The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

A Goal-Driven Natural Language Interface for Creating
Application Integration Workflows

Michelle Brachman', Christopher Bygrave?, Tathagata Chakraborti!, Arunima Chaudhary', Zhining
Ding?, Casey Dugan', David Gros®, Thomas Gschwind', James Johnson', Jim Laredo', Christoph
Miksovic', Qian Pan', Priyanshu Rai®, Ramkumar Ramalingam?, Paolo Scotton', Nagarjuna Surabathina?,
Kartik Talamadupula'

IBM Research 2IBM Cloud & Cognitive Software >Wellesley College 4UC Davis °Persistent Systems

Abstract

Web applications and services are increasingly important in a
distributed internet filled with diverse cloud services and ap-
plications, each of which enable the completion of narrowly
defined tasks. Given the explosion in the scale and diversity
of such services, their composition and integration for achiev-
ing complex user goals remains a challenging task for end-
users and requires a lot of development effort when specified
by hand. We present a demonstration of the Goal Oriented
Flow Assistant (GOFA) system, which provides a natural lan-
guage solution to generate workflows for application integra-
tion. Our tool is built on a three-step pipeline: it first uses Ab-
stract Meaning Representation (AMR) to parse utterances; it
then uses a knowledge graph to validate candidates; and fi-
nally uses an Al planner to compose the candidate flow. We
provide a video demonstration of the deployed system as part
of our submission.

Introduction

In the cloud and application driven internet of today, the
composition and integration of various application consti-
tuted workflows is an important problem. Many end-user
tasks cannot be accomplished without composing (connect-
ing) different applications together in an integration flow.
This task — akin to web service composition (Srivastava
and Koehler 2003; Hoffmann, Bertoli, and Pistore 2007) —
is a common development task for programmers and non-
programmers, and can benefit from automation (Gschwind
2002). Recently, enterprise industrial tools like App Con-
nect !, Zapier 2, and Microsoft Power Automate * have be-
gun to provide visual and form-based end-user program-
ming environments for application integration. Even in such
end-user programming environments, users still face signif-
icant barriers (Ko, Myers, and Aung 2004): (i) the signifi-
cant scale and diversity of the number of applications ren-
ders discovery a tedious and oftentimes impossible task; and
(ii) the variety and complexity of the inputs and outputs of
various applications introduces additional barriers to hand-
crafted composition by users.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"https://www.ibm.com/cloud/app-connect
2https://zapier.com
*https://powerautomate. microsoft.com

13155

Natural language has the potential to reduce barriers and
learning curves for complex tasks (Linder et al. 2013; Sales,
Handschuh, and Freitas 2017), like end-user programming
for web service and application composition. Even for users
with sufficient programming experience, natural language
generation of service composition tasks could increase the
efficiency of the interaction and composition by reducing
GUI interactions and by providing automatically gener-
ated flow candidates. In this paper, we introduce the Goal-
Oriented Flow Assist (GOFA) system — a system that gen-
erates web application integration flows from natural lan-
guage in the context of App Connect. GOFA automatically
produces application integration flows from a user utterance
specified as a natural language sentence. GOFA uses a three
step pipeline: 1) utterance parsing with AMR, 2) validation
of candidates with Knowledge Graph, and 3) composition
with an Al planner.

Background

Our system has been implemented within App Connect. App
Connect is a GUI-based tool that enables users to create ap-
plication integration flows. In these flows, users can connect
sequences of applications without having to learn or to fully
understand the APIs (Application Programming Interfaces)
underlying each application. A connector in App Connect
is a visual component that encapsulates connectivity to an
application; manipulates any data received; and optionally
transfers its output to another downstream connector. A con-
nector can react to a notification; read data; or modify data
by creating, updating or deleting a record in an application.
Some connectors may offer more than one record type or
business object that can be manipulated.

