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Abstract
Spiking neural networks (SNNs) have manifested remarkable
advantages in power consumption and event-driven property
during the inference process. To take full advantage of low
power consumption and improve the efficiency of these mod-
els further, the pruning methods have been explored to find
sparse SNNs without redundancy connections after training.
However, parameter redundancy still hinders the efficiency
of SNNs during training. In the human brain, the rewiring
process of neural networks is highly dynamic, while synap-
tic connections maintain relatively sparse during brain de-
velopment. Inspired by this, here we propose an efficient
evolutionary structure learning (ESL) framework for SNNs,
named ESL-SNNs, to implement the sparse SNN training
from scratch. The pruning and regeneration of synaptic con-
nections in SNNs evolve dynamically during learning, yet
keep the structural sparsity at a certain level. As a result, the
ESL-SNNs can search for optimal sparse connectivity by ex-
ploring all possible parameters across time. Our experiments
show that the proposed ESL-SNNs framework is able to learn
SNNs with sparse structures effectively while reducing the
limited accuracy. The ESL-SNNs achieve merely 0.28% ac-
curacy loss with 10% connection density on the DVS-Cifar10
dataset. Our work presents a brand-new approach for sparse
training of SNNs from scratch with biologically plausible
evolutionary mechanisms, closing the gap in the expressibil-
ity between sparse training and dense training. Hence, it has
great potential for SNN lightweight training and inference
with low power consumption and small memory usage.

Introduction
Cognitive functions of the brain stem from the complex neu-
ral networks composed of billions of neurons and trillions
of synaptic connections between neurons. Synaptic connec-
tions form the physical basis for information communication
within the brain. During the brain developmental process,
synaptic connections rewire through the structural plasticity
mechanism by forming new synapses and eliminating ex-
isting synapses (De Vivo et al. 2017; Barnes and Finnerty
2010; Bennett, Kirby, and Finnerty 2018). Meanwhile, the
rewiring process promotes the sparsity of synaptic connec-
tions and further facilitates the low-power consumption of
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neural systems of the brain. Inspired by the information pro-
cessing and learning mechanism of the brain, Spiking neu-
ral networks (SNNs) have attracted increasing attention due
to their highly biological plausibility and energy efficiency
on neuromorphic chips. However, lacking structural plas-
ticity makes SNNs training and inference suffer the bot-
tleneck similar to traditional artificial neural networks, i.e.,
high power consumption and big memory usage due to pa-
rameter redundancy (Han et al. 2015).

Recently, some studies focus on learning the sparse struc-
ture of SNNs. To optimize network structure and connection
weights, the synaptic sampling method is utilized by consid-
ering the spine motility of SNNs as Bayesian learning (Kap-
pel et al. 2015). Deep rewiring (Deep R) pruning algorithm
(Bellec et al. 2018) is proposed and applied on SpiNNaker
2 prototype chips (Liu et al. 2018). Gradient rewiring (Grad
R) is proposed for connection learning (Chen et al. 2021),
where the gradient is redefined to a new synaptic parameter
to allow the connection competition between growing and
pruning. The above studies have revealed structure refining
capability in SNNs and indicated the high parameter redun-
dancy in deep SNNs. (Chen et al. 2022) facilitates weight
optimization for pruning by modeling weight states, which
employs the weights reparameterization method to find the
final optimized sparse structure. However, these models still
could not implement stable sparse learning during the pro-
longed training process. The stable sparse learning empha-
sizes that the topology sparsity of SNNs is pursued starting
with the network design phase, which leads to the substan-
tial reduction in connections and, in turn, to memory and
computation efficiency (Mocanu et al. 2018).

