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Abstract

Psychometric functions typically characterize binary sensory
decisions along a single stimulus dimension. However, real-
life sensory tasks vary along a greater variety of dimensions
(e.g. color, contrast and luminance for visual stimuli). Ap-
proaches to characterizing high-dimensional sensory spaces
either require strong parametric assumptions about these ad-
ditional contextual dimensions, or fail to leverage known
properties of classical psychometric curves. We overcome
both limitations by introducing a semi-parametric model of
sensory discrimination that applies traditional psychophys-
ical models along a stimulus intensity dimension, but puts
Gaussian process (GP) priors on the parameters of these
models with respect to the remaining dimensions. By com-
bining the flexiblity of the GP with the deep literature
on parametric psychophysics, our semi-parametric models
achieve good performance with much less data than base-
lines on both synthetic and real-world high-dimensional psy-
chophysics datasets. We additionally show strong perfor-
mance in a Bayesian active learning setting, and present
a novel active learning paradigm for the semi-parametric
model.

Introduction

Understanding the mappings from physical stimuli to men-
tal percepts is an important goal of perceptual neuroscience
and psychophysics. A popular experimental technique is to
measure behavioral responses to varying levels of a single
stimulus feature, such as contrast of an image or volume of
a sound, and generate a behavioral response curve. The av-
erage response probabilities are then often fit to a functional
form that is sigmoidal in shape, for example using the probit,
logit, or Weibull functions (Strasburger 2001). These para-
metric models tend to have specific interpretable parameters
that are of use to practitioners, such as thresholds and slopes
(Brand and Kollmeier 2002).

Improving the accuracy and sample efficiency of param-
eter estimation for these psychometric functions remains an
area of active research (Schiitt et al. 2016; Shen and Richards
2012). However, much of the existing work focuses on a sin-
gle stimulus feature, ignoring the fact that stimuli continu-
ously vary in important dimensions other than intensity, such
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as color or pitch. To understand sensory sensitivity in these
settings, univariate parameterized models require densely
sampling the entire stimulus feature domain; i.e. creating
a single psychometric function for each value of any non-
intensity stimulus feature.

Recent work overcomes these limitations and extends the
classical densely-sampled univariate psychophysical curve
in terms of both modeling and experimental design. On the
modeling front, recent work captures correlations in psy-
chometric functions across stimulus dimensions, either us-
ing prespecified multidimensional parametric models (Wat-
son 2017), or using nonparametric Gaussian processes (GPs)
(Gardner et al. 2015a,b; Owen et al. 2021). For experimen-
tal design, dense sampling of the entire multidimensional
input space has been replaced with efficient active learn-
ing schemes (Houlsby et al. 2011; Settles 2009; Gardner
et al. 2015a,b; Watson 2017). Together, flexible psychomet-
ric models and multidimensional adaptive sampling methods
have led to improvements in estimating psychometric tun-
ing in multivariate stimulus settings (Gardner et al. 2015a;
Owen et al. 2021; Letham et al. 2022).

However, existing high-dimensional psychometric mod-
els suffer from some limitations. The fully parametric ap-
proach, while interpretable, is constrained in practice, re-
quiring an a priori model for all dimensions, with parameters
learned using an inefficient grid-search (Watson 2017). On
the other hand, the more flexible, nonparametric models that
leverage the power of GPs are not regularized to have sensi-
ble tuning properties, such as positive monotonicity in stim-
ulus intensity. Moreover, they do not afford an experimenter
with interpretable parameters like those given in the classical
univariate context (Gardner et al. 2015b; Owen et al. 2021).

To address these limitations, we propose a semi-
parametric model of the psychometric field well-suited for
high-dimensional stimuli. Over the intensity dimension, our
psychometric model is governed by a characteristic function
that has a sigmoidal shape with identifiable slope and off-
set parameters. Each of these parameters, however, is gov-
erned by a GP across context (non-intensity) stimulus di-
mensions, admitting a flexible characterization of the psy-
chometric field in a high-dimensional continuous stimulus
space. While the posterior of our model is intractable, we de-
velop two approximations, each with different benefits. The
first, the full semi-parametric model, uses a semi-parametric



