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Abstract

Raven’s Progressive Matrices (RPMs) have been widely used
to evaluate the visual reasoning ability of humans. To tackle
the challenges of visual perception and logic reasoning on
RPMs, we propose a Hierarchical ConViT with Attention-
based Relational Reasoner (HCV-ARR). Traditional solution
methods often apply relatively shallow convolution networks
to visually perceive shape patterns in RPM images, which
may not fully model the long-range dependencies of com-
plex pattern combinations in RPMs. The proposed ConViT
consists of a convolutional block to capture the low-level at-
tributes of visual patterns, and a transformer block to capture
the high-level image semantics such as pattern formations.
Furthermore, the proposed hierarchical ConViT captures vi-
sual features from multiple receptive fields, where the shallow
layers focus on the image fine details while the deeper layers
focus on the image semantics. To better model the underly-
ing reasoning rules embedded in RPM images, an Attention-
based Relational Reasoner (ARR) is proposed to establish the
underlying relations among images. The proposed ARR well
exploits the hidden relations among question images through
the developed element-wise attentive reasoner. Experimental
results on three RPM datasets demonstrate that the proposed
HCV-ARR achieves a significant performance gain compared
with the state-of-the-art models. The source code is available
at: https://github.com/wentaoheunnc/HCV-ARR.

Introduction
Research in computer vision has advanced significantly re-
cently (Dosovitskiy et al. 2021; He et al. 2016; Zhang et al.
2022). The research focus is shifting from visual recognition
of individual objects to visual understanding of image/video
scenes (Zellers et al. 2019). Visual reasoning, as one of the
visual understanding tasks, usually consists of two related
tasks, “visual perception” and “logical reasoning”. The for-
mer perceives the image/video through a perception system
(Dosovitskiy et al. 2021), and the latter discovers reasoning
rules through a cognition system (Crouse et al. 2021). A lot
of research efforts have been devoted to developing a system
that can not only visually recognize objects from scenes, but
also conduct logical reasoning over the perceived visual in-
formation (Sekh et al. 2020; Zhang et al. 2019a).
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Figure 1: RPM problems are challenging as both local
attributes such as Color, Type and Size and global
attributes on pattern combinations such as Number and
Position need to be extracted simultaneously and a dif-
ferent rule may be applied on each attribute. The proposed
HCV-ARR consists of a set of ConViT blocks that can si-
multaneously perceive local attributes through convolutional
blocks and global attributes through transformer blocks. An
element-wise attention-based relational reasoner is then de-
signed to exploit reasoning rules among different attributes.

Raven’s Progressive Matrix (RPM) problem is one of the
frequently-used tests on human’s visual analogical reason-
ing in cognitive psychology (Raven 2000). An RPM prob-
lem is formed by a 3 × 3 pictorial matrix with the last one
left blank, as shown in Fig. 1. The objective is to identify the
missing entry from eight candidate answers based on the vi-
sual context and inductive rules. To minimize the impact of
language barrier and culture bias, the pictorial matrices are
often composed of regular polygons. Several RPM databases
(Barrett et al. 2018; Benny, Pekar, and Wolf 2021; Hu et al.
2021; Sekh et al. 2020; Teney et al. 2020; Zhang et al.
2019a) have been developed to evaluate the model capability
of visual reasoning, i.e., not only visually understand image
scenes, but also logically conduct inductive reasoning over
pictures (Barrett et al. 2018; Sekh et al. 2020; Teney et al.
2020; Zhang et al. 2019a). Most existing models for visual
reasoning (Benny, Pekar, and Wolf 2021; Hu et al. 2021;
Spratley, Ehinger, and Miller 2020; Zhuo and Kankanhalli
2021) contain two modules, a perception module that visu-
ally perceives the RPM panels to explicitly/implicitly extract
the visual attributes, and a logic reasoning module that con-
ducts reasoning over the perceived visual information.
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The perception module in many existing models (Sprat-
ley, Ehinger, and Miller 2020; Zhang et al. 2019b; Zheng,
Zha, and Wei 2019) is built upon shallow convolutional neu-
ral networks, as RPM problems are often constructed using
simple visual patterns like 2D shapes and lines. But such
shape patterns are combined to form complex spatial lay-
outs in RPMs, which introduces global layout attributes such
as Position and Number apart from relatively local at-
tributes such as Color, Size and Type. Applying a shal-
low network to an image may partially capture local fea-
tures, but can hardly extract the global panel layouts. Never-
theless, solving an RPM problem requires reasoning over a
set of relational rules embedded in both global and local at-
tributes. Lacking of “globality” may lose significant reason-
ing clues on global patterns. More importantly, real-world
images are much more complicated than simple shapes. Ex-
isting models built on shallow networks may not be able
to handle the tremendous combinations of complex visual
recognition tasks and diversified logical reasoning tasks.