This paper implements the sparse training of SNNs from
scratch by a sparse structure learning method inspired by bi-
ological neuronal networks. The proposed ESL-SNNs not
only employ the sparse structure during the inference pro-
cess but also can be trained with the sparse structure, in
which synaptic connections are pruned or regenerated dy-
namically during the training process (Figure 1). The ESL-
SNNs framework makes a step to close the gap between
sparse training and dense training and tries to improve
the expressibility of sparse training by the dynamic pa-
rameter exploration during the training process inspired by
the rewiring mechanism in the brain, instead of inheriting
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Figure 1: The evolution process of structure learning for ESL-SNNs. (a) The sparse SNNs are initialized by Erdös–Rényi ran-
dom graph. Hence, each synaptic connection has a fixed probability of being present or absent, independent of other synaptic
connections. (b) During the training process, the connection density maintains at a certain level to enable sparse training. Synap-
tic weights update in each iteration by the global learning rule, while the synaptic connection pruning and growth procedures
proceed every Titer according to the pruning and growth rule, respectively. (c) The learned sparse structure is generated after
the training process.

weights from the dense and pre-trained model. The contri-
butions in this paper are summarized as follows:

• The sparse structure learning from scratch of SNNs is
emphasized to reduce energy consumption and memory
usage during both the training and inference processes.
Significantly, the biologically plausible structure learn-
ing framework of ESL-SNNs is proposed to implement
genuine sparse training, and it adapts to different kinds
of SNNs architectures.

• The proposed structure learning of SNNs can prune and
regenerate synaptic connections dynamically during the
training process, inspired by the rewiring mechanism in
the brain. The connection rewiring in the ESL-SNNs pro-
motes its sparse structure learning capability towards dif-
ferent density levels by exploring all possible parameters
across time.

• The performance of the proposed sparse learning frame-
work is evaluated in the MNIST, Cifar10, Cifar100, and
Cifar10-DVS datasets. The experiments show that our
proposed structure learning method enables to reduce
network parameters efficiently, which facilitates the low
power consumption of SNNs during both the training and
inference process.

Related Work
Shallow Structures of SNNs. The early SNNs models with
the shallow and memory-saving structure are suitable for
rapid data processing when facing a relatively simple prob-
lem. For instance, the single-layer Tempotron model ma-
nipulates the weight updates according to whether the out-
put neuron fires a spike or not (Gütig and Sompolinsky
2006). Without considering the concrete firing time of out-
put neurons, the Tempotron model could be trained effi-

ciently to recognize different categories of human gestures
collected by the Dynamic vision sensor (DVS) at the mil-
lisecond level. However, the Tempotron could only mem-
orize a certain number of spatio-temporal patterns, which
are about three times of the network’s synapses. To pro-
cess and memorize more spatio-temporal patterns, Precise-
spike-driven (PSD) synaptic plasticity method takes advan-
tage of the concrete spike timing and employs the error be-
tween the actual output spike train and the target spike train
to control weight updates (Yu et al. 2013). The positive er-
rors would trigger long-term potentiation, while the negative
errors would contribute to short-term depression. However,
these SNNs with relatively shallow structures fail to catch
up with the advanced performance of Deep neural networks
(DNNs) in complex problems with huge data, such as image
recognition and natural language process applications.

Deep Structures of SNNs. Recently, SNNs models with
complex and deep structures have been studied to pursue
high performance. Due to the non-differential property of
the spike train, deep SNNs are hard to be trained directly
with Backpropagation (BP) like DNNs (Ding et al. 2021;
Xu et al. 2021). One of the most commonly used methods
is the surrogate gradient, which computes the approximate
value gradient by replacing the discrete spike firing process
with the given continuous activation function. By the ap-
proximated derivative for spike activity with the surrogate
gradient, the Spatio-temporal backpropagation (STBP) al-
gorithm combines the layer-by-layer spatial domain and the
timing-dependent temporal domain to improve the training
efficiency of deep SNNs (Wu et al. 2018). In addition, the lo-
cal learning rule, such as the Spike-Timing-Dependent Plas-
ticity, which portrays the weight updating between presy-
naptic and postsynaptic neurons by their chronological rela-
tionship of firing times, could also be used to train the deep
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SNNs in a layer-wise manner. Lee et al. propose a two-phase
training methodology, which first trains convolutional ker-
nels in an unsupervised layer-specific way, then fine-tunes
synaptic weights with spike-based supervised gradient de-
scent backpropagation (Lee et al. 2018). This kind of un-
supervised local learning solution could help better initial-
ize the parameters in the multi-layer networks prior to su-
pervised optimization and enable convolutional SNNs to be
trainable with such deep structures.