variational posterior that factorizes over the slope and off-
set parameters of the sigmoid to learn the model. For the
second, the MVN approximate model, we derive a new ap-
proximation for the elementwise product of the multivari-
ate normal (MVN) distributions of the slope and offset GPs
in our model. This approximation implicitly defines a new,
single GP kernel specific to the psychophysics setting, and
lets us perform inference with fewer variational parameters,
maintaining a form that is adaptable to standard GP infer-
ence methods and active learning machinery. We evaluate
our model on simulated and real data in up to 8 dimensions,
and find that this semi-parametric approach not only pro-
vides interpretable results in high-dimensional stimulus set-
tings, but also offers a faster and more accurate estimation
procedure for the psychometric field.

Given that Bayesian active learning also plays an impor-
tant role in high dimensional psychophysical tuning estima-
tion (Gardner et al. 2015a; Owen et al. 2021; Letham et al.
2022), we conclude our model evaluation showing semi-
parametric performance under a variety of existing active
learning objectives. We find that our full semi-parametric
model shows strong performance under a variety of these
objectives, and our MVN approximate model allows for
analytic acquisition functions, including recently-developed
look-ahead approaches (Letham et al. 2022). Finally, we in-
troduce a novel threshold-based acquisition function for use
with our full semi-parametric model that shows strong active
learning performance in a high-dimensional experiment.

The Semi-parametric Psychophysical Model

We consider data of the form D = {x,,,y, }_; where y,, €
{0,1} are participant responses and x,, = (z;,,Xs,) de-
scribe stimulus configurations. We separate stimulus context
(s) dimensions from the intensity (¢) dimension. Throughout
the manuscript we only consider 1-dimensional intensity, so
that x;, is a scalar. We assume that intensity predicts re-
sponses according to a standard psychophysical parametric
model of the form p = o (k(x; + ¢)) for some slope k, offset
¢, and sigmoid link o : R — [0, 1] and probability of detec-
tion p. Our framework can be flexibly adapted to incorpo-
rate any sigmoid from the literature, including the probit (as
standard in GP classification), logistic (common elsewhere
in machine learning), Weibull or Gumbell CDF (common
in psychophysics, (Strasburger 2001; May and Solomon
2013)), or other common probability mappings. We can ad-
ditionally modify these sigmoids, for example shifting or
scaling them to manage psychophysics experiments where
participants are asked to discriminate between stimuli, and
the response probability is lower-bounded above 0. Com-
mon experimental paradigms can produce a lower bound re-
sponse probability at 0.5 (for two-alternative decisions) or
0.25 (for four-alternative ‘odd one out’ trials).

We place independent GP priors on the slope and off-
set governed by the context dimensions, which implies
that each of f), = [k(xs,), k(Xsy), .-, k(Xsy)] and £, =
[e(xs,)s¢(Xs,), - - -, (X5, )] is Gaussian distributed:

£ ~ N (m, Zg) , fe ~ N (0,2) ey

where >i,>. are N x N covariance matrices whose
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(n,n')th entry is given by a kernel function s(x,,,Xs,,)
and N is the total number of stimuli sampled. We use the
standard radial basis function (RBF) kernel with indepen-
dent hyperparameters for the slope and offset GP kernels.
Each kernel is governed by its own hyperparameters 6. and
0y, for the offset and slope GPs, respectively. Finally, m is
a positive constant to center the prior distribution of slope
values at some positive number (we use m = 2 for all exper-
iments; see appendix for additional detail and evaluation).

In this formulation, we can write the joint distribution of
latent stimulus values as:

Z:fko(fc+xi), (2)

where o denotes the Hadamard (elementwise) product and
X; = (Tiy, iy, - - - Tiy)- The likelihood of a set of observa-
tions is given by a set of independent Bernoulli distributions
with probabilities equal to z taken through the sigmoid link.
To make sense of this mapping, consider a joint draw of N
slopes f, € RY and intercepts f. € R™. Suppressing the
dependence of k and c on x, the resultant transformed col-
lection of variables has each z,, = k,c, + kn;,, produc-
ingz = [k:101 + k‘ll’il, koco + kgxi2, .o kyeny + k‘inN].
Note that this is just a multivariate extension of the standard
k(x + ¢) input into the link, written jointly to accommodate
the GP prior on k£ and c. A graphical depiction of the semi-
parametric model is given in Fig. 1A.

