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Abstract

Hyperspectral imaging is used for a wide range of tasks from
medical diagnostics to crop monitoring, but traditional im-
agers are prohibitively expensive for widespread use. I pro-
pose a tunable lens with varying amounts of defocus paired
with a 31-channel spectral filter array mounted on a CMOS
camera. These images are then fed into a reconstruction net-
work to recover the full 31-channel hyperspectral volume
from a few encoded images with different amounts of defo-
cus.

Introduction
Hyperspectral imaging is a technique that collects and anal-
yses light from across the electromagnetic spectrum rather
than categorizing pixels into red, green, and blue (RGB) val-
ues. Hyperspectral imaging is useful for applications rang-
ing from medical diagnostics to agricultural crop monitor-
ing; however, traditional scanning hyperspectral imagers are
prohibitively slow and expensive for widespread adoption.
Snapshot hyperspectral cameras aim to capture a hyperspec-
tral volume in a single encoded image. In this project, I study
the design of a new hyperspectral camera that is compact
and inexpensive but able to capture high resolution hyper-
spectral volumes. I propose using a tunable lens that can
rapidly change focus paired with a 31-channel spectral fil-
ter array mounted on a CMOS camera. By rapidly taking a
burst of several images with varying defocus, I hope to en-
code both high resolution spatial and spectral information.
These images will then be fed into a reconstruction network
that recovers the full 31-channel hyperspectral volume from
a few encoded images (Monakhova et al. 2020).

Methods
Though a reconstruction method could be developed and
tested on a hand-picked prior, using machine learning to
simulate the camera’s behavior allows us to generate a bet-
ter prior on the scene and craft a better reconstruction algo-
rithm (Baek et al. 2021). To simulate the camera’s behavior
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Figure 1: A) Ground truth. B) Sensor. C) Lens. D) Top:
Blurry PSF, Botton: Sharp PSF. E) Simulated data.

and generate our prior, I use a forward model, the outputs of
which I use to train the reconstruction network.

Forward Model
A forward model, generally, is used to simulate an outcome
or, as in this case, to produce data from some input. Here, the
forward model serves as a simulation of the physical cam-
era’s behavior by taking our assumed ground truth, the orig-
inal hyperspectral images, and converting them into single-
dimensional color channel images with varying amounts of
defocus. The forward model convolves the two point spread
functions with each image. In each projection, the 31 color
channel image was projected into single-dimensional color
channel space. The two resulting tensors were stacked for a
final input with dimensions of (256, 256, 2).

Reconstruction
The reconstruction model takes the simulated images, de-
picted in Figure 1, and reconstructs them into a 31 color
channel hyperspectral volume.

Model Architecture & Loss Two model architectures
were considered: a two-dimensional U-Net and a three-
dimensional U-Net. A U-Net is comprised of a compres-
sive path and an expansive path. The compressive path fol-
lows a typical CNN architecture with downsampling, while
the expansive path consists of upsampling the feature chan-
nels. The distinction between a two-dimensional U-Net and
a three-dimensional U-Net is the dimensions of the convolu-
tions.
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Figure 2: A) Ground truth. B) Reconstruction model. C) Hy-
perspectral output.

Two loss functions were tested: L1 and LPIPS. The L1
loss function was used as a standard baseline to be com-
pared to the use of the relatively novel LPIPS loss. LPIPS,
Learned Perceptual Image Patch Similarity, loss uses deep
network activations to measure perceptual similarity (Zhang
et al. 2018).

Data
The raw data is comprised of 50 outdoor images under day-
light and 27 indoor images under artificial and mixed illu-
mination from Harvard’s Real-World Hyperspectral Images
Database (Chakrabarti and Zickler 2011).

In order to generate a larger training sample and to im-
prove the robustness of the model, I augmented the original
raw images. Each image was cut into 20 [256, 256] subsec-
tions while maintaining all 31 color channels. Each of those
subsections was then rotated 90, 180, and 270 degrees. Of
all those images, I selected a subset of 5000 images, each of
size [256, 256, 31], for our learning process.

Results
The highest performing model on images without added
noise was the 2D U-Net with L1 Loss, which achieved a fi-
nal test loss of 0.000988. The highest performing model on
images with added Gaussian noise was the 3D U-Net with
L1 Loss, which achieved a final test loss of 0.00178.

Discussion
In future, I hope to complete testing on all loss, model archi-
tecture, and added noise combinations. I hope to compare
this work to others in the field, such as Spectral Diffuser-
Cam (Monakhova et al. 2020), before continuing to test ad-
ditional model architectures and losses. While the model is
able to reconstruct images well enough to be easily recog-
nisable by the human eye, further research is required before
any conclusion can be drawn about the best implementation
to complement a CMOS camera.
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Loss 2D U-Net 3D U-Net Noise

L1 0.00099 N/A No Noise
L1 0.0018 0.0018 Gaussian

LPIPS 0.0020 N/A No Noise
LPIPS 0.020 0.019 Gaussian

Table 1: Minimal Losses on Test Set

Figure 3: A) Original image slice. B) Image with sharp PSF.
C) Image with sharp PSF and 0.1 Gaussian noise. D) 2D
U-Net with noise and L1 loss. E) 2D U-Net without noise
and L1 loss. F) 2D U-Net without noise and LPIPS. G) 3D
U-Net with noise and L1 loss. H) 3D U-Net with noise and
LPIPS.
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