Recent approaches (Benny, Pekar, and Wolf 2021; Hu
et al. 2021; Spratley, Ehinger, and Miller 2020; Zhuo and
Kankanhalli 2021) often tackle the visual reasoning tasks
by firstly encoding visual features through convolutions, and
then optimizing the “reasoning modules” by computing the
row-wise/column-wise similarities of the derived features, to
detect the underlying reasoning rules. However, one unique
reasoning rule can be applied to every visual attribute. Af-
ter applying a combination of reasoning rules on various at-
tributes, the resulting features may be different across rows/-
columns. Requesting the resulting features being similar
does not explicitly model the underlying reasoning rules.
Hence, it is critical to build a reasoning module that can sim-
ulate a wide range of potential reasoning rules and derive the
proper rule combinations from a set of RPM images.

To tackle the challenges of RPM problems, we propose
an end-to-end solution model, Hierarchical ConViT with
Attention-based Relational Reasoner (HCV-ARR). Existing
perception models for RPMs (Benny, Pekar, and Wolf 2021)
built on convolutional neural networks cannot completely
model the global dependencies. In this paper, a ConViT
structure is proposed, where a convolutional block is de-
signed to capture the low-level visual attributes, and a trans-
former block is designed to capture the high-level image se-
mantics. Furthermore, we propose to hierarchically recog-
nize the RPM panel in different levels of receptive fields.
The hierarchically designed network structure can capture
different aspects of the RPM panels at different scales, from
overall global insights of attribute knowledge (e.g., Number
and Position) to specific local understandings of image
details (e.g., Type and Size). To conduct robust analog-
ical reasoning based on the extracted visual features, in-
stead of simply detecting the common recurrent patterns
among rows/columns, we design an Attention-based Rela-
tional Reasoner (ARR) that dynamically learns the combina-
tion of rules applied to attributes across rows/columns. The
designed element-wise attention mechanism better models
the non-linear relations in each attribute among images. The
proposed ARR can uncover a combination of a wide range
of relational rules in inductive reasoning.

The proposed method is compared with state-of-the-art
models on three benchmark datasets. It outperforms the pre-
vious best methods in most of the experimental settings on
the RAVEN-FAIR (Benny, Pekar, and Wolf 2021), RAVEN
(Zhang et al. 2019a) and I-RAVEN (Hu et al. 2021) datasets,
as shown in Tables 3–5. The experimental results demon-
strate the effectiveness of the proposed model.

Our contributions can be summarized as: 1) We propose
an end-to-end Hierarchical ConViT with an Attention-based
Relational Reasoner to solve RPM problems. 2) The pro-
posed ConViT can simultaneously extract the global vi-
sual features utilizing the self-attention mechanism and lo-
cal ones utilizing the shallow convolutional layers. 3) The
hierarchically designed ConViTs can better understand the
RPM images from different receptive fields. 4) The pro-
posed Attention-based Relational Reasoner can well model
the complex relations between rows/columns via the de-
signed element-wise attention-based relational formulation
and discover a wide range of reasoning rationales.

Related Work
Visual Reasoning. Visual reasoning visually recognizes
attributes from scene images and conducts relational reason-
ing over the derived attributes. In literature, visual reasoning
spans various tasks, e.g., action recognition (Li et al. 2021;
Weng et al. 2018, 2020), image captioning (Liu, Ren, and
Yuan 2020; Wu et al. 2017), visual question answering (An-
tol et al. 2015; Johnson et al. 2017; Teney, Wu, and van den
Hengel 2017; Wu et al. 2017) and visual IQ tests (Benny,
Pekar, and Wolf 2021; Hu et al. 2021; Sekh et al. 2020;
Teney et al. 2020; Zhang et al. 2019a; Song et al. 2023).

Activity recognition highly relies on the temporal infor-
mation, and reasoning the human-object relations over time
is challenging. Weng et al. (2020) recognize human activi-
ties by reasoning over the discriminative channel-level infor-
mation through a Progressive Enhancement Module to avoid
repeating information extraction from different frames. Im-
age/video captioning from a relation-reasoning perspective
has received increasing attention. Liu, Ren, and Yuan (2020)
introduced a dual-branch Sibling Convolutional Encoder
which combines visual content information with visual-
semantic joint embedding using a soft-attention mechanism,
and an RNN decoder to generate the captions.