Fig. 1B shows prior samples of the probability of de-
tection, p, plotted along the intensity dimension, for three
different models. The first is an unconstrained GP model
(GP-RBF) which treats all dimensions equally (Owen et al.
2021), and the second has an additive GP kernel that is lin-
ear in the intensity dimension and RBF in context dimen-
sions (GP-linear) (Gardner et al. 2015b). The third (Fig. 1B,
Right) is our proposed semi-parametric model. These prob-
ability samples for each model are drawn from the prior and
illustrate the hypothesis space of the considered psychome-
tric functions. The GP-RBF model allows for tuning that is
not sigmoidal (or even monotonic), and the GP-linear model
restricts the shape of the sigmoid while still permitting neg-
ative slopes. In contrast, our semi-parametric model shows
classical psychometric curves along the intensity dimension
and is free to vary independently in its offset ¢ and slope k.

Our semi-parametric model is easily adaptable to use any
link function with interpretable slope and intercept values, as
well as scaled and/or shifted variants thereof. In the present
contribution we consider the logistic and Probit mapping, as
well as the so-called Weibull function which is the cdf of
a left Gumbel distribution in log-space (Strasburger 2001;
May and Solomon 2013). We also consider a ‘floor link’
whose minimum is set to the known lower bound of the re-
sponse probability in the given task. For our results on simu-
lated functions, we choose the link that performed best with
quasi-random sampling for each model'. We show results
with all links on human psychophysical data and include re-
sults from all links and floors in the appendix.

'This is the Gumbel-link with floor for the semi-parametric
model for all except for GlobalMI acquisition, which requires a
probit link with a floor of 0. For all other models this is the Probit
link with a floor of 0.
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Figure 1: A. Graphical model of our semi-parametric approach. B. Samples from the prior along the intensity dimension for
three psychophysical models. The GP-RBF model’s prior contains unrealistic psychometric functions that are not monotonic.
The previously published GP-linear model overly restricts the shape of the sigmoid due to the linear kernel in intensity, while
admitting functions with negative slopes. Our new model’s prior, here with a Gumbel link, contains a more diverse set of
realistic psychometric functions than either baseline variant.

Inference for the Semi-parametric
Psychophysical Model

The marginal likelihood for our model is:

P(Y‘Xsaxh eka 90) =

[ ool B B X 00X Ot
where X is a concatenation of (X5 1,Xs2...Xs n) and y is
a concatenation of the (y1, ya . . . y» ) observations. This like-
lihood is intractable, but we provide two distinct strategies
for approximating it: one by factorized variational inference
(VI), and the other by approximating the model itself, which
lets us apply standard VI methods for GPs.

Factorized Variational Inference for the
Semi-parametric Model

We define MVN variational distributions ¢ and g, for the
slope and offset to perform VI. We can write an evidence
lower bound (ELBO) as follows:

log p(y [Xs,x;) >
L= Eq (£).q. ) logp(y | i, fe, x;)]
— KL[gx (fx) [lp(fx | Xs)]
— KL[ge(fe)[Ip(fe | X5)],

where the two KL terms between MVNs are available in
closed form. For the remaining term, since the slope and
offset GPs are combined into a scalar latent term per obser-
vation, we can compute the expectation by one-dimensional
Gauss-Hermite quadrature. Gradients of all terms are avail-
able by automatic differentiation, which lets us optimize this
objective by standard methods (Hensman, Matthews, and
Ghahramani 2015; Balandat et al. 2020).

Approximation to the Semi-parametric Model

While the inference approach above is tractable, its key dis-
advantage is that the prior on the latent z is no longer a
Gaussian Process prior. This limits our ability to use stan-
dard black box GP variational inference for this model, as
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well as other tooling that relies on an MVN prior. Further-
more, since we have MVN posteriors on both slope and off-
set, the variational approximation has twice as many param-
eters, which potentially slows down inference (of interest
for human-in-the-loop applications). To address these dis-
advantages, we derive an approximation to our model that
avoids the need to use a variational approximation for both
the slope and offset GP function values. Specifically, we di-
rectly approximate the latent function z with an MVN using
moment-matching.