Structure Pruning of SNNs. Although those above deep
SNNs models could achieve high performance comparable
to DNNs by extending network structures, they also are per-
plexed by the enormous trainable parameters like DNNs.
To solve the parameter redundancy problem in deep SNNs,
the most commonly used method is parameter pruning after
training combined with fine-tuning. In this manner, redun-
dant parameters of trained SNNs could be pruned without
losing much performance (Deng et al. 2021a).

The sparse training of the SNN structure is significant
not only because of the strong expressibility comparable to
dense training but also due to its potential in the on-chip
learning capability once realized on the embedded systems
hardware (Nguyen, Veeravalli, and Fong 2021).

Method
This section introduces the sparse structure learning ap-
proach of the proposed ESL-SNNs. The unified frame-
work of ESL-SNNs is first formally introduced to show the
pipeline of the structure learning process. It adapts to differ-
ent kinds of SNNs, such as multi-layer feedforward SNNs
and convolutional SNNs. Then the primary components of
the Erdös–Rényi random initialization and connection plas-
ticity evolution are followed to describe the detailed struc-
ture learning process. After that, the multi-layer feedforward
and convolutional model with the ERL-SNN approach are
introduced, respectively.

The ESL-SNNs Framework
As illustrated in Algorithm 1, the ESL-SNNs circumvent the
parameter redundancy during training by evolving sparse
structure dynamically. First, to formulate the completely
random topology before training starts, the Erdös–Rényi
random graph is employed to initialize the sparse structure
of the assigned layer (Erdős, Rényi et al. 1960). The node in
the Erdös–Rényi random graph would be connected to other
nodes with the same probability. During training, the weak
connections in the sparse layer would be pruned while a cer-
tain number of new connections would be generated accord-
ing to the structure plasticity rule. This evolutionary process
is proceeding per Titer iterations, along with the updating of
the connection mask. Then the saved connection mask keeps
fixed when weight updating, which can constrain the weight
matrix when proceeding with the standard network training
procedure. The above iterative process is repeated until the
end of training.

Initialization by the Erdös–Rényi random graph. Let
Hk be the sparse connected layer in SNNs, which contains
nk neurons [hk

1 , h
k
2 , ..., h

k
nk ]. Those neurons in the Hk layer

are randomly connected to a certain number of neurons in
the Hk−1 layer. The corresponding weight connections ma-
trix between these two layers is W ∈ Rnk−1∗nk

. It would
be initialized as an Erdös–Rényi random graph, in which the
probability of the synaptic connection between the neuron
hk
i in layer Hk and neuron hk−1

j in layer Hk−1 is defined
as:

p(wij) =
ϵ(nk + nk−1)

nk ∗ nk−1
, (1)

where the factor of ϵ controls the sparsity level of neural
connections.

Through the Erdös–Rényi graph initialization, the ran-
domly connected topology of SNNs is applied to the stan-
dard training process. However, this random initialization
could not guarantee the fast convergence of the defined
sparse SNNs towards the given training dataset. Hence, the
evolutionary rule should be employed to promote the struc-
ture optimization dynamically towards the training dataset
during training.

Sparse structure evolutionary rule. Different evolution-
ary rules could be designed to rewire synaptic connections
during training (Such et al. 2017; Chen et al. 2021). To
avoid introducing extra parameters to increase memory us-
age, here, the simple but efficient sparse structure evolution-
ary rule is employed for effective and fast training. There
are two steps for connection evolution, including connection
pruning and growth. Following the pruning rule in (Mocanu
et al. 2018) and the simple magnitude-based pruning rule,
the fraction of α weights that are most close to 0 should be
removed. To ensure that the pruned network evolves to fit
the data, the same fraction of new connections would be re-
generated according to the growth rule. Therefore, the con-
nectivity sparsity is stable, and the memory usage maintains
at a similar level. Moreover, to ensure the sparse SNNs take
full advantage of the information expression capacity of the
original large networks, all the connections should be acti-
vated during training. Hence, the growing rule would make
the connections not activated for a long time to grow and be
activated.