For example, a user can create a flow that does the fol-
lowing: when there is a new attendee on Eventbrite, create
a contact in HubSpot and add them to a subscription list on
MailChimp. We focus on trigger-action flows, which include
one trigger event and one or more actions that follow a trig-
ger. In this case the trigger is a notification from Eventbrite
that would transfer the new attendee as a contact to the Hub-
spot application and create a subscription for that attendee in
Mailchimp (for future notifications). We demonstrate a tool
that can enable users to initiate the creation of this type of
application integration flow with natural language.

Goal Oriented Flow Assist (GOFA)

The architecture of our system is shown in Figure 1. First,
the Abstract Meaning Representation (AMR) service parses
the sentence into a structured representation. Next, the In-
tegration Knowledge Graph (IKG) matches the parts of this
structured representation against concepts provided by App
Connect. Finally, the Al Planner uses all this information to
compose the final workflow.

~ ~

0 Input

Visual Upload for
Utterance / Web ur |Utterance Flow m N Edit to
(NL) (NL) (YAML) AppConnect
L YAML
~ " GOFA Server e IKG to PDDL ePlanto YAML ‘
[[[
Candidates
(Connectors, Business
Utterance AMR AMR Objects, Fields) PDDL Plan
Goals
AMR Integration
——| Service | — Knowledge Graph Planner

Figure 1: Architecture of the GOFA System.

Abstract Meaning Representation (AMR)

First, we use AMR (Banarescu et al. 2013; Naseem et al.
2019; Astudillo et al. 2020) to abstract away from syntac-
tic idiosyncrasies in the utterance and generate its represen-
tation as rooted, directed, edge-labeled, leaf-labeled graphs
that are easy to traverse. We then use this graph to resolve
the utterance into tasks using parts-of-speech and edge types
associating them. In our case, a task is primarily composed
of: a connector, the business object associated with that con-
nector, and the operation (action) that needs to be performed
on that business object. Once the task elements have been
resolved, we further use heuristics obtained from the graph
to establish this task as a trigger or a simple action that may
follow a trigger found in the set of all the tasks resolved from
AMR. The tasks obtained as a result of this exercise become
input for the IKG to find best matches.

Integration Knowledge Graph (IKG)

The IKG analyzes the metadata of the connectors avail-
able in App Connect and identifies common items between
different connectors representing them in a graph struc-
ture. This information contains a description of applications,
business objects those applications can handle, and opera-
tions allowed on those business objects.

The IKG is then enriched by discovering links between
similar entities, also referred to as latent links. For instance,
both DropBox and Microsoft OneDrive provide file objects
even if they may be named differently within their respec-
tive APIs. Latent link discovery is done using embedding
distance (Devlin et al. 2019) and Graph Neural Networks
(Sheikh et al. 2020) to capture the relationship of a given

13156

entity to its surroundings in the graph. The IKG thus re-
flects edges connecting applications through common busi-
ness objects and, therefore, the set of feasible flows. An aug-
mented list of candidates comes out of the IKG and on to the
next step in the GOFA pipeline. Additionally, after the rele-
vant parts have been identified in the previous step, the word
fragments are passed to the IKG to return the closest nodes
along with their neighborhood in the IKG, and an associated
relevance score. This information is subsequently consumed
by the planner.

Al Planner

To complete the flow composition process, we apply Al
planning techniques to generate one or more flows depend-
ing on the candidates provided by the IKG in the previous
step. The Al Planner that we use — Masterplan — is based off
of prior work in the automated planning community (Katz
2018; Katz et al. 2018a,b; Katz, Sohrabi, and Udrea 2020;
Katz and Sohrabi 2020). The planner receives the candi-
dates identified via the AMR and IKG steps; additionally,
it also receives the action schemas for each of the idenfitied
candidates. These schemas consist of the name of the ac-
tion (operation), as well as the ins and outs of each action.
This structure is very similar to web services, which have in-
puts and outputs that need to be matched up to produce valid
compositions. Similar to this, our Al planner utilizes all the
information provided to sequence the candidates into a valid
candidate flow. These proposed flows are then translated into
the native YAML format that is understood by App Connect
to render and allow further editing of the proposed flow.