Visual question answering (VQA) is a conventional visual
reasoning task for machine understanding of scene-level im-
ages. The objective is to derive an accurate natural language
answer, given an image and a related natural language ques-
tion. Early VQAs are based on natural scene images (Antol
et al. 2015; Teney, Wu, and van den Hengel 2017). Johnson
et al. (2017) developed the CLEVR dataset by replacing nat-
ural images with synthetic images to avoid the misleading
by background information. Recently, a new form of VQA
tasks was developed by Zellers et al. (2019) as Visual Com-
monsense Reasoning, which aims to answer the question and
provide an explanation for why the answer is correct.

Solution Models for RPMs. Visual reasoning on RPMs
often consists of two parts: visual perception and logic rea-
soning (He et al. 2021). Solution models often use neural
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Figure 2: Block diagram of the proposed HCV-ARR, which consists of a Hierarchical ConViT and an Attention-based Rela-
tional Reasoner. It extracts the image details locally through the shallow convolutional blocks and the high-level image seman-
tics globally through the transformer blocks. The proposed ARR extracts the element-wise attentional information between two
images, uncovers the relations embedded in the image pair and conducts relational reasoning to derive the correct answer.

networks to extract visual features. CoPINet (Zhang et al.
2019b) and Rel-AIR (Spratley, Ehinger, and Miller 2020)
both utilize the residual network architecture (He et al.
2016), and MRNet (Benny, Pekar, and Wolf 2021) applies
multi-scale convolutional layers to extract features. The neu-
ral networks in existing methods (He, Ren, and Bai 2021;
Spratley, Ehinger, and Miller 2020; Zhang et al. 2019b;
Zheng, Zha, and Wei 2019; Zhuo and Kankanhalli 2021) are
often relatively shallow, which may not fully capture com-
plex combinations of visual patterns across RPM panels.

In literature, row-wise and/or column-wise relations are
often utilized in solution models to derive the reasoning
rules, e.g., CoPINet (Zhang et al. 2019b), LEN (Zheng, Zha,
and Wei 2019), MXGNet (Wang, Jamnik, and Lio 2020),
Rel-AIR (Spratley, Ehinger, and Miller 2020), DCNet (Zhuo
and Kankanhalli 2021) and MRNet (Benny, Pekar, and Wolf
2021). The CoPINet (Zhang et al. 2019b) explicitly con-
trasts the candidate answers and highlights the difference
between options. The LEN (Zheng, Zha, and Wei 2019) uti-
lizes a global encoder that encodes the context and choices to
derive the row-/column-wise representations. The MXGNet
(Wang, Jamnik, and Lio 2020) and the Rel-AIR (Sprat-
ley, Ehinger, and Miller 2020) subtract the common factors
from all the option representations. The DCNet (Zhuo and
Kankanhalli 2021) implements a dual-contrasting mecha-
nism on both row/column features and choices. The MR-
Net (Benny, Pekar, and Wolf 2021) applies a multi-scale de-
sign and minimizes the squared Euclidean distance between
row/column features, to identify recurring patterns. These
reasoning models often operate on contrastive information

derived from visual features, either within rows/columns or
answer candidates, other than seeking for concrete induc-
tive rationales for visual analogical reasoning. A much more
sophisticated and comprehensive logic reasoner is needed
to uncover the combination of reasoning rules embedded in
different attributes of the RPM problems.

Proposed Method
Formally, given a 3 × 3 RPM pictorial matrix with the last
one missing, Q = {q0, q1, · · · , q7}, as shown in Fig. 1, the
target is to find the missing image âi from the answer set
A = {a0, a1, · · · , a7}, forming as a complete RPM sample
⟨Q,A⟩ with each image of the size of H × W . The same
reasoning rule regarding one attribute is shared among three
rows or columns. Note that for one RPM sample, the under-
lying rules for different attributes can be different. In modern
RPM solvers, each option image is appended to Q, forming
8 groups of image tensors Xi ∈ R9×H×W , where i = 0 . . . 7
indicates the option index.

As shown in Fig. 2, the proposed model consists of a Hi-
erarchical ConViT for visual perception and an Attention-
based Relational Reasoner for logic reasoning. The former
visually perceives the image contents and extracts the vi-
sual information, and the latter conducts reasoning on the
extracted visual information. The goal of the established net-
work structure is to exploit a discriminative relational map-
ping that takes the image tensors as the input and outputs the
prediction score vector for eight options:

ŷ = Fm{X0,X1, . . . ,X7;Θ}, (1)
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where Fm is the mapping function, which involves the Hi-
erarchical ConViT for perception and Attention-based Rela-
tional Reasoner for reasoning. Θ is the network parameters
to be optimized. ŷ ∈ [0, 1]8 contains the prediction scores of
the 8 candidate options. The final output is the option which
has the minimum Binary Cross Entropy loss,

L = −
7∑

i=0

σ(yi) · log σ(ŷi), (2)

where σ represents the sigmoid function and yi is the
ground-truth label concerning the i-th option, and it is an
element of the one-hot vector y ∈ {0, 1}8.

