all existing algorithms. Here,
we assume that all BadPixs are in a small range δ for sim-
plicity and model our method as a fine-grained search strat-
egy in this limited range. Given an initial disparity map with
corresponding light field images LFs, BpCNet can output a
more accurate result. For simplicity of explanation, we agree
that the input disparity maps as Dc, the output one as Df ,
and the ground truth as Dg .

System Overview
As shown in Fig. 2, the input is Dc ∈ RH×W and LFs ∈
RU×V×H×W , and the output is Df ∈ RH×W . Where
U × V is angular resolution, and H × W is spatial resolu-
tion for LFs. Its architecture is composed of five modules,
from left to right are ① Data Augmentation: an offline train-
ing strategy for BpCNet with little data, including i) LFs
augmentation for light field images, ii) Dc augmentation
and iii) Iterative training for more diverse Dc. ② Hypoth-
esis Disparity Generation: generate K hypothesis dispari-
ties Di

h(i = 1, 2, ...,K) in δ space around Dc for searching

based on our assumption. ③ Feature Extraction: extract fea-
ture representation Fu,v ∈ RH×W for each image LFsu,v .
④ Cost Volume Construction: to evaluate the consistency of
LFs under Di

h, the feature representation Cd ∈ RH×W×K

of Dh is constructed via a transformation formula and a
phase shift based warp function. ⑤ Disparity Fusion: an at-
tention based network are used to decode Cd into the atten-
tion map A ∈ RH×W×K , then we can fuse these Di

h into a
better result Df by weighted fusion. In addition, BpCNet is
a lightweight network with only about 1.14M parameters.

For BpCNet, the execution flow of it is: (Dc, LFs)
→(①)→(②,③)→(④)→(⑤)→ (Df ) → {(①· · · )}. {·} is op-
tional for iii) iterative training. The network details are given
in the supplementary material’s ’BpCNet’ section.

Data Augmentation
As a post-refinement network, BpCNet needs an initial dis-
parity map Dc as input. However, there is too little Dc to
train. Take HCI 4D Light Field Dataset as an example, only
16 initial disparity maps can be provided for each algorithm.
In this module, three augmentations are adopted, including
LFs augmentation. Dc augmentation and Iterative training.

LFs augmentation. To get more diverse LFs, we bor-
row some image augmentation methods from previous work,
including random color channel re-distribution, random
brightness, contrast adjustments, random rotations by multi-
ples of 90◦, as ① in Fig. 2 shows.
Dc augmentation. As ① in Fig. 2 shows, we augment

Dc by adding appropriate noise, including the scale s, the
translation t and the random r. For scale noise, D

′

c =

333



2×s×(Dc−Dg)+Dg , and s ∈ [−1, 1] is a random number.
By scaling the error between Dc and Dg , we can perform
augmentation while maintaining the original distribution of
Dc. For translation noise, D

′

c = 0.2×t+Dc, and t ∈ [−1, 1]
is a random number. By translating Dc as a whole, the de-
coder in ⑤ enables to better learn the attention for Dh. For
random noise, D

′

c = r × (Dc − Dg) + Dg , r ∈ RH×W is
pixel wise and sampled from the truncated normal distribu-
tion (Burkardt 2014) with [0.95, 1.05]. We introduce a weak
perturbation r for a more diverse Dc. When training, we ap-
ply s and t to Dc for N(≤ 3) times , then r is once,

Iterative training. As input Dc equals output Df , we can
also take Df as a new Dc , and input it into BpCNet again
for iterative training, one iteration is enough in experiments.

Hypothesis Disparity Generation
Following our assumption: the BadPixs in Dc are all within
a limited range δ, so we just need to search within it to get
a correct disparity value. Here , we generate K hypothesis
disparities Di

h at equal intervals for consistency evaluation
between (Dc − δ) and (Dc + δ), as Form. 1 shows.

Di
h = Dc +

2× δ × (i− ⌈K/2⌉)
K

.(i = 1, 2, ...,K). (1)

Feature Extraction
To be more robust, a feature extraction network is used to
extract features Fu,v for each image LFsu,v , then we can get
F ∈ RU×V×H×W . For the network architecture, we refer to
Tsai’s work and use the same feature extraction network as
theirs.

Cost Volume Construction

Fourier transform Inverse Fourier transform
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Figure 3: The process and results for our phase shift-based
warp function. We apply the phase shift theory within a lo-
cal window, then project Fu,v to the warped feature W i

u,v for
Di

h efficiently. We take the pixel (2, 5), (7, 7) as an example
for explanation and compare the warped results between dif-
ferent methods.

