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Abstract

This paper for the first time explores audio-visual event local-
ization in an unsupervised manner. Previous methods tackle
this problem in a supervised setting and require segment-level
or video-level event category ground-truth to train the model.
However, building large-scale multi-modality datasets with
category annotations is human-intensive and thus not scal-
able to real-world applications. To this end, we propose cross-
modal label contrastive learning to exploit multi-modal in-
formation among unlabeled audio and visual streams as self-
supervision signals. At the feature representation level, multi-
modal representations are collaboratively learned from audio
and visual components by using self-supervised representa-
tion learning. At the label level, we propose a novel self-
supervised pretext task i.e. label contrasting to self-annotate
videos with pseudo-labels for localization model training.
Note that irrelevant background would hinder the acquisi-
tion of high-quality pseudo-labels and thus lead to an inferior
localization model. To address this issue, we then propose
an expectation-maximization algorithm that optimizes the
pseudo-label acquisition and localization model in a coarse-
to-fine manner. Extensive experiments demonstrate that our
unsupervised approach performs reasonably well compared
to the state-of-the-art supervised methods.

Introduction
Over the last few years, the computer vision community
has witnessed the success of audio-visual event localiza-
tion (Wang et al. 2021; Tian et al. 2018; Lin, Li, and Wang
2019; Xuan et al. 2020; Xu et al. 2020; Zhou et al. 2021; Ra-
maswamy 2020; Ramaswamy and Das 2020). In this task, an
audio-visual event refers as an event that is both visible and
audible in a video. And as illustrated in Fig 1 (a), the goal
is to find which temporal segment contains an audio-visual
event and identify what category the event belongs to.

Existing works tackle the audio-visual localization in a
supervised manner (Wang et al. 2021; Tian et al. 2018; Lin,
Li, and Wang 2019; Xuan et al. 2020; Xu et al. 2020; Zhou
et al. 2021), and the manual annotations of segment-level or
video-level event categories are required to train the model.
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Figure 1: We for the first time propose to solve audio-visual
event localization in the unsupervised setting. (a) An exam-
ple of audio-visual event localization, whose model train-
ing relies on heavy annotations. (b) The proposed pipeline
for unsupervised audio-visual event localization, with self-
supervision at both feature/label level, and an EM algorithm.

However, collecting a large number of videos with associ-
ated ground-truth labels is often time-consuming and labor-
intensive, which makes it not scalable to real-world appli-
cations. On the contrary, it costs much less human effort to
collect videos in multi-modalities, i.e. RGB frames with au-
dio signals, which can often be easily obtained on web re-
sources. Motivated by this, we pose a question in this pa-
per: is it possible to develop an unsupervised framework for
audio-visual event localization by leveraging the visual and
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audio component of videos without associated event cate-
gory labels?

Our observation is that humans are not only able to per-
ceive the world through simultaneous sensory streams but
can further learn from the multi-modal information (Bulkin
and Groh 2006; Smith and Gasser 2005). This inspires us
to solve the problem of audio-visual event localization by
exploiting collaborative supervision signals from the unla-
beled audio and visual streams, without using video-level
or segment-level annotations. To the best of our knowledge,
we are the first in the literature to address this problem in an
unsupervised setting.

Specifically, as illustrated in Fig 1 (b), we devise a cross-
modal label contrastive learning framework with expecta-
tion maximization. At the feature representation level, the
cross-modal collaborative representations are first learned
from the unlabeled audio and visual streams by utilizing two
pretext tasks i.e. instance discrimination and feature decorre-
lation. At the label level, we propose a novel self-supervised
label contrastive learning to automatically discover event
classes from the multi-modal features. Different from the
conventional contrastive learning to learn feature represen-
tations, our label contrastive learning aims to contrast event
category label distributions and learn the reliable pseudo-
labels with self-supervision. Instead of obtaining positive /
negative pairs with data augmentation, we first require to
construct contrastive pairs by mining the label affinity and
repulsion set from the whole training dataset. Then a label
contrasting loss trains a self-label annotator to narrow the
gap of pseudo-label distributions among affinity sets, and
distance it in the repulsion set vice versa. The localization
model training can then be formulated as multiple instance
learning (Maron and Lozano-Pérez 1998) with the generated
video level pseudo-labels.