We are interested in a MVN approximation to the latent
function:

Z:FkO(FC—f—Xi).

Here, F}, F, are random variables distributed according to
the Gaussians in (1), and Z is now also a random variable
(in contrast to f,f., z, indicating realizations of the random
variables). For convenience of derivation, let F,, = F, +
x;. The GP prior on F, implies that F,, ~ N (x;,%.). We
can compute the mean of Z in terms of the slope and offset
distributions:

E[Z] = E[F} o F.] = mx;.
We can similarly compute the covariance of the latent Z in
terms of the slope and offset. For convenience, denote Yj, =
Fr, —mandY, = F. — x;. We have that
Z =Y +m)o (Ye+x;)

=mx; + mYe+x;0Y, + Y0, “4)
with Y, ~ N(0,X.) and Yj, ~ A (0, X). The covariance of
the cross-term can be computed as

COV[Yk (@] }/‘C]ld = E[(Yk [¢] }/‘c)z(Yk o )fc)j] (5)
=E[(Yk,iYe,i) Yk, Ye )
=E[Y3,: Ya;|E[Ye,Ye ;] 6)

= (2r)ii(Be)ig,
where (5) uses that Y}, and Y, have 0 mean, and (6) uses their
independence. Thus, Cov[Y}, o Y] = ¥j o ...
Applying this result to (4) we can compute the covariance
for the latent function:
Cov[Z] = m?S, + x;x) 0By + X0 5y,

=m?Y, + (B + x:x7) 0 5.



The primary benefit of this approximation is that rather
than learn the full semi-parametric latent function Z, which
includes parameterizing slopes, fi, and offsets, ., we simply
infer values for the moment-matched approximate latent

Z ~ N(mx;,m*Se + (Be + xx ) o %), (7)

In this formulation, the latent function is effectively a GP
with a novel kernel function specific to the psychophysics
problem, and we can thus apply standard methods for model
fitting, as well as for using the model in active learning as
we will see below.

Approximate Normality of the Latent Function The ac-
curacy of the moment-matched MVN in (7) will depend on
how close the true posterior for the latent function Z is to be-
ing normally distributed. We show here the conditions under
which Z is Gaussian (Pinelis 2018).

Let ¥ = m?Y, + xixZT o Y. Then,

STV2Z =W+ 27V2(Y, 0 Yy,
where W ~ N(0, 1). Note that

2
B[22 (Vo Yo) |2 <[22 E i o Yo

= HZ_1|| tr (g o Xe) .

Thus, as | S| tr (3% 0 X¢) — 0, Z is Gaussian with mean
0 and covariance Y. This means that when the variances of
the slope and offset values, £ and c, are low, the Hadamard
product of the GPs is approximately Gaussian, and there will
be little loss to using the Hadamard approximation model.
Empirically, we later show that the Hadamard model incurs a
modest performance loss relative to the full semi-parametric
model, but (as shown in the appendix) the Hadamard model
is much less able to benefit from psychophysics-specific
modifications to the link function.
ere about cholesky and specifics of inference....

Active Learning with Semi-parametric GPs

Our semi-parametric model grants additional benefits for
Bayesian active learning. Active learning methods define an
acquisition function that prescribes the value of sampling a
particular candidate point given the previously observed data
and the current estimate of the model posterior. By optimiz-
ing this acquisition function, the next input (x) is chosen for
sampling. A key goal in psychophysics is the estimation of
psychometric detection thresholds, more formally known as
a level set estimation (LSE) problem, i.e. finding the regions
where the psychometric function is above or below some
pre-determined threshold value r. In the general case of ac-
tive learning for LSE, the location of the threshold is defined
implicitly, and sampling strategies operate on an estimate of
an arbitrary latent function.

With our semi-parametric model, the threshold is
uniquely determined as a function of the context dimensions,
and can be computed directly from the model posterior for
k and c as:

)

xl = ) — c(xs).
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We can use samples from this posterior to compute several
quantities of interest, for example the threshold posterior
variance. In addition to being of interest to practitioners, re-
ducing the posterior variance of the threshold is a natural,
simple objective for active learning. We term it Threshold-
BALV as it applies Bayesian Active Learning by Variance
(Settles 2009) to the threshold posterior.