Different growing methods are implemented in the sparse
structure rewiring procedure of SNNs. The gradient-based
growth rule forms new synaptic connections by selecting the
pruned connections with the largest gradient obtained from
the instantaneous weight gradient information in (Evci et al.
2020; Dettmers and Zettlemoyer 2019). The weight value of
the regenerated synapse connection is initialized to be zero.
The cosine annealing is employed to decay the proportion of
updated connections each time.

fdecay(t;α, Tend) =
α

2
(1 + cos(

tπ

Tend
)), (2)

where Tend is the final iteration to stop updating the sparse
connectivity. Similarly, the momentum-based growth rule is
to regenerate the synaptic connection according to the mo-
mentum of parameters (Dettmers and Zettlemoyer 2019).
The random unfired growth rules indicate that the newly
generated synaptic connections are controlled randomly and
give priority to unfired synapses at the start of the random

88



Algorithm 1: The training process of structure learning
framework of ESL-SNNs.
Input Data: xi, i = 1, 2, ..., N .
Labels of Input Data:ci, i = 1, 2, ..., N .
Parameters: The proportion of the updating elements in the
mask α. The weight mask: M . The weight matrix: W . The
updating iterations: Titer.

1: for each assigned sparse layer of the SNNs do
2: Initialize the sparse connected layer as the

Erdös–Rényi topology defined in Equation. 1;
3: end for
4: Initialize training parameters;
5: for each training iterations i do
6: Perform standard training procedure;
7: Perform weights updates;
8: if i % Titer == 0: then
9: for each assigned sparse layer of SNNs do

10: (1) Remove a fraction α of synaptic connections
by pruning rule.

11: (2) Regenerate a fraction α of synaptic connec-
tions by growing rule.

12: (3) Update the weight matrix of W by element-
wise production with weight mask M :

13: W = M ⊙ W.
14: end for
15: end if
16: end for
17: return The sparse SNNs with W .

process. In this way, the evolutionary process tends to find a
more optimized network structure compared with the fixed
sparse structure as the iteration goes on.

Multi-Layer ESL-SNNs
To verify the efficiency of the ESL-SNNs, we first use it to
three-layer feedforward SNNs (Mostafa 2018). The spiking
neuron of non-Leaky integrate-and-fire neurons with expo-
nentially decaying synaptic current kernels is employed as
the fundamental unit in the network. We assume that there
are NI presynaptic neurons in the Layer LI , and the connec-
tion weight between the presynaptic neuron i and the post-
synaptic neuron j is wij . Hence, the membrane potential of
neuron j is given by:

Vj(t) =

NI∑
i=1

Θ(t− ti)wij(1− exp(−(t− ti))), (3)

where ti and Θ denote the concrete firing time of neuron i
and the Heaviside function, respectively. Θ controls whether
the postsynaptic potential contributed by the presynaptic
neuron is transmitted to the postsynaptic neuron or not. Only
when ti < t, the presynaptic neuron i would transmit the
corresponding postsynaptic potential to neuron j; otherwise,
that potential vanishes.

The neuron j emits a spike once the value of Vj crosses
the threshold Vthr = 1. The presynaptic spikes that deter-
mine the time point at which the postsynaptic neuron fires

the first spike are collected and preserved, defined as the ca-
sual set Cj = {i : ti < tj}. Combining with Equation. 3, tj
satisfies:

1 =
∑
i∈Cj

wijmij(1− exp(−(tj − ti))). (4)

Next, the spike times tj is transformed to z-domain by
exp(tj) → zj . Hence the first spike of neuron j in the z-
domain is given by:

zj =

∑
i∈Cj

wijmijzi∑
i∈Cj

wijmij − 1
. (5)

Then through the above formulations, the output of each
neuron, i.e., firing times, could be computed sequentially
over feedforward layers. In the final output layer, the in-
terpreted cross-entropy loss function in the z-domain is
adopted with ensuring that the neuron of the correct class
fires earlier than others. Assuming the spike time of the out-
put neuron is zo in the z-domain, and the target class is g,
the cost of the output layer is given by:

Lz−domain(g, zo) = (−ln
exp(−zo[g])∑
k exp(−zo[k])

), (6)

Then the backward propagation proceeds by the gradient de-
scent rule.