Note that the training videos consist of both foreground
events and background segments as shown in Fig 1 (a).
These irrelevant backgrounds introduce noise to both audio
and visual features, which hinders the acquisition of pre-
cise pseudo-labels. To remove these background segments,
one requires to train a powerful localization model, which in
turn relies on the high quality of pseudo labels. To address
this issue, we propose an elegant Expectation-Maximization
(EM) algorithm which regards the pseudo-labels as latent
variables. In the expectation step (E-step), the pseudo-label
distributions are evaluated from the current parameters of
the localization model. And then the maximization step (M-
step) re-estimates the parameters of localization model with
the pseudo-labels from the E-step. The E-step and M-step it-
eratively run until the convergence of the localization model.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to explore
unsupervised audio-visual event localization in the liter-
ature.

• We propose a novel self-supervised pretext task of la-
bel contrasting to mine event classes from cross-modal
collaborative features, with label affinity and repulsion
mechanism.

• An elegant EM algorithm treating pseudo-labels as la-

tent variables is proposed to address the irrelevant back-
ground problem in a coarse-to-fine manner.

• The experiments show our unsupervised approach
achieves comparative performance to the state-of-the-art
supervised methods on the standard large-scale dataset of
audio-visual event localization.

Related Works
Audio-visual event localization. Audio-visual event local-
ization (Wang et al. 2021; Lin, Li, and Wang 2019; Xuan
et al. 2020; Xu et al. 2020; Zhou et al. 2021) aims to pre-
dict which temporal segment of a video input has an audio-
visual event and classify the category of the event. Exist-
ing works focus on the fully / weakly- supervised settings.
Tian et al. (Tian et al. 2018) first tackle this task with a dual
multimodal residual network to fuse the audio-visual infor-
mation for localization in a supervised manner. Some later
works explore the fusion strategy for multi-modalities. Xuan
et al. (Xuan et al. 2020) propose a cross-modal attention
network to adaptively trade information between audio and
visual components. Similarly, a cross-modal relation-aware
network is devised in (Xu et al. 2020) to enable simulta-
neous reasoning between the visual and audio content. A
positive sample propagation module is proposed in (Zhou
et al. 2021) to discover similar audio-visual pairs for better
feature representation learning. Wu et al. (Wu et al. 2019)
propose a dual attention matching module to perceive both
long-term video contents and local temporal information for
a better semantic understanding of audio-visual event.

Unsupervised audio-visual learning. The intrinsic cor-
respondence between sound and vision provides effective
supervision signals. A list of tasks ranging from sound
object localization, sound source separation to object seg-
mentation and sound event detection are tackled with self-
supervised or unsupervised audio-visual learning (Hu, Nie,
and Li 2019; Cheng et al. 2020; Rouditchenko et al. 2019;
Alwassel et al. 2020). Hu et al. (Hu, Nie, and Li 2019)
propose a deep multimodal clustering method for capturing
multiple audio-visual correspondences and then apply it to
sound source localization and sound event detection. Despite
that the above tasks are already handled in unsupervised set-
ting, temporal localization of audio-visual events in videos
is still an unexplored one, and we are the first to tackle this
task in the unsupervised case.

Unsupervised action localization. The most related
works in visual action localization are (Soomro and Shah
2017; Gong et al. 2020). Soomro et al. (Soomro and Shah
2017) propose an unsupervised spatio-temporal action de-
tection model without using bounding box and action cate-
gories. Actions are firstly grouped into identical categories
and then these actions are utilized to train the model to detect
video tubes that contain the actors performing the actions.
Similarly, Gong et al. (Gong et al. 2020) devise a temporal
co-attention model for unsupervised action localization. We
emphasize that our works are fundamentally different from
theirs in that we collaboratively exploit two modalities as
self-supervision signals, while theirs focus on a single visual
modality.
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Figure 2: The framework of cross-modal label contrastive learning for unsupervised audio-visual event localization. 1) At
feature representation level, the cross-modal collaborative learning aims to learn representations with two pretext tasks i.e.
instance discrimination and feature decorrelation. 2) At label level, a novel label contrasting pretext task trains the model to
generate pseudo-labels with contrasting between affinity and repulsion set. 3) To address the irrelevant background problem, an
EM algorithm optimizes the pseudo-label acquisition and localization model in a coarse-to-fine manner.

