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Abstract

We present a demonstration of the interactive task learning
agent Rosie, where it learns the task of patrolling a simulated
barracks environment through situated natural language in-
struction. In doing so, it builds a sizable task hierarchy com-
posed of both innate and learned tasks, tasks formulated as
achieving a goal or following a procedure, tasks with condi-
tional branches and loops, and involving communicative and
mental actions. Rosie is implemented in the Soar cognitive
architecture, and represents tasks using a declarative task net-
work which it compiles into procedural rules through chunk-
ing. This is key to allowing it to learn from a single training
episode and generalize quickly.

Introduction
As general-purpose, interactive learning robots become
more capable and prevalent, it should be possible to direct,
customize, and extend them without expert programming or
hundreds of demonstrations. Research interactive task learn-
ing (ITL) (Gluck and Laird 2019) seeks to develop AI agents
that learn new tasks through online interaction.

Rosie is an agent that learns new tasks and using one-shot
Situated Interactive Instruction (SII). The instructor and the
agent are situated in a shared environment, engaged in bidi-
rectional interaction, and communication via natural lan-
guage instruction. Language enables a skilled instructor to
provide the agent with precise learning goals as well as cu-
rated, high quality situation-specific task instructions. In this
demonstration, we show Rosie learning online a complex,
embodied task, called interior guard, in a simulated barracks
environment from a single training episode.

Rosie is developed within the Soar cognitive architecture
(Laird 2012). Soar contains a symbolic working memory, a
metric spatial memory, procedural and declarative long term
memories, and several learning mechanisms, which support
perception, communication, hierarchical planning and deci-
sion making, metacognition, and learning. Rosie uses SII to
learn many different types of knowledge, including percep-
tual features and spatial relationships (Mohan et al. 2012),
hierarchical state-based concepts (Kirk and Laird 2019),
games and puzzles (Kirk and Laird 2016), hierarchical goal-
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Figure 1: The simulated barracks environment.

based tasks (Mohan and Laird 2014), and hierarchical proce-
dural tasks (Mininger and Laird 2018). Interior guard is the
most complex and longest task Rosie has learned, including
deep hierarchies of procedural and goal-based subtasks that
include navigation, communication, and mental operations.

Related Work
Learning from human instruction goes back to SHRDLU
(Winograd 1972), and work by Crangle and Suppes (1994),
who developed foundational ideas about the notion of an in-
structable robot that learns tasks from instruction. However,
even today there are few examples of such agents.

Several approaches involve learning blocks-world style
tasks in a tabletop setting, Frasca et al. (2018), Suddrey
et al. (2016), She and Chai (2017), that do not involve the
complexity of interior guard. Work by Mohseni-Kabir et al.
(2019) combines learning a simple hierarchical task net-
works (HTN) with learning action primitives for a simulated
tire rotation task. However, the language is limited and the
HTN does not support reuse or generalization. ITL work has
also been done with software agents, such as PLOW (Allen
et al. 2007) and SUGILITE (Li, Mitchell, and Myers 2020).

There has been work involving learning tasks with a mo-
bile robot. For example, Meriçli et al. (2013) teach a mo-
bile robotic agent tasks such as getting coffee and follow-
ing landmarks. However, the task learning is not composi-
tional and has limited generalization. A similar agent from
Gemignani, Bastianelli, and Nardi (2015) can learn parame-
terized procedures, but not hierarchical tasks.
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Inspect the eastern SP.
Go to the eastern SP.
If the lightswitch is off, then turn the lightswitch on. 
If you are in a SP and an FE is not present, 
    then fetch a FE from the supply room.
If you are in a SP, then ensure a sentry is present.
If the current location is empty, 
    then turn off the lightswitch.
SP: Sentry Post
FE: Fire Extinguisher

Raise a fire-alarm. 
Remember the current location 
   as the emergency location.
Go to the eastern hallway.
Turn on the alarm. 
Say “There is a fire.” to the CO. 
Describe the emergency location.