Convolutional ESL-SNNs
The performance of the above three-layer SNNs is limited
due to the shallow structure. Hence, convolutional ESL-
SNNs are explored in this section. The iterative LIF neuron
model expressed with the Euler method is adopted to facili-
tate the information integration and expression in the tempo-
ral dimension (Wu et al. 2019). According to the membrane
potential at t−1 and the integrated presynaptic neuron input
I(t), the membrane potential u(t) of postsynaptic neuron j
is updated as follows:

u(t) = τu(t− 1) + I(t), (7)
where τ denotes the leaky factor and is set to be 0.5. I(t)
is the product of synaptic weight W and spike input x(t).
Similar to the non-LIF model described in the last section,
once u(t) crosses the firing threshold Vth, the neuron fires
a spike, and u(t) is set to be 0. Hence, the neuron output
a(t+ 1) and the membrane updating can be described as:

a(t+ 1) = Θ(u(t+ 1)− Vth), (8)
u(t+ 1) = u(t+ 1)(1− a(t+ 1)), (9)

To preserve enough information for classification, presy-
naptic inputs I(t) are integrated with no decay or firing as
the output signal for each output neuron. The TET loss func-
tion LTET (Deng et al. 2021b) that constrains the output sig-
nal at each time point to approach the target distribution is
given by:

LTET =
1

T

T∑
t=1

LCE [O(t), y], (10)

where T is the simulation time length and LCE is the cross-
entropy loss function. During the training process of each
mask update iteration, the weight matrix W is masked by the
evolutionary mask M . For each element contained in these
two matrices, we have wij = wij ∗mij .
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Figure 2: The parameters and test accuracy of multi-layer
ESL-SNNs under different sparsity levels (controlled by the
factor of ϵ) on the MNIST dataset.

Results
In this section, we perform a number of experiments to
evaluate the effectiveness of the proposed ESL-SNNs. We
first introduce the experiment settings including the datasets
and model parameters. To verify the scalability of the ESL-
SNNs framework over different kinds of SNNs, the evalua-
tions of the ESL-SNNs with three-layer feedforward SNNs
and convolutional SNNs are conducted separately on differ-
ent datasets. The structure sparsity and the structure learning
effectiveness are investigated over these two models.

The Experiment Settings
The architecture of the multi-layer feedforward ESL-SNNs
is set to be 784-800-10. During training, the learning rate ex-
ponentially decays from 0.01 to 0.0001, and the batch size
is set to 100. The gradient normalization is applied to avoid
the large gradient and small denominator following the de-
sign in (Mostafa 2018).

Convolutional ESL-SNNs are built as VGGSNN
(64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-
AP2-512C3-512C3-AP2) and ResNet19 on DVS-Cifar10,
and two Cifar datasets, following the structure in (Deng
et al. 2021b). The simulation time length is set to be 2 and
4 to speed up the training speed for Cifar10 and Cifar100.
The Titer is set to be 1000 to control the updating frequency
of the weight mask. The learning rate and batch size are
0.001 and 64, respectively. The test accuracy is obtained by
the model that is saved according to the top-1 accuracy of
the validation set within 300 training epochs. During the
training process, the validation set is taken 10% samples
randomly from the training set. The average test accuracy
over two runs under different random seeds and is reported
as the final test accuracy.

Evaluation of Multi-Layer ESL-SNNs
The performance of multi-layer ESL-SNNs is explored un-
der different sparsity levels. We adjust the sparsity factor ϵ
in Equation. 1 from 10 to 90 to control the sparsity level in
the Erdös–Rényi graph initialization. To reduce the influence

of the final classification layer, the structure sparsity is only
conducted in the connections between the encoding and hid-
den layers. The model parameters and energy consumption
are estimated to show the efficiency of ESL-SNNs.