Problem Description
The task of audio-visual event localization aims to predict
which temporal segment of a video input has an audio-
visual event and identify what category the event belongs
to. Specifically, a video sequence S is splitted as T non-
overlapping segment {St = (Vt, At)}Tt=1, where Vt, At are
the visual and audio components, respectively. The details
of these three settings of supervision are described as the
following.

Fully-supervised setting. The segment-level event labels
can be accessed for training in the fully-supervised setting.
In more specific, each segment-level event label is denoted
as yt = {yct | yct ∈ {0, 1},

∑C
c=1 y

c
t = 1} ∈ RC , where C

is the total number of event categories plus one background
class. Then the label for the entire video can be given as
Y fully = [y1;y2; . . . ;yT ] ∈ RT×C .

Weakly-supervised setting. In the weakly-supervised set-
ting, the model can only access video-level ground truth
Y weak = {yc | yc ∈ {0, 1},

∑C
c=1 y

c = 1} ∈ RC , instead
of the segment-level one.

Unsupervised setting. Our paper explores a new unsu-
pervised setting for audio-visual event localization. In the
unsupervised case, we access neither the segment-level nor
video-level ground truth for training. All we have during the
training stage are the unlabeled videos with paired visual
and audio components.

Cross-Modal Label Contrastive Learning with
Expectation-Maximization

As illustrated in Fig 2, we propose a cross-modal label con-
trastive learning framework with expectation-maximization
for unsupervised audio-visual event localization. The whole
framework consists of three main steps: 1) At the feature
representation level, the cross-modal collaborative learning
aims to learn representations with two pretext tasks i.e. in-
stance discrimination and feature decorrelation. 2) At the
label level, a novel label contrasting pretext task trains the
model to generate pseudo-labels with label contrasting be-

tween affinity and repulsion set. 3) An EM algorithm iter-
atively optimizes the pseudo-label acquisition and localiza-
tion model to tackle the irrelevant background problem.

Feature-Level Cross-modal Collaborative Learning
Feature representation via cross-modal collaboration.
The visual segments Vt and audio segments At are first pro-
cessed by pretrained convolutional neural network. We de-
note visual and audio features processed by the pretrained
network as {vt}Tt=1 and {at}Tt=1, where vt ∈ Rdv×(H∗W )

and at ∈ Rda , andH,W are the height and width of the fea-
ture maps respectively. We follow the previous works (Xu
et al. 2020) to design the network architecture of the audio-
visual interaction. First, a multi-modal attention mapM s

t ∈
R1×(H∗W ) is generated by fusing visual and audio features
with the attention mechanism as

M s
t = softmax (W s

av (W s
aat �W

s
vvt)) (1)

where � denotes Hadamard product, W s
a ∈ Rd×da and

W s
v ∈ Rd×dv are fully-connected layers with ReLU acti-

vation function for visual and audio features, respectively.
W s

av ∈ R1×d are learnable parameters with d as a hidden
dimension. Then the spatial attentive features vst ∈ Rdv are
computed with the spatial attention map and the raw visual
features vt as

vst = M s
t ⊗ vTt , (2)

where ⊗ denotes matrix multiplication.
To enable audio-visual interaction and collaborative

learning from multi-modalities, we use two cross-attentional
module, i.e. an audio-guided visual attention and a visual-
guided audio attention module. The features of the two
modalities vs = {vst}Tt=1 and a = {at}Tt=1 are first con-
catenated to ma,v ∈ RT×2d. The audio-collaborated visual
features vattn ∈ RT×d are computed via multi-modal atten-
tion mechanism as

vattn = Softmax

(
QvK

T
v√

d

)
V v, (3)
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With learnable parameters WQ ∈ R2d×T ,WK ∈
R2d×T ,W V ∈ Rd×T , the above key features, value fea-
tures, and query features are computed as

