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Abstract
Predicting and quantifying the impact of traffic accidents
is necessary and critical to Intelligent Transport Systems
(ITS). As a state-of-the-art technique in graph learning, cur-
rent graph neural networks heavily rely on graph Fourier
transform, assuming homophily among the neighborhood.
However, the homophily assumption makes it challenging to
characterize abrupt signals such as traffic accidents. Our pa-
per proposes an abrupt graph wavelet network (AGWN) to
model traffic accidents and predict their time durations using
only one single snapshot.

Introduction
One minute reduction in the duration of traffic accidents pro-
duces a gain of $65 US dollars per accident (Adler, van
Ommeren, and Rietveld 2013). Traffic accidents generally
cause slower speeds, longer trip times, and increased vehic-
ular queuing. In this paper, we focus on the early forecast
of traffic accident impact using a single snapshot. Specif-
ically, we predict the time duration of a traffic accident right
after it happens. However, current studies suffer from several
shortcomings: (1) Existing graph Fourier-based methods can
hardly handle abrupt signal. (2) Current graph wavelets neu-
ral networks fail to incorporate the abrupt signals with spa-
tial dependency. (3) Theoretical and empirical support for
graph wavelet design on abrupt graph signals is missing. In
this paper, we propose to use graph wavelet (GW), which
has theoretical superiority over graph Fourier (GF) for ac-
cident signal modeling and shows significant advantages in
predicting real-world traffic impact. ( The code is available
at https://github.com/gm3g11/AGWN )

Method: AGWN
Problem Setup
The task Early Forecast of Traffic Accidents with a Signal
Snapshot is defined as:

Y = f(G,X), (1)

where G is the graph structure, X ∈ RN×F represent the
graph signal in a single snapshot right after the accident, in-
cluding traffic information (e.g., speed or occupancy rate).
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F denotes the feature dimension of each node, and Y means
the duration time of traffic accidents, i.e., from when a traf-
fic accident happens to when it is cleared. f is the function
to learn.

The Proposed Model
We analyze the difference of graph Fourier and graph
wavelet in terms of linear separability in accident traffic as
an abrupt signal:

(1) Linear separability of graph Fourier is smaller than that
of graph wavelet transform:

Theorem 1 Let X be an abrupt graph signal, and J be the
linear separability by Fisher score of X, then we have:

JGW > JGF ,

where JGW and JGF are Fisher score of graph wavelet and
graph Fourier transform of X respectively.

(2) As a conclusion, we propose to employ a Mexican hat
kernel in graph wavelet that allows the model to detect an
abrupt signal. This is achieved by ensuring that its integral is
zero , which is different from existing graph neural networks
with N-AGW (e.g., exponential function) (Xu et al. 2019;
Donnat et al. 2018). There are two reasons that support this
design: Reason 1: Sensitive for Abrupt Signal. Reason 2:
Guarantee for Accurate Recovering. In the classical Contin-
uous Wavelet Transform (CWT), the admissibility condition
is a key that determines whether the CWT can be inverted.
Therefore, it ensures that a signal can be decomposed and
recovered without any information loss.

Figure 1 depicts the multi-scale architecture of AGWN .
The input layer is responsible for managing a single snap-
shot observation. The multi-scale wavelets equipped with
the Mexican hat kernel initiate and transform the input at the
middle layer. The output layer is responsible for predicting
the duration using the intermediate representations.

Evaluation on Real-world Data
Our experiments are conducted on real-world data compiled
with Caltrans Performance Measurement System (PeMS),
Topologically Integrated Geographic Encoding and Refer-
encing (TIGER) by U.S. Census Bureau’s Master Address
File, and 8574 traffic accident records are collected from
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Figure 1: Illustration of AGWN’s Architecture

the Regional Integrated Transportation Information System
(RITIS). Baselines include popular graph neural networks
such as GCN (Kipf and Welling 2017), ChebNet (Deffer-
rard, Bresson, and Vandergheynst 2016), GAT (Veličković
et al. 2018), GraphSAGE (Hamilton, Ying, and Leskovec
2017), Graph Isomorphism Network (GIN) (Hu et al. 2019),
Simplifying GCN (SGC) (Wu et al. 2019). Graph Wavelet
Neural Network (GWNN) (Xu et al. 2019) is also included
for showing the advantage of AGWN over non-AGWN. The
following two Tables 1 and 2 record the experiment errors
on two random subgraphs.

Experimental Results Analysis. Table 1 and the table 2
show 5-fold experiment results.

Method MAE RMSE MAPE
GAT 10.60± 3.38 8.37± 1.91 24.02%± 12.79%
SGC 7.61± 2.87 8.05± 1.97 21.77%± 17.79%
GIN 11.85± 2.61 9.9± 2.01 18.02%± 14.26%

GWNN 11.79± 3.14 9.25± 2.45 19.34%± 7.30%
GCN 7.54± 3.27 7.98± 1.94 20.65%± 16.67%

GraphSAGE 10.6± 3.38 8.37± 1.91 24.02%± 12.79%
ChebNet 7.51± 3.3 6.94± 1.97 19.36%± 18.09%
AGWN 6.37 ± 2.41 5.70 ± 1.11 14.64%± 5.41%

Table 1: Accident impact prediction the first subgraph

Method MAE RMSE MAPE
GAT 11.26± 3.42 7.45± 2.5 25.77%± 13.54%
SGC 7.04± 3.6 7.79± 2.59 11.52%± 14.15%
GIN 15.10± 3.84 10.76± 2.81 21.22%± 10.56%

GWNN 13.81± 4.05 10.38± 2.85 22.00%± 6.70%
GCN 7.54± 3.56 7.93± 2.43 16.99%± 13.11%

GraphSAGE 7.19± 3.58 5.66± 2.46 13.37%± 13.79%
ChebNet 7.37± 3.61 6.94± 2.55 15.93%± 13.60%
AGWN 6.97 ± 2.98 4.64 ± 2.12 6.64%± 2.78%

Table 2: Accident impact prediction the second subgraph

ActualDuration 108.00min
AGWN 107.01min
GCN 113.74min

ChebNet 110.77min
GAT 170.81min

GraphSAGE 101.34min
GIN 88.54min
SGC
GWNN

105.07min
68.74min

accident 1 accident 2

ActualDuration 59.00min
AGWN 62.15min
GCN 49.42min

ChebNet 49.81min
GAT 139.83min

GraphSAGE 45.44min
GIN 68.54min
SGC
GWNN

38.88min
60.47min

Figure 2: Case study: (Accident 1) and (Accident 2)

Case Study. Figure 2 depict two accident cases accident
1 (latitude/longitude is 34.078035/-117.62377) and accident
2 (34.061758/-117.179004) happened in the first subgraph.
AGWN has a great balance between robust and accurate.

Conclusions
This article aimed to investigate the early forecasting of traf-
fic accident impact using graph learning and a single snap-
shot. We quantified the linear separability of main graph
learning techniques such as graph Fourier and graph wavelet
and determined the ideal configuration for graph wavelet.
As such, we developed an end-to-end graph neural network,
AGWN , to characterize traffic incidents. Promising results
and a detailed study using real-world data confirmed the al-
gorithm’s usefulness and efficiency in predicting the impact
of traffic accidents early on.
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