Hierarchical ConViT for Visual Perception
As shown in Fig. 2, the proposed Hierarchical ConViT en-
coder E contains a set of ConViT blocks to extract the visual
information from multiple receptive fields, and each ConViT
consists of a transformer branch and a convolutional branch.
Both low-level image details and high-level image seman-
tics have been shown useful for visual reasoning (Benny,
Pekar, and Wolf 2021; Sekh et al. 2020). In Fig. 2, while
feature maps of shallow blocks focus more on lower-level
semantic relations (Girshick et al. 2014) such as Color and
Type, those of deeper blocks reflect the pattern layout and
contain positional relations (Zintgraf et al. 2017; Islam, Jia,
and Bruce 2020). The proposed Hierarchical ConViT could
concurrently capture the visual information from different
receptive fields, which is used as multi-receptive clues for
logical reasoning at the later stage.

Existing visual reasoning models (Spratley, Ehinger, and
Miller 2020; Zhang et al. 2019b; Zheng, Zha, and Wei 2019;
Zhuo and Kankanhalli 2021) often utilize shallow convolu-
tional networks to extract low-level image details, but these
shallow networks may not capture the complex visual pat-
terns and spatial correlations across different configurations
in RPMs. On the other hand, transformer models (Han et al.
2022) perform well on image classification tasks by par-
titioning the image into sequences of patches and extract-
ing the attentional information among patches. The question
image of RPMs is often formed in patches, e.g., there are
3 × 3 patches in the 3×3Grid setting and 2 × 2 patches
in the 2×2Grid setting in the RAVEN-like dataset. It is
hence natural to apply Vision Transformers (ViT) (Doso-
vitskiy et al. 2021) to better recognize the complex global
patterns embedded in RPMs. In the design of ConViT, we
encode the image fine details through the shallow convolu-
tional neural networks in one branch, and exploit the spatial
correlations and long-range dependencies between complex
patterns in another branch through the patch split-and-merge
operations and multi-head self-attention.

More specifically, denote X ∈ R8×9×H×W as the input
image tensors, where H and W are the height and width
of the image respectively. The output of the convolutional
branch Ci at the i-th stage, Zc

i , can be derived as:

Zc
1 = C1{X},

Zc
i = Ci{Zc

i−1}. (3)

The output of the transformer branch Ti at the i-th stage,
Zt
i, can be derived as:

Zt
0 = PS{X},

Zt
i = Ti{PM

i {Zt
i−1}}, (4)

where PS ,PM
i and Ti denote the patch splitting opera-

tion, the patch merging operation and the transformer at
the i-th stage, respectively. PM

i contains an unfold layer
for down-sampling and a multi-layer perception. The trans-
former block Ti propagates a feature map Zt

i−1 and outputs
Zt
i at stage i as in Fig. 2. The details of model architecture

and parameters can be found in Supplementary Materials.
The final output of the encoder E is a tuple of tensors,

recording the feature maps from both convolution blocks
and transformer blocks, and concurrently passes it to next
reasoning modules for further abstraction.

(Zc
1 + Zt

1, . . . ,Z
c
N + Zt

N ) = E{X}. (5)

Attention-based Relational Reasoner
Before feeding the perceived visual information to the rea-
soner, we firstly reformulate the derived features accord-
ing to rows or columns via Pictorial Matrix Reformulation.
Specifically, given Zi = Zc

i + Zt
i,Zi ∈ R8×9×Ci×Hi×Wi

for stage i, where Ci, Hi, Wi are shown in Fig. 2, we re-
formulate the second dimension of the feature tensor into a
3×3 matrix. For notation simplicity, stage index i is omitted.
Next, features among rows and columns from the matrix are
formed as row features R = [R1;R2;R3] and column fea-
tures C = [C1;C2;C3], respectively, where R1, R2, R3, C1,
C2, C3 are in shape of (8, 3, Ci, Hi,Wi).