Qv = ma,vW
Q,Kv = ma,vW

K ,V v = vsW V . (4)

Similarly, we can compute Qa,Ka,V a, and the visual-
collaborated audio features aattn ∈ RT×d are derived as

aattn = Softmax

(
QaK

T
a√

d

)
V a, (5)

Self-supervised representation learning. Then we ex-
ploit two self-supervised pretext tasks for audio-visual rep-
resentation learning, i.e. instance discrimination and feature
decorrelation. For cross-modal collaborated features vattn
and aattn, we first apply average pooling to them separately
and obtain xv,xa ∈ Rd. The instance discrimination are
defines as

Lins =− log
exp

(
xa+ ·ma

+/τ
)∑N

i=1 exp
(
xa+ ·ma

i /τ
)

− log
exp

(
xv+ ·mv

+/τ
)∑N

i=1 exp
(
xv+ ·mv

i /τ
) (6)

where τ is the temperature hyperparameter which we set it to
1.0. And the xa+,m

a
+ and xv+,m

v
+ are the positive pairs for

audio/visual modality.. {mi}Ni=1 is the memory bank main-
tained with momentum mechanism for each modality.

The second self-supervised target is feature decorrelation,
which makes each dimension of the learned representation
to be orthogonal.

Ldec =
∥∥Xv(Xv)T − I

∥∥2 +
∥∥Xa(Xa)T − I

∥∥2 (7)

where xv and xa consists of each row ofXv andXa. The fi-
nal self-supervised loss objective function can be formulated
as

Lself = Ldec + Lins (8)

Self-Labeling via Label Contrastive Learning
To obtain pseudo-labels to train the audio-visual event local-
ization model, we design a self-label annotator to automati-
cally annotate the training dataset with pseudo-labels.

Construct affinity and repulsion set. After obtaining
cross-modal representation fi of each training sample as in
section , its affinity set, and repulsion set are first constructed
according to the similarity of the representations. We calcu-
late the cosine similarity si,j for each pair of training sample
representation {fi, fj}(1 ≤ i, j ≤ N). Then the topK most
similar samples are assigned as its affinity set Ai, and also
set the top K most dissimilar samples as the repulsion set
Ri. And Ai,Ri make up the contrastive set for label con-
trasting.

Self-label annotator with label contrasting. The self-
label annotator consists of two layers of fully-connected lay-
ers. And it takes the cross-modal representation fi as the
input and ideally outputs one-hot labels which denote the
event categories for the training samples. This pretext task

of label contrasting. defines as narrowing the gap of pseudo-
label distributions among the affinity set and vice versa dis-
tance it in the repulsion set. For each training sample fi,
a label affinitive term in the label contrasting loss encour-
ages to reduce gap of the predicted pseudo-label Φ(fi) to the
pseudo-labels Φ(fj) among its affinity set i.e. j ∈ Ai. And
on the contrary, the other label repulsion term to distance
pseudo-label of training sample fi from the pseudo-labels
Φ(fj) for the corresponding repulsion set Ri. Specifically,
the label contrastive loss is written as

Lc =
∑
j∈Ai

KL
(
Φ(fi),Φ(fj)

)
−
∑
j∈Ri

KL
(
Φ(fi),Φ(fj)

)
(9)

where KL denotes the Kullback–Leibler divergence of two
distributions.

We further note that there exist trivial solutions with only
minimizing the label contrasting term where parts of the
pseudo-labels are empty and never assigned to the training
samples. To tackle this issue, here we propose to regularize
the pseudo-labels with entropy function Le:

Le = −
C∑
c=1

Φ(f)c log Φ(f)c (10)

where Φ(f) = 1
N

∑N
i=1 Φ(fi). With the regularization term,

the final label contrastive loss Llabel defines as the follow-
ings:

Llabel = Lc + Le (11)

in which the self-labeling generator can be trained in an end-
to-end manner.