The performance under different sparsity levels. The
number of parameters in the sparse layer and the test ac-
curacy are analyzed under different sparse levels. As illus-
trated in Figure 2, the heights of the bars denote the number
of connections in the sparse layer, and the points on the line
chart indicate the test accuracy of multi-layer ESL-SNNs
on MNIST. Firstly, with a smaller ϵ, the connections in the
sparse layer are sparser. It is consistent with the theory in
Equation. 1, the connection probability increases as the en-
largement of ϵ, hence more connections are preserved. Sec-
ondly, when we tune the factor of ϵ from 10 to 60, the test
accuracy improves as the number of connections increases.
Since the valuable connections make the network more ro-
bust than the fully connected structure. However, when we
continue increasing connections, there appears oscillation
with a slow recovery when the ϵ is from 80 to 90. That is
because those useless connections may introduce noise to
the model.

Analysis of accuracy and energy efficiency. The per-
formance of multi-layer ESL-SNNs is compared with the
original SNNs under the same settings (Mostafa 2018). As
shown in Table 1, multi-layer ESL-SNNs achieve compet-
itive test accuracy with about six times fewer connections.
With the total connection amount of 103K, the test accuracy
only drops down 0.12% compared with the whole fully con-
nected networks with 635K connections. Besides, following
the total parameter of 103K in the sparse ESL-SNNs, we
compare the accuracy of non-sparse fully-connected SNNs
with the same parameter amount. That no pruning model
achieves about 92% accuracy, quite lower than the 96.58%
of our method. The result further indicates the effectiveness
of the proposed approach. Notably, the above model of our
method employs three-layer SNNs in which each neuron is
permitted to fire only once. That direct trained single-spike
SNNs are quite different from the multi-spike convolutional
ESL-SNNs trained by the surrogate gradient method used
on Cifar10-DVS. We further evaluate the performance of
ESL-SNNs with multi-spike model on MNIST. Our method
achieves an accuracy of 97.69% under 30% connection den-
sity, with no more than 1% accuracy loss. We adopt these
two different kinds of SNNs to illustrate the scalability and
generality of our method. Therefore, the proposed multi-
layer ESL-SNNs have the potential to learn the sparse struc-
ture with slight accuracy degradation.

In addition, the energy consumption on GPU and neu-
romorphic chip are estimated to indicate that the ESL-
SNNs can further improve the energy efficiency by virtue of
sparse structure. The powers of FLOPS on GPU and SOPS
on the neuromorphic chip are obtained from Titan V100
and TrueNorth, respectively. The results of Table 1 suggest
that the proposed ESL-SNNs implemented on neuromorphic
hardware platform have about one order of magnitude higher
energy efficiency than on GPU platform.
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Model Test Accuracy
(%)

Accuracy Loss
(%)

Connection
Density FLOPS Energy On GPU

(J)
Energy On TrueNorth

(J)
SNNs 96.7 - 1.0 635K 1.13E-05 7.95E-06

ESL-SNNs 96.58 -0.12 0.16 103K 1.84E-06 1.29E-06

Table 1: The performance comparison between multi-layer ESL-SNNs and SNNs under the same settings on the MNIST
dataset.
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Figure 3: (a) The test accuracy of convolutional ESL-SNNs with the random unfired growth and SET pruning rule under
different sparsity levels on Cifar10-DVS. The density in the horizontal axis indicates the percentage of valid connections to
total connections. (b) The connection density evolvement of different layers in the sparse VGGSNN.

Evaluation of Convolutional ESL-SNNs
Considering the limited performance of multi-layer ESL-
SNNs, convolutional ESL-SNNs are employed to explore
the potential of ESL-SNNs with the more complex network
structure on the larger dataset.

The performance under different sparsity levels. As il-
lustrated in Figure 3(a), the results show that the test accu-
racies of convolutional ESL-SNNs occur an upward trend
along with oscillation as the density of connections en-
hances. When the connection density distributes from 0.3
to 0.9, the test accuracy reduces from 1.18% to 3.38%
compared with the accuracy of 78.58% achieved by the
model with all connections. Meanwhile, the oscillation phe-
nomenon appears similar to Figure 2. This phenomenon
suggests that a small number of redundant connections im-
proves the robustness of the network’s structure, such as in
the situation where the density is 0.3. However, the super-
fluous redundant connection would seriously drop the accu-
racy, such as when the density is 0.7 or 0.95.