Humans often solve visual analogical reasoning tasks by
investigating the common rationale spanning over image
patterns along rows or columns. The majority of solution
models (Benny, Pekar, and Wolf 2021; Spratley, Ehinger,
and Miller 2020; Zhang et al. 2019b; Zheng, Zha, and Wei
2019; Zhuo and Kankanhalli 2021) attempt to model this
process by minimizing the divergence between row/column
feature representations. For example, in (Benny, Pekar, and
Wolf 2021), the DIST3 operation within row/column vec-
tors computes the squared Euclidean distance among fea-
tures. Take row features R = [R1;R2;R3] as an example,

DIST3(R1;R2;R3)

= |R1 − R2|2 + |R2 − R3|2 + |R3 − R1|2. (6)

Such formulation is optimal only for some special cases.
However, a combination of rules applied on different at-
tributes of the problem panel do not necessarily lead to
similar image features, e.g., for Arithmetic rule, im-
age attributes satisfy some arithmetic relations, and for
Distribute Three rule, three distinct attribute values
are distributed in images of one row/column. The formula-
tion in Eqn. (6) is not sufficiently expressive to model such
relations. To better model the embedded reasoning rules, we
propose an Attention-based Relational Reasoner.

Attention mechanism has been widely used in modeling
the pairwise relations between two inputs to explore the in-
depth inter-relations at the feature level (Chen et al. 2019,
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2022; Hori et al. 2017). In RPMs, different inductive rules
are applied to different attributes. Therefore, unlike the tra-
ditional attention mechanism where all dimensions of the
input feature vector share the same learnable weight (Chen
et al. 2019), the proposed method weighs each dimension
differently to better model the relations across different at-
tributes. As shown in details from Fig. 2, the element-wise
attentive relations are learned through a kernel q which has
the same dimensionality of the input row/column features.
Take row features R for instance,

Wi,j = exp(q ⊙ Ri)⊘ (exp(q ⊙ Ri) + exp(q ⊙ Rj)), (7)

where ⊙ denotes the element-wise (Hadamard) production,
⊘ denotes element-wise division, and i, j ∈ {1, 2, 3} denotes
the row index. The output denoted as Rmix is obtained as,

Rmix = [W1,2 ⊙ R1 +W2,1 ⊙ R2;

W1,3 ⊙ R1 +W3,1 ⊙ R3;

W2,3 ⊙ R2 +W3,2 ⊙ R3]. (8)

The same operation is applied to the column features C
to derive Cmix. Finally, the predicted scores are aggregated
over N stages through a multilayer perceptron FMLP as,

ŷ = FMLP

([
Rmix

1 + Cmix
1 ; . . . ;Rmix

N + Cmix
N

])
. (9)

Discussion
Attention in Visual Perception. Han et al. (2022) catego-
rizes image representation learning into convolution-based
and attention-based. With the development of SENet (Hu,
Shen, and Sun 2018), Vision Transformer (ViT) (Dosovit-
skiy et al. 2021) and its variants, the attention mechanism
overwhelms traditional convolutional architectures in sub-
stantial CV tasks. ViT is good at capturing long-range de-
pendencies between patches, and its variants such as Swin-T
improve the modeling capacity for local information (Han
et al. 2022). The proposed HCV simultaneously captures
both global and local discriminative information in multiple
receptive fields to deeply understand the image contents.

Attention in Relational Reasoning. In analogical reason-
ing tasks, Relation Network (Santoro et al. 2017) utilizing
neural networks has been used to derive the relations of input
features for various relational reasoning tasks (Barrett et al.
2018; Santoro et al. 2017). Inspired by the success of the
attention mechanism in extracting the attentive information
among elements in a sequence (Vaswani et al. 2017), we pro-
pose an attention mechanism to deeply explore the relations
on feature sequences, and subsequently derive the underly-
ing reasoning rules. Traditional attention-based feature fu-
sion scheme in Two-Stream Convolutional Neural Network
(TSCNN) (Chen et al. 2019) has been proven effective in ag-
gregating two sets of features, which uses the standard self-
attention to learn a set of weights {wi, i = 1, 2, . . . ,M}
corresponding to M sets of features {fi, i = 1, 2, . . . ,M}
to generate the aggregated feature fa =

∑M
i σ(q⊤fi)fi.

To fuse the two feature representations in (Chen et al. 2019),
fa = w1f1+w2f2, the same weight wi is assigned to every
dimension of the feature vector. Such a mechanism may well

fuse multi-modal feature representations, but may be inef-
fective for modeling high-level complex relations using one
learnable weight only, as different rules may be applied on
different attributes. In contrast, the proposed element-wise
attention-based relational reasoning mechanism assigns a
different learnable weight to each dimension, which has a
high potential to model the complicated relations embedded
in different feature dimensions, and consequently induce a
wide range of abstract relations across different attributes.

Experimental Results
The proposed model is evaluated on the RAVEN (Zhang
et al. 2019a), I-RAVEN (Hu et al. 2021) and RAVEN-FAIR
datasets (Benny, Pekar, and Wolf 2021). Each dataset is ran-
domly split into 10 folds, with 6 folds for training, 2 folds
for validation and 2 folds for testing.