Expectation-Maximization Localization
Recall that expectation-maximization algorithm, is an ele-
gant and powerful method for finding maximum likelihood
solutions for model parameters with latent variables. In the
E step, current values for the parameters are used to es-
timate the posterior probabilities of latent variables. Then
these probabilities are then used in the M step to re-estimate
the model parameters. In the scenarios of audio-visual event
localization, on one hand, training an accurate localization
model relies on pseudo-labels of high quality obtained from
the audio-visual consensus event discovery. On the other
hand, the visual and audio segments consist of both fore-
ground events and background. These backgrounds, which
are irrelevant to foreground audio-visual events as illustrated
in Fig 1 (a), introduce noise to the event discovery process
and thus hinder the acquisition of precise event categories by
the pseudo-label generator. To tackle these issues, we regard
the pseudo-label as the latent variables and then propose an
expectation-maximization framework that embeds the label
contrastive learning and audio-visual events localization.

Expectation step with self-label annotator. In the ex-
pectation step, we evaluate the latent pseudo-label distribu-
tion from the current values of localization model parame-
ters. The audio and visual feature aattn, vattn ∈ RT×d from
the collaborative representation learning are concatenated as
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f̃i. We first apply the localization model to get audio-visual
events scores γit, where t denotes the t-th frame numbers
for video i. The cross-modal representation fi for video i is
then computed with the estimated γit as

fi =
T∑
t=1

γitf̃it (12)

With fi based on the localization model, then posterior dis-
tribution of latent pseudo-label Zi for video i are then esti-
mated with label-contrastive learning as section :

Zi = Φ(fi) ∈ RC×1 (13)

Note that for the first iteration of E step, the audio-visual
event score γ can be initialized as γit = 1

T for all T frames,
i.e. with the average localization results.

Maximization step with localization model. In the max-
imization step, we re-estimate the parameters of the local-
ization model with the latent pseudo-label from the E step.
After a cross-modal interaction module similar to Eq. 4 and
cascaded to the self-supervised backbone, we can obtain the
audio-visual feature fav with dimensions of T × dav as in
(Xu et al. 2020). Then we predict two sorts of event scores
for localization, i.e. an event-relevance score to tell which
video segments belong to background or foreground, and
an event category score to classify which category of the
audio-visual event is performed in the segment. We com-
pute the event-relevance score γ ∈ RT×1 by applying a
fully-connected layer W γ cascaded with a softmax layers
on fav , formulated as

γ = Softmax(favW γ). (14)

Similarly, we predict the event category score sc ∈ RT×C
to identify event class for each segment as follows:

sc = Softmax(favW av). (15)

whereW av is a fully-connected layer.
Note that the pseudo labels Zunsup are assigned to the

whole video and the category for each segment is not
available. To tackle this issue, we formulate it as a Mul-
tiple Instance Learning (MIL) (Maron and Lozano-Pérez
1998) problem and exploit a MIL pooling layer to trans-
form segment-level predictions s to video-level predictions
y ∈ RC×1, written as:

y = sTc γ (16)

Then we apply the binary cross-entropy (BCE) loss to video-
level predictions and the pseudo video-labels as

LMIL = LBCE (y,Zunsup) . (17)

The localization model can then be trained in an end-to-end
manner with Eq. 17. And the above E step and M step itera-
tively run until the convergence of the pseudo-label estima-
tion and localization results.

Setting Method Feature Acc

FS

AVEL (Tian et al. 2018) VGG-19 68.6
AVEL (Tian et al. 2018) ResNet-151 74.7
DAM (Wu et al. 2019) VGG-19 74.5

AVRB (Ramaswamy and Das 2020) VGG-19 74.8
AVIN (Ramaswamy 2020) VGG-19 75.2

AVSDN (Lin, Li, and Wang 2019) ResNet-151 75.4
CMRAN (Xu et al. 2020) VGG-19 77.4
CMRAN (Xu et al. 2020) ResNet-151 78.3