After hypothesis disparity generation and feature extrac-
tion, the cost volume Cd is constructed to evaluate the con-
sistency of LFs under each Di

h.

According to LF structure, we can calculate the projection
coordinate ϕi on F for each pixel on Di

h by the transforma-
tion Form. 2.

ϕi
u,v(x, y) = (x+ du ×Di

h(x, y), y + dv ×Di
h(x, y)),

du = uc − u, dv = vc − v,
(2)

Here, (x, y) is the pixel coordinate in Di
h, (uc, vc) is the co-

ordinate of center view in LFs, and ϕi
u,v(x, y) is the projec-

tion coordinate for Fu,v to Di
h(x, y), which is not an integer

usually. Then we can use a warp function for Cd construc-
tion, such as bilinear or bicubic interpolation based. How-
ever, since δ is small (≤ 1) and the number K of Dh is large
(≥ 9), it means that the disparity distance between Di

h and
Di+1

h is very close. Hence, conventional bilinear or bicubic
interpolation-based warp function may cause the misjudg-
ment for adjacent disparities if used, as their features inter-
polated are very similar.

Compared to bilinear and bicubic interpolation, phase
shift-based interpolation can get more accurate subpixels
(Jeon et al. 2015). As Form. 3 shows, if the feature Fu,v is
shifted by ∆x,y ∈ R2, we can get the shifted feature F

′

u,v via
the 2D Fourier transform S(·) and Inverse Fourier transform
S−1(·).

F
′

u,v = S−1{S{Fu,v}exp2πi∆x,y}, (3)
However, this process is extremely inefficient if introduced
into a warp function: as the offset ∆x.y is calculated as
ϕi
u,v(x, y)−(x, y), it is different as (x, y) changes, and Fu,v

needs to be shifted multiple times for the warped feature
W i

u,v of Di
h. To solve this problem, we propose to apply the

phase shift theory within a local window. As shown in Fig.
3, we apply the 2D Fourier transform and Inverse Fourier
transform to Fu,v within a 3× 3 window. To warp the pixel
(2, 5) of Fu,v to W i

u,v with Di
h, the window f2,5 is built and

transformed into frequency domain, then shifted by ∆i
2,5.

Finally, we transform f
′

2,5 into spatial domain and extract
its center pixel. By performing this process for each (x, y),
W i

u,v is constructed. In theory, this warp function can also
apply to other cases not only in this work.

As ⑤ in Fig. 2 shows, we can get W i for each Di
h after

warped, then the cost volume Cd ∈ RH×W×K is obtained
by concatenating.

Disparity Fusion
With Cd, an attention decoder is built to evaluate the consis-
tency of LFs under Dh, and output an attention map Ai for
each Di

h. Finally the Df is obtained by weighted fusion, as
Form. 4.

Df =
K∑
i=1

(Ai ×Di
h), (Ai ∈ A, i = 1, 2, ...,K), (4)

where A ∈ RH×W×K is output by a Softmax layer, Ai ∈
RH×W is the pixel wise attention weight.

The metrics before refinement are shown with black val-
ues. Since some algorithms are refined multiple times, we
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Figure 4: Refinement experiment on each algorithm selected. From top to bottom is the disparity map and errors in Bad-
Pix(0.07), BadPix(0.03), BadPix(0.01) in order. (bright color denotes large errors)

show the variation after each refinement, which is calcu-
lated as Mbefore−Mafter. (red means better and blue means
worse), M is the metric of result before/after.

Experiment
This section introduces the dataset we selected for exper-
iments, then the implementation details are described. Fi-
nally, the results before/after refinement are reported, along
with the generalizability proof, ablation study and evaluation
on real world. more results could be found in the supplemen-
tary material.

Dataset
We use the HCI 4D Light Field Dataset in our experi-
ments. It contains 28 light field scenes, which are partitioned
into four sub-sets: ’Stratified’, ’Test’, ’Training’ and ’Addi-
tional’. The image resolution is 512×512, and the number of
sub-aperture views is 9×9. Here, we use 16 scenes in ’Addi-
tional’ for training, 8 scenes from ’Stratified’ and ’Training’
for validating, and 4 from ’Test’ for testing. While we ran-
domly sample 48 × 48 image patches for training, we use
the full resolution 512 × 512 for validation. Another, Inria
Dense Light Field Dataset(Shi, Jiang, and Guillemot 2019),
Stanford Dataset and Wanner Dataset(Wanner, Meister, and
Goldluecke 2013) are used to further verify the generaliza-
tion of BpCNet. For Inria, ’Black white’,’Kiwi bike’,’Toy
friends’,’White roses’ are selected for test. Since Stanford,

Wanner are real scene dataset and have no groundtruth, we
only display the visual results.