Datasets
RAVEN (Zhang et al. 2019a) consists of 70,000 question
sets, where each contains 8 question images, arranged as a
3 × 3 image matrix with the last one missing, and 8 candi-
date answers. The candidates are generated by permutation
from the ground-truth answer image, and each permutated
image is derived by randomly shifting one attribute value.
The dataset is equally distributed into 7 configurations. Each
question contains 6 visual attributes (Angle, Number,
Position, Type, Size and Color) and 4 underly-
ing rules (Constant, Progression, Arithmetic and
Distribute Three). Extra noise is added to attributes to
make the problem more challenging.

I-RAVEN (Hu et al. 2021) is developed to fix the problem
in the original RAVEN dataset that the aggregation of the
most common values for each attribute could be the correct
answer (Benny, Pekar, and Wolf 2021; Hu et al. 2021). In the
I-RAVEN dataset, the negative candidate answers are gener-
ated by hierarchically permuting one attribute of the ground-
truth answer in three iterations. In each iteration, two child
nodes are generated, where one node remains the same with
the parent node while the other permutes one attribute.

RAVEN-FAIR (Benny, Pekar, and Wolf 2021) iteratively
enlarges the answer set starting with the correct answer only
and changing one attribute value from either the correct an-
swer or a generated negative answer. Except for the answer
generation, the same settings as in original RAVEN are used
for the I-RAVEN and RAVEN-FAIR datasets.

Experimental Setup
The proposed method is compared with the following state-
of-the-art solutions.
CoPINet (Zhang et al. 2019b) models the probability of
each candidate answer by applying a contrasting module.
LEN (Zheng, Zha, and Wei 2019) assembles the possible
candidate answer embeddings to the 8 question panel em-
beddings, calculates scores for all possible combinations
(C3

9 = 84), and predicts the answer with the highest score.
Rel-AIR (Spratley, Ehinger, and Miller 2020) disentangles
objects with an initial unsupervised scene decomposition
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first, and then encodes it with additional information such
as position and scale. A sequence encoder is designed to ex-
tract feature relationships and generate the final results.
SRAN (Hu et al. 2021) utilizes a hierarchical rule embed-
ding module and a gated embedding fusion module to output
the rule embedding given two-row sequences.
DCNet (Zhuo and Kankanhalli 2021) consists of a rule con-
trast module and a choice contrast module to exploit the in-
herent structure of RPMs, which compares the latent rules
among rows/columns and increases the choices differences.
MRNet (Benny, Pekar, and Wolf 2021) is established by
using multi-resolution convolution layers as the perception
module, and the DIST3 row/column operator as the induc-
tive reasoner to conduct relational reasoning.

The number of ConViT blocks is set to N = 3. Following
the settings in (Benny, Pekar, and Wolf 2021; Zhang et al.
2019a,b), the input images are resized to 80 × 80 pixels.
The maximum number of epochs is 200, and the training is
stopped if there is no significant improvement on the vali-
dation set over 20 epochs. During training, the learning rate
is set to 0.001, and the Adam optimizer is utilized with a
weight decay of 1× 10−5. The batch size is set to 32.

Ablation Study
To evaluate the performance gains brought by each of the
two proposed modules, we conduct an ablation study on
the RAVEN-FAIR dataset (Benny, Pekar, and Wolf 2021),
by using the most recent state-of-the-art method MRNet
(Benny, Pekar, and Wolf 2021) as the baseline model. HCV
and ARR denote methods of replacing the visual perception
module or reasoning module of MRNet with the proposed
HCV and ARR, respectively. Besides using just convolu-
tions for perception (i.e., Conv + ARR), the usage of ViT
only is also evaluated (i.e., ViT + ARR). We also compare
the proposed ARR with the traditional attention-based fu-
sion utilized in TSCNN (Chen et al. 2019) on features ex-
tracted from the proposed HCV. The results are in Table 1.

Compared with MRNet, all the proposed model com-
ponents receive consistent performance improvements. For
Setting C, L-R, U-D and O-IC that do not use high-level
image semantics such as Number and Position (The reg-
ular shapes have a fixed Position and Number) for rea-

Methods Accuracy (%) in Different Configurations
Avg. C 2x2 3x3 L-R U-D OIC OIG

MRNet 86.8 97.0 72.7 69.5 98.7 98.9 97.6 73.3
TSCNN 87.9 96.8 73.5 74.7 94.4 91.8 94.5 88.9
HCV 92.7 99.9 85.7 78.4 99.9 99.8 99.8 85.4
Conv+ARR 93.4 99.9 86.3 79.8 99.8 99.7 99.6 88.7
ViT+ARR 44.9 52.0 39.4 41.0 35.8 35.8 57.8 50.4
Proposed 95.4 99.8 92.9 87.9 99.8 99.6 99.7 88.5

Table 1: Ablation study on different modules of the pro-
posed architecture. Compared with the baseline method,
MRNet (Benny, Pekar, and Wolf 2021), both hierarchical
ConViT and ARR bring significant performance improve-
ments across all 7 problem configurations.