PSP (Zhou et al. 2021) VGG-19 77.8
M2N (Wang et al. 2021) VGG-19 79.5

WS

AVEL (Tian et al. 2018) VGG-19 66.7
AVEL (Tian et al. 2018) ResNet-151 73.3

AVRB (Ramaswamy and Das 2020) VGG-19 68.9
AVIN (Ramaswamy 2020) VGG-19 69.4

AVSDN (Lin, Li, and Wang 2019) ResNet-151 74.2
AVT (Lin and Wang 2020) VGG-19 70.2
CMRAN (Xu et al. 2020) VGG-19 72.9
CMRAN (Xu et al. 2020) ResNet-151 75.3

PSP (Zhou et al. 2021) VGG-19 73.5

US Ours VGG-19 63.2
Ours ResNet-151 67.1

Table 1: Performance comparison of localization results on
the AVE dataset. FS, WS, and US represents the fully-
supervised, weakly-supervised, and unsupervised settings.

Experiments
Dataset and Evaluation Metrics
AVE. Following existing works on fully/weakly-supervised
settings (Zhou et al. 2021; Tian et al. 2018; Xu et al. 2020),
we conduct our experiment on the AVE dataset (Tian et al.
2018). The AVE dataset is the standard datasets for audio-
visual event localization, which contains 4143 video sam-
ples and 28 event categories that are collected from a wide
domain of real-life scenes. We follow the identical setting to
previous works for trainset/testset data splitting.
Evaluation metrics. We follow previous works (Xu et al.
2020) to use segment-level accuracy as the evaluation met-
rics for audio-visual event localization. To analyze the per-
formance of the self-label annotator, we further adopt the
metric of pseudo-label purity to evaluate the quality of the
pseudo-labels, where we compute the largest percentage of
samples with the same pseudo-label that also have the same
ground-truth event category.

Implementation Details
Audio features and visual features. For audio represen-
tation, we apply the VGG-like network (Hershey et al.
2017) pretrained on AudioSet (Gemmeke et al. 2017) to ex-
tract acoustic features with dimensions of 128 for each au-
dio segment. For fair comparison to existing fully/weakly-
supervised works, we separately use the VGG-19 (Simonyan
and Zisserman 2015) and ResNet-151 (He et al. 2016) pre-
trained on ImageNet (Krizhevsky, Sutskever, and Hinton
2017) to extract the visual features. The visual features are
with dimensions of 7 × 7 × 512 and 7 × 7 × 2048 for each
segment respectively.
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Loss function Accuracy (%)
full loss 67.1
full w.o. Ldec 64.4
full w.o. La

ins 66.7
full w.o. Lv

ins 51.3

Table 2: Ablation study on collaborative learning loss.

Method Accuracy (%)
full network 67.1
full w.o. s-attn 63.2
full w.o. audio2visual 59.0
full w.o. visual2audio 61.2

Table 3: Ablation study on collaborative learning modules.

Loss function Label Purity Accuracy (%)
full loss 77.81 67.1
full w.o. Le 47.98 14.6
full w.o. Lc 12.3 7.6

Table 4: Ablation study on label contrastive loss.

Training setup. The audio-visual collaborative learning and
self-label contrastive model is trained with SGD optimizer
with a learning rate of 0.05 and the batch size is set to 32.
The learning rate is gradually decayed with a cosine decay
schedule (Loshchilov and Hutter 2017). The hidden dimen-
sion d in the cross-modal collaboration module is set to 512.
The number of parallel attention heads is set to 4. The mem-
ory bank is maintained with a momentum of 0.9 for each
modality respectively. The numbers of training epochs for
audio-visual collaborative learning and self-label contrastive
model are both set to 200. To make the convergence more
stable, we implement the feature decorrelation loss with its
soft version as in (Tao, Takagi, and Nakata 2021). The hy-
perparameter C is set to 28. The contrastive set size K is set
to 30. The localization model is trained with Adam (Kingma
and Ba 2014) optimizer with a learning rate of 5×10−4 and
weight decay of 5× 10−4. And the total EM step is set to 3.
Evaluation setup. Note that under the unsupervised setting,
the event categories predicted by the model are based on
C pseudo-label categories. To compare with previous meth-
ods, we assign each of the C pseudo-label categories with
an event category in the AVE dataset. That is each pseudo-
category is mapped to an event category with the largest
frequency in this pseudo-category. Note that the pseudo-
category assignment is only done for performance evalua-
tion, and labels are strictly not needed during the training.