Results

We showcase the benefits of the semi-parametric model in
a few ways. First, we demonstrate performance on two syn-
thetic psychometric test functions, where we show that our
model can achieve good performance with less data than
previously proposed baselines. Second, we evaluate perfor-
mance on multiple real-world datasets, and show that our
models outperform baselines in terms of predictive perfor-
mance on unseen data. Finally, we demonstrate the com-
patibility of our models with active learning methods, again
showing good performance with far less data than baselines,
as well as competitive behavior of our novel Threshold-
BALV acquisition function. We consider as baselines pre-
vious models used for flexible modeling and active learn-
ing for psychophysics, namely an otherwise-unconstrained
GP-RBF model (Owen et al. 2021), and a GP-linear model
with a linear kernel in the intensity dimension and an RBF
kernel in the remaining dimensions (Schlittenlacher, Turner,
and Moore 2018, 2020; Song, Garnett, and Barbour 2017;
Gardner et al. 2015b).

Two Dimensional Task

Before evaluating the semi-parametric model in a high di-
mensional setting, we first demonstrate performance in a
simple 2-d psychometric test function, previously proposed
in (Owen et al. 2021), and detailed in the appendix. This
function has a monotonic (probit) probability of detection
along an intensity dimension, and smoothly varies as a lin-
ear combination of sines and cosines in a second dimension.

We used a quasi-random Sobol sequence (Sobol’ 1967) to
select stimulus locations x for our 2d test function.

Fig. 2A shows the prediction performance of the semi-
parametric model on this function and Fig. 2C shows better
estimation of the psychometric curve after 500 samples. For
our evaluation metric we use the Brier score (Brier 1950),
computed in expectation over the model’s posterior. We use
the Brier score because it assesses the calibration of the ap-
proximate posterior, and we use the expectation to account
for the quality of posterior uncertainty estimation (we con-
sider other metrics in the appendix). Our proposed model,
with or without the MVN approximation, achieves low Brier
scores much faster than baselines, though all models eventu-
ally achieve very good performance in this relatively simple
test function. We will see next that the benefits are magnified
in higher dimensions.

Eight Dimensional Task

To simulate more a realistic, multidimensional sensory con-
text we test the semi-parametric model using an 8-d psycho-
metric test function previously reported by (Letham et al.
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Figure 2: A. Performance on 2-d example as a function of number of quasi-random samples drawn, for all models. Curves are
averages from 100 replications, with standard errors shaded. B. Same for 8-d test function. C. 2-d function estimation after 500
samples for all models. All models recover the test function with sufficient data. D. Inferred response probabilities in 8-d test
function after 500 observations. Plots in each row have a randomly chosen dimension plotted along the y axis, and the intensity

dimension along the x axis.

2022) and described in the supplement. This function retains
monotonicity in detection probability along the intensity di-
mension in the same way as the 2d function, but detection
probability is a smooth function of stimulus feature inputs
in the other seven dimensions.

For this high dimensional test function, the semi-
parametric model better estimates detection probability p in
fewer samples than competing models, and the approximate
MVN model achieves essentially identical performance as
the full semi-parametric model. Fig 2 B shows the Brier
score for each model for the first 300 samples. To get a sense
of how well the models are actually able to estimate this high
dimensional psychometric test function, we include 4 ran-
dom 2d slices through the 8 dimensional space after training
on 500 random samples (Fig 2 D).

Results on Human Behavioral Data

To emphasize the generality and utility of our model, we
evaluate performance on five participants from two real-
world 6-dimensional datasets. All data are from visual psy-
chophysical tasks. One dataset is a participant in a two-
alternative forced choice (2AFC) task with 3000 trials from
Letham et al. (2022), and the remaining are four partici-
pants performing a 4 alternative forced choice (4AFC) from
Wauerger et al. (2020) whose trial counts range from ~200-
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500 depending on the subject?. In the 2AFC task, the partic-
ipant is presented with an animated circular Gabor patch,
one half of which has been scrambled to resemble white
noise. The scrambled side is selected at random. The stim-
ulus varied along eight dimensions, six of which (contrast,
background luminance, temporal and spatial frequency, size,
and eccentricity) have data published. In the 4AFC task, a
Gabor stimulus was presented in one of four quadrants of a
screen, and participants were asked to select which quadrant
contained the stimulus. This stimulus varied with size, orien-
tation, frequency, and color. We used contrast as the intensity
dimension for both tasks. For additional subject information
and example stimuli, see supplementary materials. We run
15-fold cross-validation, train our model on 80% of the data
and test on 20%, and report cross-validated log-likelihood.
We see across all five subjects that some variant of the semi-
parametric model consistently has superior cross-validated
log-likelihood on held-out trials, regardless of whether we
use the MVN or exact semi-parametric variant. We also note
that no one link function consistently performs best—this
inconsistency across choice of link is one reason the specific