Implementation Details
To prove our theory, we select 6 typical algorithms from HCI
4D Light Field Benchmark for refinement experiments, in-
cluding LFattNet, DistgDisp, EPI-Shift, EPINet, OAVC and
SPO. For evaluation, we use the standard metrics in LF dis-
parity estimation: MSE×100 and BadPix(0.01, 0.03, 0.07).
(smaller is better)

MSE × 100 = 100× 1

m

m∑
i=1

(D
(i)
f −D(i)

g )2,

BadP ix(α) = 100× 1

m

m∑
i=1

(|D(i)
f −D(i)

g |>α).

(5)

For parameter settings in Sec. ’Data Augmentation’, K is 9
and δ is set differently: LFattNet(δ = 0.5), DistgDisp(1.0),
EPI-Shift(1.0), EPINET(1.0), OAVC(1.0) and SPO(1.0),
based on their performance (higher BadPix(α) with larger
δ). We use Adam optimizer to minimize the L1 loss, the
batch size is 16 and the learning rate is 1e-3. To speed up
the convergence, a simple estimation network is trained and
we cascade BpCNet onto it for training 2 days, and details
could be found in the supplementary material’s ’Simple Es-
timation Network’ section. Then we continue training it on
each algorithm for 3 days.
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Methods SPO OAVC EPINet DistgDisp EPI-Shift LFattNet
BadPix(0.07)

Backgammon 3.78-0.31-0.05 3.12+0.01-0.06 3.58+0.19-0.11 5.82-0.89-0.77 22.89-17.53-0.85 3.13-0.02
Dots 16.27-4.84-3.90 69.11-49.28-10.05 3.18-1.43-0.28 1.84-0.19-0.08 43.92-28.18-1.74 1.43-0.06

Pyramids 0.86-0.70+0.05 0.83-0.56+0.04 0.19+0.09+0.01 0.11+0.01+0.11 1.24-0.97+0.05 0.20-0.00
Stripes 14.99-9.84-0.58 2.90-0.02-0.22 2.46-0.00-0.06 3.91-0.54-0.46 22.72-17.28-1.84 2.93-0.15
Boxes 15.89-2.18-0.46 16.14-4.49-0.23 12.84-0.13-0.56 13.31-1.28-0.80 25.95-12.62-0.54 11.04-0.47
Cotton 2.59-0.92-0.58 2.55-1.89-0.12 0.51-0.06-0.03 0.49-0.09-0.05 2.18-1.60-0.11 0.27-0.01
Dino 2.18-0.65-0.16 3.94-2.68-0.08 1.29-0.11-0.13 1.41-0.22-0.06 5.96-4.24-0.21 0.85-0.01

Sideboard 9.30-5.26-0.41 12.42-8.32-0.46 4.80-0.78-0.19 4.05-0.34+0.05 11.80-7.43-0.06 2.87-0.20
Average 8.23-3.09-0.76 13.88-8.40-1.41 3.61-0.28-0.17 3.88-0.44-0.26 17.08-11.23-0.67 2.84-0.12

BadPix(0.03)
Backgammon 8.64–2.76-0.77 5.12-0.95+0.17 6.29+0.17-0.21 10.54-1.68-1.90 40.53-28.54-4.75 3.98-0.10

Dots 35.07-10.48-5.63 75.38-36.31-16.96 12.74-12.14-0.08 4.46-0.01+0.80 53.18-29.79-3.60 3.01-0.24
Pyramids 6.26-4.33-1.23 9.03-7.59-0.67 0.91-0.04+0.04 0.54-0.05+0.06 7.32-6.50-0.06 0.49-0.02
Stripes 15.46-9.38-0.79 19.88-15.69-0.80 3.12-0.15+0.08 6.89-0.86-1.57 47.70-33.70-6.20 5.42-1.41
Boxes 29.53-7.59-1.86 33.68-14.17-0.93 19.76-0.64-0.39 21.13-2.52-0.59 44.15-20.70-3.01 18.97-1.82
Cotton 13.71-8.20-3.31 20.79-18.67-0.77 2.31-1.13-0.16 1.48-0.34-0.14 10.68-7.90-1.34 0.70-0.04
Dino 16.36-6.69-4.84 19.03-12.06-2.83 3.45+0.09-0.44 4.02-0.12-0.42 22.15-16.18-1.46 2.34-0.05

Sideboard 28.81-12.41-6.26 37.83-23.96-4.26 12.08-2.48-0.53 9.58-0.80-0.02 36.64-24.72-1.37 7.24-0.28
Average 19.23-7.73-3.09 27.59-16.81-3.39 7.58-2.04-0.21 7.33-0.80-0.41 32.19-21.00-2.73 5.27-0.50