Performance Comparisons
Table 1 summarizes the localization accuracy under the
fully-supervised, weakly-supervised, and unsupervised set-
tings on the AVE dataset. Even without any video-level
nor segment-level annotations, our unsupervised method can
still achieve the competitive accuracy. For instance, the un-
supervised method can achieve the competitive accuracy of

EM step Label purity Accuracy (%)
1 76.90 65.8
2 77.35 66.7
3 77.81 67.1

Table 5: Localization results and label purity with EM step.

Modality Accuracy (%)
audio 46.8

visual (resnet) 42.6
visual (vgg) 39.7

audio + visual (resnet) 67.1
audio + visual (vgg) 63.2

Table 6: Localization accuracy with various modalities.

The value of C Accuracy (%)
28 67.1
56 66.7
84 66.1

Table 7: Localization accuracy with large C.

67.1% with ResNet-151 visual feature. This is about 85.7%
and 89.1% of the accuracy of the best fully/weakly super-
vised counterparts. Also, with VGG-19 feature, the unsu-
pervised localization result is with an accuracy of 63.2%,
which is also comparative to previous settings requiring
manual labeling (79.5% and 86.0% of the accuracy for the
fully/weakly-supervised setting).

Ablation Study
1) Impact of cross-modal collaborative learning loss. We
verify the impact of the cross-modal collaborative learning
loss by ablation study on the AVE dataset. Table 2 summa-
rizes localization accuracy when dropping different type loss
terms. “full w.o. Ldec” refers to the model without using fea-
ture decorrelation loss, while “full w.o. La

ins” and “full w.o.
Lv

ins” refers to the model dropping audio and visual parts of
the instance discrimination loss. The accuracy drops about
2.7% without Ldec, which shows the benefit to decorrelate
the audio-visual features. We also note that without either
audio or visual part of the loss, the model accuracy would
decrease with a clear margin.
2) Benefit of cross-modal collaborative learning modules.
Table 3 summarizes ablation results of cross-modal collabo-
rative learning modules, which show an evident performance
drop without adopting the designed collaborative module.
The method “full w.o. s-attn” replaces the audio-visual spa-
tial attention by a mean pooling on the visual feature. And
“full w.o. audio2visual” refers to the method which substi-
tutes the audio-collaborated visual feature module with self-
attention on single-modal visual feature, while “full w.o. vi-
sual2audio” is the method replacing visual-collaborated au-
dio feature module with self-attention on audio feature.
3) Impact of label contrastive set size. Here we study im-
pact of label contrastive set size on the localization accuracy.
Fig. 4a presents the accuracy with respect to the varying con-
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Figure 3: t-SNE visualization of pseudo-label estimation at the first and third EM-step. Different colors represent different event
categories obtained by self-label annotator. Representative samples for the selected categories are shown in the dash boxes.
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Figure 4: Accuracy with contrastive set size and C.

trastive set size. We note that when contrastive set size is
set to 28 or 30 achieves the best performance, although the
model’s accuracies are also satisfactory around them.
4) Impact of label contrastive loss. Table 4 illustrates abla-
tion study results on the label contrastive loss. We drop the
entropy term and label contrastive term from full loss func-
tion, and denote them as “full w.o. Le” and “full w.o. Lc”.
Without either Le or Lc, both the pseudo-label purity and lo-
calization accuracy degrade evidently. We further note that
without Le, the self-label annotator degenerates with only
finding 12 pseudo categories and the other 16 are empty.
5) Effectiveness of expectation-maximization We summa-
rize the pseudo-label purity and localization accuracy in Ta-
ble 5 during the different EM steps. The label purity and
localization accuracy consistently increase as the EM algo-
rithm iterates. Figure 3 visualizes the pseudo-label distribu-
tion at the first and third EM steps with t-SNE algorithm.
The visualization shows that the multi-modal features in the
third step are better separated than in the first step.
6) The benefit of multi-modalities. Table 6 summarizes the
localization accuracy with various modalities. We refer to
the method with single modal input as “visual” and “audio’
while denoting the method of modeling both modalities as
“visual + audio”. The “audio + visual” methods beat all sin-
gle modal methods.
7) Impact of hyperparameter C. Fig. 4b summarizes the