Stages Accuracy (%) in Different Configurations
1 2 3 Avg. C 2x2 3x3 L-R U-D OIC OIG

"%% 74.9 83.2 53.1 58.1 90.6 90.3 87.4 61.7
""% 87.8 98.9 68.1 68.7 99.3 99.2 99.1 78.1
""" 95.4 99.8 92.9 87.9 99.8 99.6 99.7 88.5

Table 2: Ablation study of the depth of the proposed HCV-
ARR on the RAVEN-FAIR dataset.

soning, using just convolutions works well, which demon-
strates the effectiveness of the convolutions in capturing
low-level features for reasoning. Using ViT alone produces
very poor results, as most of the attributes, e.g., Color,
Type, Size are low-level features, while ViT focuses more
on the high-level features such as Number and Position.
When both convolutions and ViTs are used, the proposed
ConViT significantly improves the performance on complex
configurations such as 2×2G and 3×3G, by utilizing the
high-level image semantics extracted from ViT blocks.

By introducing the HCV module, the hierarchically in-
creased receptive fields can view the question images from
multiple scales, and on each scale both local and global fea-
tures are richly captured. Hence, the inference performance
on all 7 configurations is improved upon the baseline. By
using the proposed ARR module, the performance across 7
different settings is also improved upon MRNet, which indi-
cates the benefits brought by the proposed ARR in handling
the diverse reasoning rules across both local and global at-
tributes of various scales. The proposed ARR also achieves a
significant improvement over the traditional attention mech-
anism of TSCNN (Chen et al. 2019), which assigns the same
weight across different attributes, while the proposed ARR
can capture different rules embedded in different attributes.

Additionally, we conduct ablations on the impact of the
depth for the proposed HCV-ARR. From Table 2, we can
observe the improvements in the reasoning accuracy by con-
sidering more receptive fields from deeper ConViT blocks
and more reasoning clues from deeper ARRs. The accuracy
increases by 12.9% on average when the depth N is set from
1 to 2, and further boosts to 95.4% when N = 3. The exper-
imental results show the benefits of utilizing both global and
local attributes in visual analogical reasoning.

Comparison Results on RAVEN-FAIR Dataset
The proposed HCV-ARR is compared with state-of-the-
art models on the RAVEN-FAIR dataset (Benny, Pekar,
and Wolf 2021). We implement and evaluate DCNet (Zhuo
and Kankanhalli 2021) and SRAN (Hu et al. 2021) on the
RAVEN-FAIR dataset. The results of other compared meth-
ods are obtained from (Benny, Pekar, and Wolf 2021). From
the results summarized in Table 3, we can see that the pro-
posed method significantly outperforms all the compared
methods on all problem configurations. Compared with the
previous best model, MRNet (Benny, Pekar, and Wolf 2021),
the proposed HCV-ARR achieves a performance gain of
8.6% on average. The proposed method is particularly com-
petitive for challenging settings, e.g., the performance gains
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Methods Accuracy (%) in Different Configurations
Avg. C 2x2 3x3 L-R U-D OIC OIG

CoPINet 36.5 – – – – – – –
LEN 50.9 – – – – – – –
DCNet† 57.0 57.2 48.4 58.2 57.5 59.4 62.0 56.2
SRAN† 76.7 87.4 60.4 62.8 86.5 86.7 77.5 75.9
MRNet 86.8 97.0 72.7 69.5 98.7 98.9 97.6 73.3
Proposed 95.4 99.8 92.9 87.9 99.8 99.6 99.7 88.5

Table 3: Comparison with state-of-the-art on the RAVEN-
FAIR dataset (Benny, Pekar, and Wolf 2021). Results of
other methods are obtained from (Benny, Pekar, and Wolf
2021) and † indicates the results by our implementation.

