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Abstract

Information cascade is typically formalized as a process
of (simplified) discrete sequence of events, and recent ap-
proaches have tackled its prediction via variants of recurrent
neural networks. However, the information diffusion process
is essentially an evolving directed acyclic graph (DAG) in the
continuous-time domain. In this paper, we propose a trans-
former enhanced Hawkes process (Hawkesformer), which
links the hierarchical attention mechanism with Hawkes pro-
cess to model the arrival stream of discrete events continu-
ously. A two-level attention architecture is used to parameter-
ize the intensity function of Hawkesformer, which captures
the long-term dependencies between nodes in graph and bet-
ter embeds the cascade evolution rate for modeling short-term
outbreaks. Experimental results demonstrate the significant
improvements of Hawkesformer over the state-of-the-art.

Introduction

Sharing content through social media platforms such as
Twitter and Weibo has become a main channel to express
individual opinions. The initial tweet, along with the subse-
quent retweets forms an information cascade (Zhou et al.
2021). Predicting the size of an information cascade after
a certain time-period is one of the typical tasks. The core
challenge is how to model the underlying diffusion process
governing the popularity dynamics of information cascades.

Prior Temporal Point Processes (TPPs) based methods
and Deep Learning-based approaches especially recurrent
neural network (RNN) based sequential models exhibit three
notable drawbacks: (i) they use simple intensity functions
and make strong assumptions on the diffusion mechanism;
(ii) the irregular time intervals between events and their or-
der are important to describe the diffusion dynamics, how-
ever, they are difficult to capture in a way from discrete-time
domain; (iii) they cannot fully exploit the diffusion process
of DAGs and capture the long-term dependency due to the
intrinsic limitations of recurrent models; and (iv) previous
works (Tang et al. 2021) have shown that information cas-
cades with short-term outbreaks are more likely to be pop-
ular in the future. They cannot capture such trends intrinsi-

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13103

cally and RNN-based models are prone to face error accu-
mulation issue, especially when the cascade size is large.

Methodology

Let C' denote an information cascade with a retweet his-
tory H = {(t;,u;)}}—, with t; € [0,t,), where each pair
(tj,u;) corresponds to infected user u; occurs at time ¢;. L
denotes the number of retweets that have occurred up to the
observation time t,. Generally, we focus on the information
cascade prediction as a complex and nonlinear regression
task, predicting the popularity size P(t,|H) of a cascade
over a period of time, where ¢, is the time of prediction.

Hawkesformer provides an elegant mathematical tool
for modeling event occurrence in continuous-time domain
and takes the underlying DAG into consideration, which
links a two-level attention (Vaswani et al. 2017) framework
to parameterize the intensity function of Hawkes process
(Hawkes 1971). We characterize the long-term dependence
as h(t) and short-term outbreak as 1¥(t). Given an infor-
mation cascade C' — e.g., a tweet, and its retweet history
H = {(t;j,u;)}f=; — we model the continuous dynamics
of temporal point processes, with the following conditional
intensity function:

A0, H) = f(a — +w; Thit)) +w2T19(tj)) (1)
H/J_/ —_——— ——
current long-term short-term

where 6 denotes the model parameters; retweet time ¢ is de-
fined on interval [t;,¢;11); and f(-) is a softplus function to
constrain the intensity function to be positive. The first term
current indicates the evolutionary process in the continuous-
time domain; w1y, we are the learned weights for long-term
dependency and shot-term outbreak at time ¢ respectively;
and A(t) denotes the arrival rate of a retweet at time ¢.
Specifically, at the first level, we design a long-term de-
pendency module to dynamically capture the diffusion pro-
cess, where we make a primary/non-primary path assump-
tion to adaptively integrate the diffusion process on the un-
derlying DAG, see Figure 1. This also enables each node
attending the cascade at any position to update its current
hidden states. At the second level, we design a short-term
outbreak module which considers the evolution rate of a cas-
cade and learns the local patterns in a time-slice window.
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Figure 1: Our primary and non-primary assumption: an ex-
ample for current node uy. Purple (gray) dots denote nodes
on the primary (non-primary) path.

Prediction and Optimization: With the proposed inten-
sity function, the likelihood of observing an event at time ¢
and the popularity prediction are respectively defined as:

p(t | Hy) = At | Hy) exp ( - /tt AT | HT)dT) 2)
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where t,, is the prediction time and ¢, is the observation time.

We concatenate the last hidden states of two parts h (¢7,)
and ¥(t1,), plus the integral term A and feed it to a fully-
connected layer to get predicted incremental popularity g.
Suppose we have N information cascades, the joint likeli-
hood of observing retweets up to an observation window ¢,
and our optimization loss are:

to
[ a1
t

1

UC) = logA(t; | ;) -

“

retweet non-retweet

N
. 1 .
£y 36) = > ((ogy yi—log, 5:)*~log £(C)
=1

Experiment

We compare several strong baselines over Weibo and ASP
datasets with evaluation metrics MSLE and MAPE. The ob-
servation (prediction) times of Weibo and APS datasets are
set to 0.5 (24) hour and 5 (20) years, respectively. As shown
in Table 1, the superior performance of Hawkesformer lies in
its consideration of both long-term dependencies and short-
term outbreaks in continuous-time domain. We also ver-
ify their benefit by ablating Long Dependency and Short
Outbreak module respectively, denoting — Long and —
Short. As visualized in Figure 2, the left shows our model
pays more attention to the primary path, which confirms
our assumption that primary path is more important; and
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Weibo APS

Model
MSLE MAPE MSLE MAPE
SEISMIC 4.678 0412 1736 0.325
DeepHawkes 2.556 0320 1.576  0.295
VaCas 2.032 0246 1.337 0279
TempCas 2.135 0263  1.321 0.272
Ours 1.825 0.223 1179  0.206
- Long 2907 0359 1.616  0.293
- Short 2.135 0.261 1.328  0.237

Table 1: Overall prediction performance comparison.
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Figure 2: Attention pattern visualization. Left: short diffu-
sion (ID: 85840); Right: popular diffusion (ID: 34484).

the right shows our attention module is also able to model
the both short-term and long-term dependencies for differ-
ent nodes located in different position and/or time.
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