impact of the hyperparameterC. WhenC is smaller than the
actual value 28, the accuracy drops evidently when C drops.
However, when C becomes larger, the model performance
keeps satisfactory (consistently above 66.5%), thanks to re-
dundant event categories provided by a larger C. We fur-
ther illustrate localization accuracy in Table 7 with C that
is much larger than the ground-truth value, which indicates
that a rough estimate of C over a wide range (larger than the
ground-truth value) is sufficient.

Conclusions
In this paper, we tackle the unsupervised audio-visual
event localization for the first time in the literature. We
propose a cross-modal label contrastive learning frame-
work that exploits cross-modal information among au-
dio and visual modalities as self-supervision signals. An
expectation-maximization algorithm is further devised to
progressively optimize the pseudo-label acquisition and lo-
calization model. Extensive experiments show that our un-
supervised approach achieves comparative performance to
the state-of-the-art supervised counterparts.

Acknowledgements
This work was carried out at the Rapid-Rich Object Search
(ROSE) Lab, Nanyang Technological University (NTU),
Singapore. The research is supported in part by the NTU-
PKU Joint Research Institute (a collaboration between
the NTU and Peking University that is sponsored by
a donation from the Ng Teng Fong Charitable Founda-
tion) and A*STAR under it’s A*STAR-P&G Joint Grant
Call - DigiSolutions Accelerator Grant – Wave 3 (Award
APG2013/138). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not reflect the views of the A*STAR. This
research work is also partially supported by the Basic and
Frontier Research Project of PCL and the Major Key Project
of PCL.

221



References
Alwassel, H.; Mahajan, D.; Korbar, B.; Torresani, L.;
Ghanem, B.; and Tran, D. 2020. Self-Supervised Learning
by Cross-Modal Audio-Video Clustering. In NeurIPS.
Bulkin, D. A.; and Groh, J. M. 2006. Seeing sounds: visual
and auditory interactions in the brain. Current opinion in
neurobiology.
Cheng, Y.; Wang, R.; Pan, Z.; Feng, R.; and Zhang, Y. 2020.
Look, Listen, and Attend: Co-Attention Network for Self-
Supervised Audio-Visual Representation Learning. In ACM
MM.
Gemmeke, J. F.; Ellis, D. P.; Freedman, D.; Jansen, A.;
Lawrence, W.; Moore, R. C.; Plakal, M.; and Ritter, M.
2017. Audio set: An ontology and human-labeled dataset
for audio events. In ICASSP.
Gong, G.; Wang, X.; Mu, Y.; and Tian, Q. 2020. Learning
temporal co-attention models for unsupervised video action
localization. In CVPR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; Gemmeke, J. F.;
Jansen, A.; Moore, R. C.; Plakal, M.; Platt, D.; Saurous,
R. A.; Seybold, B.; et al. 2017. CNN architectures for large-
scale audio classification. In ICASSP.
Hu, D.; Nie, F.; and Li, X. 2019. Deep multimodal clustering
for unsupervised audiovisual learning. In CVPR.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. In ICLR.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2017. Im-
agenet classification with deep convolutional neural net-
works. Communications of the ACM.
Lin, Y.-B.; Li, Y.-J.; and Wang, Y.-C. F. 2019. Dual-modality
seq2seq network for audio-visual event localization. In
ICASSP.
Lin, Y.-B.; and Wang, Y.-C. F. 2020. Audiovisual Trans-
former with Instance Attention for Audio-Visual Event Lo-
calization. In ACCV.
Loshchilov, I.; and Hutter, F. 2017. Sgdr: Stochastic gradient
descent with warm restarts. In ICLR.
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