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Abstract

Many real-world networks evolve over time, which results
in dynamic graphs such as human mobility networks and
brain networks. Usually, the “dynamics on graphs” (e.g.,
node attribute values evolving) are observable, and may be
related to and indicative of the underlying “dynamics of
graphs” (e.g., evolving of the graph topology). Traditional
RNN-based methods are not adaptive or scalable for learn-
ing the unknown mappings between two types of dynamic
graph data. This study presents a AD-ESN, and adaptive echo
state network that can automatically learn the best neural net-
work architecture for certain data while keeping the efficiency
advantage of echo state networks. We show that AD-ESN
can successfully discover the underlying pre-defined map-
ping function and unknown nonlinear map-ping between time
series and graphs.

Introduction

Graphs are widely utilized as universal representations of
many real-world entities, such as social networks, brain
functional connectivity, and molecule topology. These real-
world networks typically involve patterns to their dynamics,
which can usually be categorized as “dynamics on graphs”
and “dynamics of graphs”. The former focuses on the time-
evolving patterns of the entities’ activity, which can be
demonstrated directly as the observed node attributes, while
the latter emphasizes the underlying change in the topologi-
cal structure of the graph. Existing methods are all designed
under strong priors for specific assumptions for the graph
definition, for example, interaction (Tupikina et al. 2016),
entropy (Hlinka et al. 2013), and causal(Kipf et al. 2018).

This study aims to solve the following significant techni-
cal challenges: 1) Difficult in jointly considering the correla-
tion of node and edge dynamics and their transformations. 2)
Lack of efficient and scalable framework for graph dynam-
ics encoding in large time duration with high resolution.3)
Dilemma between model learnability and efficiency.

To address the above challenges, we present a novel
framework to learn the mapping from dynamics on graphs
to dynamics of graphs, by proposing a dynamic graph trans-
formation model driven by a new adaptive deep echo-state
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architecture. Specifically, a new deep architecture of echo-
state network is proposed to efficiently encode the long time
series of node attributes into dynamic edge embeddings. To
further cope with the large search space of neural archi-
tectures of deep echo-state network, we formalize the deep
echo-state neural architecture and propose new architecture
search techniques.

Methods

The base model of AD-ESN is the echo state network (ESN)
(LukoSevicius and Jaeger 2009) based encoder which can be
considered as a recurrent neural network where all of the
weights are randomized and untrained. ESN does not learn
the representation of the input time series. It is directly ap-
plied to the input and maps the input into a high-dimensional
space. Different from vanilla ESNs, the input and internal
node wiring patterns, where the weights are not zero, are for-
mulated as the search space of deep ESN architectures and
are optimized with neural architecture search (NAS). ESN
and NAS together enable us to learn meaningful embeddings
of arbitrary node signals in a graph.

After the “dynamics on graphs” are transformed into hid-
den represnetations with ESN, we apply an attention-based
dynamic graph topological decoder that transforms the time
series embeddings to dynamic graph topologies.

In the NAS stage, we decouple the deep ESN-based en-
coder and the graph topological decoder, then define the
a surrogate loss function for the prediction performance
of the ESN-based encoder. The architecture of the ESN-
based encoder is optimized through the surrogate loss by
using Gumbel-Softmax and gradient descent. The the train-
ing stage, the weights of the deep ESN-based encoder are
randomized only on the edges determined in the NAS stage.
The output weights in the deep ESN-based encoder and all
the weight in the attention-based dynamic graph topologi-
cal decoder are optimized as normal. Technical details are
described in supplementary file.

Experiments
Datasets

We evaluate the effectiveness of the proposed model on two
sythetic datasets. The synthetic chaotic time series data are
generated with ground-truth signal to structure mappings.
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Figure 1: Scalibility Analysis. The proposed AD-ESN achieves better scalability than the comparison method LSTM-Attention.

The synthetic weakly coupled time series data are gener-
ated with ground-truth structure to signal mappings. The two
datasets evaluate the proposed model’s performance for rea-
soning and reverse-reasoning from “dynamics on graphs” to
“dynamics of graphs”.

Experiment Results

_\/\’_‘/
.\./.\.—-\.
'\.—.\o—o—o

3 10 30 100
Number of nodes

_\/\/—
.\./.\.—-\.
.\'—‘\0—0—0

3 10 30 100 300 1000
Number of nodes

0.04

RMSE

0.03

NRMSE

0.03

~@— AD-ESN  —i— LSTM-Attention —— ESN-Attention ESN-Siamese

Figure 2: Performance comparison on Syn-Chaotic data.

As the Syn-Chaotic data is the easiest to generate, we
compared the performance of AD-ESN along with three
baseline models on this dataset, with a number of nodes
ranging from 3 to 1,000. For the baseline methods, we re-
place the deep ESN encoder module in AD-ESN with LSTM
(LSTM-Attention) and vanilla ESN (ESN-Attention), and
replace the attention module with Siamese network. As is
shown in Fig. 2, the proposed AD-ESN model achieves the
best performance.

On the Syn-Coupled dataset, as shown in table 1, LSTM-

Method RMSE NRMSE MAE NMAE
LSTM-Attention  0.058 0.146 0.050 0.125
ESN-Attention 0.060 0.151 0.051  0.129
ESN-Siamese 0.602 1.505 0.599  1.498
AD-ESN 0.057 0.144 0.050 0.125

Table 1: Results on Syn-Coupled Data
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Attention and AD-ESN got the same results. It means that
the optimized ESN-based encoder can achieve the same per-
formance as LSTM but with reduced computation.

Speed and high scalability are two significant advantages
of ESNs. Fig. 1 presents a training time comparison be-
tween AD-ESN and LSTM-Attention. It is clear to see that
the training time of AD-ESN increases much slower than
LSTM-Attention when the scale of data increases. It is worth
noting that the NAS stage of AD-ESN also takes time to train
but it’s considered as a “once and for all” hyper parameter
tuning process that runs automatically. Besides the training
time, AD-ESN is also much more scalable in terms of GPU
memory usage. We have a complexity analysis for both time
and storage in the supplementary file.

Conclusion and Future Work

We demonstrated that AD-ESN is capable of learning vari-
ous of “dynamics on graphs” to “dynamics of graphs” map-
pings with minimum domain knowledge. We argue that
ESNs can be powerful modules when they are pre-optimized
with NAS while keeping the great scalability advantage. Fu-
ture work comprises conducting more comparisons on both
synthetic data and real-world data.
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