CO: Commanding Officer

Guard the barracks. 
Ask “Who is my relieving officer?” 
Remember the answer as the 
    relieving officer.
Repeat the following tasks until the 
    relieving officer is present.
Inspect the messhall.
Inspect the eastern SP. 
Inspect the motorpool.
Repeat. 

Figure 2: Instructions used to teach the three main tasks, Rosie’s dialog is omitted.
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Figure 3: The hierarchy of tasks learned, with distinguishing features that are referenced in the discussion.

Agent Overview
Rosie is a fully integrated end-to-end agent that per-
forms perceptual processing and sends motor commands
(Mininger and Laird 2019) in both real-world and simu-
lated domains. Dialog is through a chat interface, with Rosie
taking the initiative to ask questions. When it receives a
response, it parses the language using the current context,
grounding referents as appropriate (Lindes et al. 2017). The
result is a precise, semantic structure, that Rosie then inter-
prets within the current context. For new tasks, Rosie cre-
ates and stores a Task Concept Network (TCN) in semantic
memory. It contains the task arguments, subtasks, and goal
graph, as well as their connections. The goal graph is a di-
rected graph consisting of subgoal nodes that include desired
state predicates (e.g., the plate is in the sink) or a subtask
to perform (e.g., inspect the messhall). Executing a task in-
volves interpreting the nodes and control information in the
TCN, which can involve following a procedure (including
conditionals and loops), a learned policy, or planning.

As the agent processes the TCN knowledge, it learns rules
that avoid interpretation and perform the processing directly.
When a task or subtask is complete, the agent learns a state-
based policy for future performance derived from a retro-
spective analysis of its behavior. As shown above, learned
tasks in Rosie are truly compositional, so it can build up hi-
erarchical tasks from previously learned subtasks.

Interior Guard Demo
This demo occurs in a simulated, multi-room barracks en-
vironment (Figure 1) that supports realistic navigation. Ac-
tions involving objects are discrete and the perception in-
volves error-free object detection and classification. The
agent starts with knowledge of objects, people, locations,
navigation, and simple actions. However, it has no specific
knowledge related to guarding or patrolling.

The agent first learns three major tasks (Figure 2). It learns
to inspect a room, with particular instructions given depend-
ing on the type of room. For a sentry post, it ensures that
both a fire extinguisher and sentry are present. However, for
the mess hall, it learns to store condiments and clean up
plates, and for the motor pool, to lock vehicles. The agent
also learns how to raise a fire alarm by pulling the alarm
and reporting the location to the commanding officer (CO).
Then it learns the overall guard task, where it asks the CO
the name of the relieving officer, then repeats a patrol route
until it sees that person. The full training scenario takes 17
minutes to teach and involves 224 individual tasks. After this
instruction sequence, the agent is told to perform the guard
task, with some variation. This final scenario takes 28 min-
utes and involves 389 individual tasks, which the agent ac-
complishes without asking any additional questions.

Figure 3 shows the full learned task hierarchy, with the
learned tasks in the blue shaded rectangles. In addition to be-
ing a larger in scope than related work, it demonstrates sev-
eral distinguishing capabilities, referenced by their letters in
the figure. First, tasks can be represented as achieving a set
of goal predicates (G) or following a procedure (P). For ex-
ample, the goal of storing a condiment is that the condiment
is in the fridge and the fridge is closed. Second, tasks can
include branches (B) in the goal graph that represent condi-
tional subtasks or goals, as well as loops (L). For example,
the agent only fetches a fire extinguisher when inspecting a
sentry post and if there is no fire extinguisher present. Third,
tasks can involving communicative (C) and mental (M) ac-
tions. For example, the agent learns to ask who the relieving
officer is, then remembers the answer for later use. A key
contribution of this work is that the agent learns and uses a
unified representation that enables it to compose all differ-
ent types of tasks within the same hierarchy. Some limita-
tions include restrictions on the language, and the amount of
variation possible in a particular task; a focus of future work.
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