>The former dataset is available at https:/github.com/
facebookresearch/bernoulli_Ise/tree/main/data, and the latter at
https://www.repository.cam.ac.uk/handle/1810/304228.



2AFC 4AFC (subj 1)

4AFC (subj 2) 4AFC (subj 4)

SemiP-MVN Gumbel (ours) A

4AFC (subj 3)

SemiP-MVN Probit (ours) A

SemiP-MVN Logit (ours) A

SemiP-Exact Gumbel (ours) A

SemiP-Exact Probit (ours) q

SemiP-Exact Logit (ours) 4

GP-linear -

GP-RBF

-115 ~105
Log Likelihood

—215.0 = -210.0
Log Likelihood

—64 —62 —60
Log Likelihood

—62 —60
Log Likelihood

—50 -49
Log Likelihood

-51

Figure 3: Mean cross-validated log-likelihood for 15-fold cross validation on an example subject from a 2AFC psychometric
task, and four example subjects in a 4AFC task from (Watson 2017). Gray bars indicate standard error across folds.

parametric form of choice is still an area of active research.
Nonetheless, we highlight that the semi-parametric model
and MVN approximation are consistently strong perform-
ers.

Active Learning

Lastly, we evaluate the semi-parametric model’s estimation
of the 8-d test function using a variety of common Bayesian
active learning schemes, including the BALD acquisition
function based on mutual information (Houlsby et al. 2011;
Gardner et al. 2015a; Owen et al. 2021), the BALV ac-
tive learning scheme based on posterior variance (Settles
2009), and GlobalMI, a global lookahead acquisition func-
tion based on threshold estimation (Letham et al. 2022).

The computation of the GlobalMI aquisition function re-
quires an MVN posterior on the latent function z and a probit
link with a floor of 0, which means it can be applied directly
with GP-RBF and GP-Linear, and to our MVN approxi-
mate model. To use GlobalMI with the full semi-parametric
model, we switch the link to a probit with floor of 0 (from
Gumbel with a floor set to chance), and apply the MVN ap-
proximation we derived above to the variational posteriors
q.(fe) and g (fx). In this setting we can still use the full
semi-parametric model for evaluation. In addition to these
baselines, we include the ThresholdBALV acquisition func-
tion as described earlier for use with the semi-parametric
model.

Fig. 4 shows performance of all models under the con-
sidered active learning schemes. Here, we are not using
the standard Brier score as we did previously, which was
over the full model posterior. Instead are using a Brier
score on the sublevel-set (threshold) posterior, i.e. the Brier
score on estimating the probability of p above and below
a threshold of 0.75. We choose this performance metric as
the ThresholdBALV and GlobalMI acquition functions are
based specifically on threshold estimation. Performance of
these acquisition methods using other metrics are shown in
the supplement. We see that the BALD and BALYV baseline
acquisition functions perform comparatively poorly, and this
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is true irrespective of the model.

However, we see using threshold-based schemes (Glob-
alMI and ThresholdBALV) that the semi-parametric mod-
els perform well, especially during early acquisition. At
the end of acquisition, GlobalMI acquisition in conjunction
with the GP-RBF model performs marginally better than
all other acquisition-based models. It is additionally impor-
tant to note that quasi-random Sobol sampling for this 8-
d function performs remarkably well against these active
learning schemes, often as good or better than all acqui-
sition functions tested. The unusual effectiveness of quasi-
random sampling in this setting has been previously re-
ported (Letham et al. 2022) and we see it with our models as
well as with the GP-RBF and GP-linear baselines. Explor-
ing performance of these acquisition functions compared to
quasi-random sampling for high dimensional psychophysics
is an interesting avenue for future work. Here, we simply
wish to emphasize that the semi-parametric model and its
MVN approximation are compatible and competitive un-
der a variety of existing active learning schemes, and our
proposed ThresholdBALV acquisition shows strong perfor-
mance early on in sampling for an 8-d test function. For
further evaluation of active learning for the semi-parametric
models, see the supplement. oundaries, allowing for more
informative samples.