BadPix(0.01)
Backgammon 49.94–24.53-6.40 49.05-23.30-9.86 20.90+2.35-3.64 26.17-1.69-4.97 70.58-27.55-19.09 11.58-0.56

Dots 58.08-5.43-4.92 92.33-22.83-19.15 41.05-12.89+0.14 25.37+7.44-1.07 74.55-19.62-11.46 15.06+2.86
Pyramids 79.21-55.94-15.02 33.66-11.44-0.42 11.88-2.74-2.98 4.95+1.91-3.27 40.48-12.27-19.80 2.06-0.05
Stripes 21.88-2.53-1.10 28.14-12.55-0.42 15.67-0.93-1.76 19.25-1.32-2.60 78.95-33.32-18.46 18.21-6.54
Boxes 73.23-17.40-9.88 71.91-19.99-9.43 49.04+1.87-8.08 41.62+0.19-0.95 74.36-21.18-8.66 37.05-3.41
Cotton 69.06-33.57-19.77 61.35-33.80-15.44 28.07-7.68-10.39 7.59+0.67-0.50 46.86-15.89-17.25 3.64-0.13
Dino 69.88-18.69-17.33 61.82-11.45-19.68 22.40+3.86-6.06 20.46+7.27-3.77 64.16-17.20-18.12 12.22-2.71

Sideboard 73.37-19.38-14.54 73.85-20.78-17.06 41.88-5.79-4.16 28.28+2.34-1.26 73.42-24.62-11.83 20.74-0.19
Average 61.83-22.18-11.12 59.02-19.52-11.43 19.63-2.74-4.61 21.71+2.10-2.29 65.42-21.46-15.58 15.07-1.34

Table 1: Metrics evaluation on BadPix(0.07, 0.03, 0.01) before/after refinement. The metrics before refinement are shown in the
first order. Since some algorithms are refined multiple times, we show the variation after each refinement, which is calculated
as Mbefore −Mafter, M is the metric of result before/after. (Bloded means better result achieved)

Refinement Experiment

To prove the theory that we can improve existing algorithms
by correcting bad pixels, experiments are conducted and the
results before/after refinement are compared. Since BpC-
Net is iterable, we refine LFattNet once(δ1 = 0.5), and
DistgDisp, EPI-Shift, EPINET, OAVC, SPO 2 times(δ1 =
1.0, δ2 = 0.5) by experience.

As shown in Fig. 4, the BadPix(α) of these algorithms are
improved visibly after refinement except LFattNet in Bad-
Pix(0.01) of Dots, which may be caused by the incorrect δ
setting in ’Dots’: (too large δ for a small baseline scene with
disparity range in [-0.7,0.9]).

As Tab.1 shows, the variation of metrics after each refine-
ment are shown respectively. It can be seen that BpCNet per-
forms well in BadPix correction, especially when the algo-
rithm has poor BadPix(α): the BadPix(0.07/0.03/0.01) of
EPI-Shift are reduced by 11.90/23.73/37.04% after refine-
ment. For those algorithms with good BadPix(α) such as
LFattNet, BpCNet still works: the BadPix(0.07/0.03/0.01)
are reduced by 0.12/0.50/1.34%. In summary, BpCNet plays
an active role for disparity map refinement, and can work on
most algorithms.

Ablation Study
As shown in Tab.2, For ’Data Augmentation’, we validate
the effect of LFs, Dc augmentation and ’Iterative training’,
then find that BpCNet performs the worst without Dc. This
means more diverse Dc must be provided if better results are
wanted. For ’Hypothesis Disparity Generation’, we study
the effect of the disparity number K and find the results get
better as K increases, which proves that BpCNet realizes the
search process with hypothesis disparities, and K controls
the search granularity. For ’Cost Volume Construction’, we
compared different warp functions, and experiments prove
that our phase-shifted based warp function makes the best.
Another, to demonstrate the necessity of modeling BpCNet
as a fine-grained search strategy, we design a ’Simple Refine
Model’ for comparison, and it almost has no optimization as
shown in Tab.2. Details could be found in the supplementary
material’s ’Simple Refine Model’ section.