User Interface

The final step in our system pipeline visualizes the flow can-
didate from the previous step as part of a visual interface.
To use this interface, users currently type utterances into a
textbox and click submit to generate their flow. There are
example utterances provided that users can reference. For
demonstration and debugging purposes, we currently also
provide a visualization of the AMR parsing and IKG map-
ping — these can be turned off in order to improve the return
time of the system. Future work includes providing explana-
tions and opportunities to repair generated flows. Addition-
ally, further work on human-AlI collaboration will be impor-
tant to bring the user’s mental model closer to the system ca-
pabilities, especially considering the three-part pipeline for
utterance-to-flow generation.

Demonstration

Our demonstration showcases all the components of the
GOFA pipeline: starting from the user input of the utterance,
all the way to the visualization of the candidate flow. We
utilize additional visualizations available in our current in-
terface as a way to dive deeper into the details of the AMR
(of interest to an NLP audience) and the IKG (of interest
to semantic web and graph representations audiences). Our
system — which is already deployed online — will be made
available so that conference participants can interact with the
system on their own; and test different varieties of inputs.

References

Astudillo, R. E.; Ballesteros, M.; Naseem, T.; Blodgett, A.;
and Florian, R. 2020. Transition-based Parsing with Stack-
Transformers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Find-
ings, 1001-1007.

Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt,
K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; and
Schneider, N. 2013. Abstract meaning representation for
sembanking. In Proceedings of the 7th linguistic annotation
workshop and interoperability with discourse, 178—186.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171-4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.

Gschwind, T. 2002. Adaptation and Composition Tech-
niques for Component-Based Software Engineering. Ph.D.
thesis, Technische Universitdt Wien.

Hoffmann, J.; Bertoli, P.; and Pistore, M. 2007. Web service
composition as planning, revisited: In between background
theories and initial state uncertainty. In AAAI, volume 7,
1013-1018.

Katz, M. 2018. Cerberus: Red-black heuristic for planning
tasks with conditional effects meets novelty heuristic and
enchanced mutex detection. Ninth International Planning
Competition (IPC-9): planner abstracts, 47-51.

Katz, M.; and Sohrabi, S. 2020. Reshaping diverse plan-
ning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34.06, 9892-9899.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018a. Delfi: Online planner selection for cost-optimal plan-
ning. IPC-9 planner abstracts, 57-64.

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Bounding Qual-
ity in Diverse Planning. HSDIP 2020, 49.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018b.
A novel iterative approach to top-k planning. In Twenty-
Eighth International Conference on Automated Planning
and Scheduling.

Ko, A. J.; Myers, B. A.; and Aung, H. H. 2004. Six learning
barriers in end-user programming systems. In 2004 IEEE
Symposium on Visual Languages-Human Centric Comput-
ing, 199-206. IEEE.

Linder, J.; Laput, G.; Dontcheva, M.; Wilensky, G.; Chang,
W.; Agarwala, A.; and Adar, E. 2013. PixelTone: A mul-
timodal interface for image editing. In CHI'I3 Extended
Abstracts on Human Factors in Computing Systems, 2829—
2830.

Naseem, T.; Shah, A.; Wan, H.; Florian, R.; Roukos, S.; and
Ballesteros, M. 2019. Rewarding Smatch: Transition-Based
AMR Parsing with Reinforcement Learning. In Proceedings
of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 4586-4592. Florence, Italy: Association
for Computational Linguistics.

13157

Sales, J. E.; Handschuh, S.; and Freitas, A. 2017. Semeval-
2017 task 11: end-user development using natural language.
In Proceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), 556-564.

Sheikh, N.; Qin, X.; Reinwald, B.; Miksovic, C.; Gschwind,
T.; and Scotton, P. 2020. Knowledge Graph Embedding
using Graph Convolutional Networks with Relation-Aware
Attention. In The 2nd International Workshop on Deep
Learning on Graphs: Methods and Applications (KDD-
DLG 2020).

Srivastava, B.; and Koehler, J. 2003. Web service
composition-current solutions and open problems. In ICAPS

2003 workshop on Planning for Web Services, volume 35,
28-35.