Methods Accuracy (%) in Different Configurations
Avg. C 2x2 3x3 L-R U-D OIC OIG

CoPINet 46.1 54.4 36.8 31.9 51.9 52.5 52.2 42.8
LEN 41.4 56.4 31.7 29.7 44.2 44.2 52.1 31.7
DCNet† 46.6 56.2 32.7 32.9 54.7 53.9 55.9 39.8
SRAN 60.8 78.2 50.1 42.4 70.1 70.3 68.2 46.3
MRNet† 81.0 99.6 63.4 59.2 98.7 98.3 95.7 51.9
Proposed 93.9 99.9 96.2 75.5 99.4 99.6 99.5 87.3

Table 4: Comparison with state-of-the-art models on the I-
RAVEN dataset. † indicates the results are obtained by us
and others are from (Hu et al. 2021).

are 20.2% on 2×2Grid, 18.4% on 3×3Grid, and 15.2%
on Out-InGrid settings, respectively. The underlying rea-
sons are two-fold: 1) The proposed HCV module could bet-
ter perceive the complex patterns in these settings. 2) The
proposed ARR could better reason over the combination of
rules, with one applied to each attribute.

Comparison Results on I-RAVEN Dataset
We have implemented and evaluated the DCNet (Zhuo and
Kankanhalli 2021) and MRNet (Benny, Pekar, and Wolf
2021) on the I-RAVEN dataset, and other results are ob-
tained from (Hu et al. 2021). As shown in Table 4, the pro-
posed model largely outperforms all the compared models.
Compared to the previously published best result by SRAN
(Hu et al. 2021), the average accuracy improves from 60.8%
to 93.9%. The proposed HCV-ARR significantly and consis-
tently outperforms MRNet (Benny, Pekar, and Wolf 2021)
on all the settings. Besides the Center, Left-Right,
Up-Down and Out-InCenter, HCV-ARR can also ef-
fectively solve configurations containing complex spatial re-
lations, such as 2×2Grid and Out-InGrid.

Comparison Results on Original RAVEN Dataset
We also conduct comparison experiments on the original
RAVEN dataset (Zhang et al. 2019a). The original RAVEN
dataset contains the loophole that the correct answer can be
derived by simply aggregating the most common properties
from the answer options, without examining the question at
all (Hu et al. 2021; Benny, Pekar, and Wolf 2021). In the
past, many approaches took advantage of this shortcut to de-

Methods Accuracy (%) in Different Configurations
Avg. C 2x2 3x3 L-R U-D OIC OIG

CoPINet 18.4 – – – – – – –
SRAN† 46.2 49.0 45.4 52.8 42.4 36.0 49.1 48.8
MRNet 84.0 – – – – – – –
Proposed 87.3 99.8 71.4 65.9 99.9 99.8 98.0 76.2

(a) Without contrasting on candidate answers.

Methods Accuracy (%) in Different Configurations
Avg. C 2x2 3x3 L-R U-D OIC OIG

CoPINet 91.4 95.1 77.5 78.9 99.1 99.7 98.5 91.4
LEN 72.9 80.2 57.5 62.1 73.5 81.2 84.4 71.5
Rel-AIR 94.1 99.0 92.4 87.1 98.7 97.9 98.0 85.3
DCNet 93.6 97.8 81.7 86.7 99.8 99.8 99.0 91.5
MRNet 96.6 – – – – – – –
Proposed 96.0 99.4 86.9 89.1 99.9 99.9 99.8 96.8

(b) With contrasting on candidate answers.

Table 5: Comparison with state-of-the-art on the RAVEN
dataset. † indicates the results by our implementation and
others are obtained from respective original publications.
The proposed HCV-ARR outperforms the previous best
method, MRNet, without using the contrast while achieves
a comparable performance when using the contrast.

rive a good performance, e.g., by contrasting the candidate
answers (Zhang et al. 2019b). We conduct comparison ex-
periments using both settings, with or without the contrast
information. The results are summarized in Table 5.

From Table 5b, we can see that many approaches utiliz-
ing the contrast information achieve high accuracy. When
the proposed HCV-ARR utilizes the contrast information,
it achieves slightly poorer than the previous best method,
MRNet (Benny, Pekar, and Wolf 2021), but outperforms
other methods. When this loophole is eliminated, the pro-
posed method outperforms MRNet (Benny, Pekar, and Wolf
2021) by 3.3%, and significantly outperforms other com-
pared methods as shown in Table 5a. These experimental
results validate the effectiveness of the proposed method.

Conclusions

In this paper, a Hierarchical ConViT with Attention-based
Relational Reasoner is proposed to solve RPM problems.
The proposed Hierarchical ConViT simultaneously extracts
the fine image details and global image semantics through
shallow convolutional networks and the attention mech-
anism of vision transformers across multi-level receptive
fields. The proposed ARR module effectively models the
underlying relations via the designed element-wise attention
mechanism, one rule for each attribute, and discovers a wide
range of reasoning rationales for better reasoning. The ex-
perimental results on three benchmark datasets demonstrate
that the proposed HCV-ARR significantly outperforms the
state-of-the-art models in almost all the settings.
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