Generalizability Proof
In this section, we prove that BpCNet has good general-
ization, whose weights pre-trained on one algorithm/dataset
can also be applied to another algorithm/dataset effectively.
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BadPix(0.07) | BadPix(0.03) | BadPix(0.01)
Algorithms SPO EPINet DistgDisp

Data Augmentation
w/o LFs -3.42|-9.81|-29.95 -0.43|-1.99|-6.98 -0.59|-1.15|-0.15
w/o Dc -2.33|-7.59|-26.41 -0.19|-1.49|-3.47 -0.42|-0.70|-1.19

w/o Iterative -3.74|-10.20|-31.54 -0.39|-2.17|-6.77 -0.66|-1.21|-0.14

Hypothesis Disparity Generation (K)
3 -1.03|-4.37|-9.95 -0.01|-0.51|-1.02 -0.10|-0.27|-0.01
5 -2.57|-6.88|-17.33 -0.17|-1.01|-4.31 -0.27|-0.68|-0.04
7 -3.43|-8.31|-25.46 -0.32|-1.89|-6.15 -0.59|-1.09|-0.13

Cost Volume Construction Bilinear -3.67|-9.62|-28.60 -0.37|-1.95|-6.03 -0.62|-1.13|-0.11
Bicubic -3.74|-10.33|-30.30 -0.42|-2.05|-6.74 -0.65|-1.19|-0.15

Simple Refine Model +5.32|+11.46|+15.03 +4.26|+11.86|+40.15 +4.79|+15.20|+50.51
Full Model -3.85|-10.82|-33.30 -0.45|-2.25|-7.35 -0.70|-1.21|-0.19

Table 2: Ablation study for BpCNet on Data Augmentation, Hypothesis Disparity Generation and Cost Volume Construction
Module. The average of BadPix(0.07, 0.03, 0.01) is shown, and the best result is bolded.

As shown in Tab.3, We apply the BpCNet trained on
EPINET to other algorithms directly. Here, for OACC-Net,
FastLFnet(Huang et al. 2021), CAPNet(Liu et al. 2020),
FusionNet(Zhou et al. 2019a), FocalStackNet(Zhou et al.
2019b) and SPO-MO(Sheng et al. 2018), we only refine
once with δ = 0.5, and it can be seen that even without any
specific training, BpCNet still performs well. In addition, we
conduct cross-dataset experiment on Inria dataset, and the
weight we use is trained on HCI Dataset with EPINet. the
configuration is kept the same as Tab.3. BpCNet also work
well when crossing dataset. Some visual results are shown
in Fig. 6, The top two rows are FastLFnet on HCI Dataset,
and the bottom two rows are OACC-Net on Inria Dataset.
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Figure 5: Visual results of real-world scenes.

Evaluation on Real World
To prove that BpCNet also works well in real world scenes,
we conduct related experiments on Stanford Dataset and
Wanner Dataset. As shown in Fig. 5. the results are markedly
improved after refinement.

Conclusion
After reviewing previous algorithms, we propose a Bad-
Pix correction-based idea for LF disparity estimation and
implement a general post-refinement network–BpCNet. We
demonstrate our theory through extensive experiments.
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Figure 6: Visual results of Generalizability Proof.

Algorithm BadPix MSE
0.07 0.03 0.01 ×100

HCI 4D Light Field Dataset
SPO 8.23-1.46 19.23-5.93 61.83-21.03 3.57-0.53

EPI-Shift 17.08-7.51 32.19-16.11 65.42-27.55 5.42-1.08
DistgDisp 3.88-0.34 7.33-0.44 21.71+0.99 1.41+0.00
OACC-Net 2.98-0.24 5.60-0.53 20.80-3.42 1.24-0.02
FastLFnet 8.15-4.54 20.80-13.75 54.12-30.11 1.75-0.17
CAPNet 2.86-0.21 4.50-0.05 13.88+1.26 0.87-0.02

FusionNet 3.74-0.22 6.38-0.96 24.64-6.75 2.52-0.15
SPO-MO 4.69-1.01 11.49-4.98 35.97-12.87 2.84-0.35

FocalStackNet 4.03-0.18 7.12-1.09 53.71-31.90 3.23-0.25
Inria Dense Light Field Dataset

OAVC 12.57-4.67 30.48-15.93 68.76-30.59 6.46-0.46
EPI-Shift 17.95-8.50 35.73-19.96 68.55-34.48 12.34-0.73
EPINet 13.06-3.99 26.27-11.98 57.04-27.81 9.16-0.45

DistgDisp 7.87-0.17 13.98-0.98 30.46-2.23 8.81-0.12
OACC-Net 8.44-0.52 14.39-1.5 36.42-8.95 9.72-0.14

Table 3: Generalizability proof on HCI Dataset and Inria
Dataset. For HCI, We apply the BpCNet trained on EPINet
to other algorithms directly. For Inria, We apply the BpCNet
trained on HCI Dataset to it directly.
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