The parameters exploring over the training process.
The connection density evolvement of different layers in the
sparse convolutional ESL-SNNs during training is investi-
gated. As shown in Figure 3(b), the connection densities of
those layers occur the oscillation phenomenon within 200
epochs for the ESL-SNNs model is evolving to find the op-
timal structure during training. Meanwhile, this connection
evolvement tends to be stable after 200 epochs. Moreover,
the density level in each layer is beneficial to be propor-
tional to its synaptic connection number. For instance, in
the convolutional layer with 128 3*3 kernels, ESL-SNNs are
prone to make that layer denser with 47% connections, while

tending to make the layer with 512 3*3 kernels sparser with
only 8% connections. This phenomenon is consistent with
(Dettmers and Zettlemoyer 2019). That is reasonable for the
dense layer with more parameters contains more redundancy
information compared to the small layer with few parame-
ters, which suggests more parameter space to cut. Hence,
the results indicate that the network connections can dynam-
ically prune or regenerate as the training process proceeds.

The influence of different evolutionary methods, contain-
ing growth rules and prune rules in ESL-SNN, are analyzed
to show the expressibility of sparse training under three net-
work structure density levels from 1.0 to 0.01. As in Figure
4, the ESL-SNNs framework with the group of SET prune
rule and momentum growth rule is the most stable model
under different densities, which has only 0.28% and 14.08%
accuracy loss when the density is 0.1 and 0.01, respectively.
It suggests that momentum growth can guide ESL-SNNs to
find the most promising synaptic connections during sparse
structure updating. However, the gradient-based growth rule
promotes the sparse structure to tend to be similar structures,
which in turn limits the expressibility of the SNN model.
Hence, the ESL-SNNs improve the performance of sparse
training mainly due to the parameter exploration across the
training process.

Comparison with other state-of-the-art models. The
performance comparison of the convolutional ESL-SNNs
with other state-of-the-art models is investigated to explore
the effectiveness on Cifar10, Cifar100 and DVS-Cifar10.
As illustrated in Table 2, ESL-SNNs can achieve com-
petitive performance under quite small connection density
with sparse training from scratch. Compared with the TET
method with ResNet19 architecture (Deng et al. 2021b),
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Figure 4: The influence of different evolutionary methods in ESL-SNN. The accuracies on the DVS-Cifar10 dataset are recorded
for ESL-SNNs with three different connection densities of 1.0, 0.1, and 0.01. (a) The accuracy comparison between different
growth rules with the ’magnitude’ pruning rule in ESL-SNNs. (b) The accuracy comparison between different growth rules
with the ’SET’ pruning rule in ESL-SNNs.

Dataset Methods Network
Architecture

Test Accuracy
(%)

Accuracy
Loss (%)

Connection
Density

ADMM-based (Deng et al. 2021a) 7Conv,2FC 89.53 -3.85 0.1
Cifar10 Grad R (Chen et al. 2021) 6Conv,2FC 92.84 -0.34 0.12

TET (Deng et al. 2021b) ResNet-19 92.79 - -
ESL-SNNs Sparse ResNet-19 91.09 -1.7 0.5

Cifar100 TET (Deng et al. 2021b) ResNet-19 74.47 - -
ESL-SNNs Sparse ResNet-19 73.48 -0.99 0.5

Streaming Rollout (Kugele et al. 2020) DenseNet 66.8 - -
DVS-Cifar10 Conv3D (Wu et al. 2021) LIAF-Net 71.7 - -

TET (Deng et al. 2021b) VGGSNN 78.58 - -
ESL-SNNs Sparse VGGSNN 78.3 -0.28 0.1

Table 2: The performance comparison between convolutional ESL-SNNs and other SNNs models.

