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Abstract

Multi-class classifier training using traditional meta-
algorithms such as the popular One-vs-One (OvO) method
may not always work well under cost-sensitive setups. Also,
during inference, OvO becomes computationally challenging
for higher class counts K as O(K?) is its time complexity.
In this paper, we present Opt-OvO, an optimized (resource-
friendly) version of the One-vs-One algorithm to enable high-
performance multi-class ML classifier training and inference
directly on microcontroller units (MCUs). Opz-OvO enables
billions of tiny IoT devices to self learn/train (offline) after
their deployment, using live data from a wide range of IoT
use-cases. We demonstrate Opt-OvO by performing live ML
model training on 4 popular MCU boards using datasets of
varying class counts, sizes, and feature dimensions. The most
exciting finding was, on the 3 $ ESP32 chip, Opt-OvO trained
a multi-class ML classifier using a dataset of class count 50
and performed unit inference in super real-time of 6.2 ms.

Introduction

The majority of IoT devices such as smart plugs, thermostats,
fitness bands, etc. have MCUs as their brain. Ultra-low-power
machine learning (TinyML) is a fast-growing research area
committed to democratizing ML for commodity MCU-based
devices. Currently, MCUs are not capable to train full ML
models due to their resource constraints such as limited mem-
ory, low operations per second, parallel processing inability,
etc. The top TinyML studies are rapidly advancing only to-
wards the efficient ML inference on MCUSs, where the model
is first trained on a data center GPU using a historic dataset,
then C-code for the trained model is generated and flashed
on MCUs. This process impedes the flexibility of billions
of deployed ML-powered IoT devices as they cannot learn
unseen data patterns (static intelligence) and are impossi-
ble to adapt to dynamic scenarios. In this paper, we present
Opt-OvO, a contribution to the TinyML domain by enabling
high-performance training and inference on MCUs.

Optimized One-vs-One Algorithm (Opt-OvO)
Currently, trainable algorithms are attached to an existing
model deployed on MCUs (Cai et al. 2020) to perform on-
line/continuous learning. The training of a full multi-class

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13059

ML classifier on commodity MCUs, using any existing al-
gorithms is currently not feasible. When analyzing the OvO
method, we discovered that the OvO’s k(k — 1) /2 base learn-
ers/classifiers, for a few datasets, contain classifiers that lack
significant contributions to the overall multi-class classifica-
tion result - this occurs when a classifier is already within a
big interdependent group. Hence in Opt-OvO, we propose
to identify and remove the less important base classifiers to
improve the resource-friendliness of OvO.

Opt-OvO Algorithm Summary. In Stepl, the k(k — 1)/2
base classifiers b; belonging to B are trained with the un-
seen/fresh local data stream using base learner of choice like
SVM, LDA, followed by evaluation of all thus trained base
classifiers. Here, each base classifiers b; produces a binary
output € {—1, +1} for each input vector z(™). In Step2, for
all test data, we store outcomes of base learners R; in Rp.
Then, we create a correlation matrix C,, using the output of
base classifiers stored in Rp. From C,,,, we find Corrgqss,
which is the group of highly correlated base classifiers. In
Step3, from the groups of this found correlated base learners,
we create a Probability Table (PT) of each group to know
the joint probability of the outcome Rp. These PTs provide
the joint probabilities of the outcomes Rp and the groups
of correlated classifiers b o C Correqss When evaluating
using new/unseen data. In Step4, finally, we classify for any
new multi-class input z(™ by using thus produced C'orrgqss
and set of base classifiers B.

Experiments and Results. We show audience the ML model
training on MCU in action with high performance and accu-
rate results transparently from the Serial port of MCUs. We
select datasets D1, D2 using which Opr-OvO ! trains classi-
fiers on 4 tiny MCU boards B1-B4. The training performance
is presented in Figure 1. a-b. Here, even on the slowest B2,
Opt-OvO trained using 10 classes D2 in 29.6 sec and 7.6 sec
using the 15 classes data of D1. The 3$ ESP32 B1 trained in
0.4 sec for D2 and in 4.7 sec using the 50 classes data of D1.
We present inference performance in Figure 1. c. Here, even
for high 64 dimensional D2, Opt-OvO achieves real-time unit
inference of 11.8 ms, even on the slowest B2. The cheapest 3
$ B1 was able to infer for a 50 class input in 6.2 ms. Overall,
Opt-OvO performed unit inference for multi-class data in su-

'Opt-OvO implementation, performance report, etc: https://
github.com/bharathsudharsan/Optimized-One- vs-One- Algorithm



a. Class count vs train time for D1- Australian Sign Language signs dataset (feature dimension = 22).
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b. Class count vs train time for D2- MNIST c. Unit infer time for Digits dataset (left), Sign Language dataset (right).
Handwritten Digits dataset (feature dimension = 64).
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Figure 1: High performance ML model training and inference on MCU boards using Opt-OvO.

per real-time, within a second, across B1-B4. We also report
that Opt-OvO trained models to achieve similar accuracies as
the Python scikit-learn models.

Opt-OvO Applications

During the IoT device programming phase using Arduino
IDE, Atmel Studio, Keil MDK, etc., Opt-OVO code needs to
be fused with the use-case IoT application. Then, when the la-
beled data fields that correspond to the low accuracy inference
performed are passed to Opt-OVO, it can train and update
the current classifier version with a superior performance
version. Opt-OVO is also applicable to other self-learning
settings where it can locally train a model from scratch with-
out needing cloud-based ML training services or proprietary
datasets. Here, instead of passing only the data that corre-
spond to the low accuracy inference, the complete live data
stream should be cleaned, labeled, and passed to Opt-OVO.
Following are example self-learning use cases.

Self-learning HVACs for Superior Thermal Comfort. Cur-
rently, HVACs in smart buildings control internal environ-
ment using a standard strategy. Such a one-size-fits-all ap-
proach can fail to provide a superior level of thermal comfort
for people because every infrastructure has differences (e.g.,
building size, thermal confinement). In this scenario, if the
HVAC control edge devices are equipped with Opz-OVO, they
can learn the best strategy (offline) to perform tailored control
of the HVAC system for any building type, eliminating the
need to find and set distinct strategies for each building.

Conclusion and Future Work

We presented Opt-OvO algorithm, which achieves reduced
computation than OvO by identifying and removing base
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classifiers that lack significant contributions to the overall
multi-class classification result. As demonstrated, Opt-OvO
enables high-performance ML model training and inference
on MCUs. Opt-OvO can be used as a key component to en-
able practicing split-learning, distributed ensemble learning,
federated learning, centralized learning by involving even
the resource-constrained devices in complex ML-based learn-
ing tasks. In future work, similar to the TinyML benchmark
(Sudharsan et al. 2021), we plan to use more sophisticated
datasets and conduct extensive onboard training plus infer-
ence experiments involving the latest pocket-friendly FPGAs,
SoCs and AIOT boards.
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