Conclusion

We have demonstrated that a semi-parametric model for psy-
chometric field estimation based on a parameterized sigmoid
function can be adapted to high-dimensional psychophys-
ical contexts using GPs as a non-parametric constraint on
the sigmoid parameters. This semi-parametric approach not
only offers parameters with scientific interpretation in the
context of discrimination behavior, but offers accuracy im-
provements for estimating high dimensional tuning curves
compared to competing methods. It does the latter both by
providing a better prior, and by enabling a new active learn-
ing objective based on the semi-parametric functional form.
We further introduce a moment-matching approximation to
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our model that can be used as a psychophysics-specific GP
prior, or to produce approximate MVN posteriors compati-
ble with analytic acquisition functions. We evaluate our con-
tributions relative to baselines on both synthetic and real
data and show a number of performance gains, especially
for smaller sample sizes that are important in real human-in-
the-loop experiments.

Limitations First, the evaluations in this paper either use
synthetic test functions or human visual psychophysical data
on a per-subject basis, so we cannot say at this stage how
the model will perform with data from other sensory modal-
ities or for cross-participant prediction. Second, we focus
our evaluation on the Brier score in expectation over the
posterior. While taking other metrics in expectation over the
posterior shows similar behavior (as we demonstrate in the
appendix), focusing on the posterior mean only (as done
in prior work) changes the story somewhat. In particular,
if we only consider the posterior mean of the RBF model,
its key deficiency of having an overly flexible hypothesis
space is mitigated and its performance looks stronger. Third,
while we demonstrate that our work is compatible with
active learning methods (even ones that require an MVN
posterior), we do not offer an exhaustive evaluation of ac-
tive learning methods, and the benefits of our contributions
for active learning appear to be focused on small sample
sizes. In line with this, we focus our evaluation and narra-
tive around performance with relatively small data (consis-
tent with the goal of sample-efficient psychophysics) but it
is likely that with much larger datasets, the GP-RBF model’s
universality will let it match or outperform models with
more restricted hypothesis spaces such as ours.

Ethics Statement Our work is primarily concerned with
understanding low-level human perception, and as such car-
ries relatively low risk of societal and ethical harm. Some
risks include the misuse or de-anonymization of data, and
overly broad or incorrect conclusions made based on data
that is too limited, collected in a biased way, or based on
misunderstanding or misusing the model. With respect to
data misuse, we use only de-identified data that has been

46

previously published, where informed consent was obtained,
and is of low sensitivity (it is behavioral responses to sim-
ple visual stimuli). With respect to overly broad conclusions,
we keep our claims narrowly focused on the quality of the
model, and do not provide new interpretations or conclu-
sions related to the datasets we use for evaluation. Further-
more, we think the specificity of our model for the psy-
chophysics problem domain makes it less likely to be ap-
plied (and misused) in other settings than more generic mod-
els. On a more positive note, increasing sample efficiency for
psychophysics studies may improve the experience of hu-
man research participants, who can sometimes be required
to participate in dozens of hours of data collection when tra-
ditional grid or staircase methods are used.

Computational Load With respect to computational load
and environmental impact, the benchmarks were all carried
out over the course of a few days (=70-100 hours) on a sin-
gle EC2 c61i.metal node, and the cross-validation folds
were performed over a smaller node over a similar period of
time. These hours are largely taken up by replications across
seeds (for benchmarks) and folds (for cross-validation)—for
practical usage, the models we use take seconds to estimate
on a typical laptop, which makes them accessible for use by
most practitioners and researchers.

Code Release The code needed to use our contribu-
tion in new experiments and benchmarks (models, like-
lihoods, acquisition function, etc) is available as part of
AEPsych (https://aepsych.org/). The code needed to gen-
erate the specific benchmarks and figures in the paper
is available at https://github.com/facebookresearch/semi-
parametric-psychophysics.
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