the ESL-SNNs reach an accuracy of 91.09% and 73.48%
when connection density is constrained to 50% with the pa-
rameter size of about 6.28M on Cifar10 and Cifar100, re-
spectively. With smaller parameter size compared with the
original non-sparse SNNs, the sparse SNNs would consume
less energy on computation, memory access, and addressing
(Lemaire et al. 2022). Although the accuracy of ESL-SNNs
falls behind the Grad R model, the advantages of ESL-SNNs
over the Grad R model on power saving and memory usage
during the whole training procedure should be emphasized.
Moreover, our ESL-SNNs achieve competitive test accuracy
with fewer connections among those state-of-the-art models
on DVS-Cifar10. With similar or even fewer connections,
ESL-SNNs have a test accuracy of 78.3%, which is higher
than the DenseNet with streaming rollout method and the
LIAF-Net with the Conv3D components (Wu et al. 2021).
There is only 0.28% (<1%) accuracy loss for our sparse
training with 10% synaptic connections for ESL-SNNs.
These results suggest the stability of the structure learning of
ESL-SNNs on convolutional SNNs with different structures.
Moreover, it is worth noting that, besides achieving com-
parable accuracy with sparse structure, the ESL-SNNs have
another significant advantage that they could implement the
sparse training from scratch, which could reduce memory
usage and power consumption and facilitate fast and effec-

tive training of large SNNs models.

Conclusion
The deep structure enables SNNs to catch up with the per-
formance of DNNs in many application scenarios. How-
ever, these deep SNNs suffer from parameter redundancy
and much memory usage, making them difficult to exploit
low power consumption strengths, especially in the train-
ing process. This paper proposes a unified framework of
ESL-SNNs to facilitate the sparse training from scratch for
SNNs models. The framework of ESL-SNNs can be used
for different types of SNNs, such as multi-layer and con-
volutional SNNs. It realizes the biologically plausible struc-
ture learning procedure inspired by the evolutionary connec-
tion rewiring mechanism in the brain. The experiment re-
sults show that the proposed ESL-SNNs can effectively im-
plement sparse structure learning and achieve competitive
accuracy among other SNNs models with fewer parameters.
Furthermore, the sparse training of ESL-SNNs improves the
expressibility of SNNs with sparse structure, which has the
potential for low power consumption, memory usage, and
on-chip learning capability when implemented on the em-
bedded hardware.
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Erdős, P.; Rényi, A.; et al. 1960. On the Evolution of Ran-
dom Graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1): 17–60.
Evci, U.; Gale, T.; Menick, J.; Castro, P. S.; and Elsen, E.
2020. Rigging the Lottery: Making All Tickets Winners. In
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119, 2943–2952. PMLR.
Gütig, R.; and Sompolinsky, H. 2006. The Tempotron: a
Neuron that Learns Spike Timing-Based Decisions. Nature
Neuroscience, 9(3): 420–428.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning Both
Weights and Connections for Efficient Neural Network. Ad-
vances in neural information processing systems, 28.

Kappel, D.; Habenschuss, S.; Legenstein, R.; and Maass, W.
2015. Network Plasticity as Bayesian Inference. PLoS com-
putational biology, 11(11): e1004485.
Kugele, A.; Pfeil, T.; Pfeiffer, M.; and Chicca, E. 2020. Effi-
cient Processing of Spatio-temporal Data Streams with Spik-
ing Neural Networks. Frontiers in neuroscience, 14: 439.
Lee, C.; Panda, P.; Srinivasan, G.; and Roy, K. 2018. Train-
ing Deep Spiking Convolutional Neural Networks With
STDP-Based Unsupervised Pre-training Followed by Super-
vised Fine-Tuning. Frontiers in Neuroscience, 12.
Lemaire, E.; Cordone, L.; Castagnetti, A.; Novac, P.-E.;
Courtois, J.; and Miramond, B. 2022. An Analytical Estima-
tion of Spiking Neural Networks Energy Efficiency. arXiv
preprint arXiv:2210.13107.
Liu, C.; Bellec, G.; Vogginger, B.; Kappel, D.; Partzsch, J.;
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