
Code Representation Learning Using Prüfer Sequences (Student Abstract)

Tenzin Jinpa and Yong Gao
Department of Computer Science

University of British Columbia, Okanagan
Kelowna, BC, Canada

tenzin.jinpa@ubc.ca , yong.gao@ubc.ca

Abstract
An effective and efficient encoding of the source code
of a computer program is critical to the success of
sequence-to-sequence deep neural network models for
code representation learning. In this study, we propose
to use the Prüfer sequence of the Abstract Syntax Tree
(AST) of a computer program to design a sequential
representation scheme that preserves the structural in-
formation in an AST. Our representation makes it pos-
sible to develop deep-learning models in which signals
carried by lexical tokens in the training examples can be
exploited automatically and selectively based on their
syntactic role and importance. Unlike other recently-
proposed approaches, our representation is concise and
lossless in terms of the structural information of the
AST. Results from our experiment show that prüfer-
sequence-based representation is indeed highly effec-
tive and efficient.

Introduction
To use sequence-to-sequence(seq2seq) deep learning mod-
els for program understanding, the source code of a com-
puter program has to be represented as a sequence of to-
kens. Unlike natural languages, which are unstructured and
noisy, computer codes are highly structured, and it is thus
critical to encode as much as possible the structural infor-
mation in a seq2seq learning model and to take advantage
of the encoded information in the training. For example,
the Structure-Based Traversal (SBT) by Hu et al. (2020)
represents AST by a sequence of syntactic tokens and is
generated by a depth-first traversal of the AST with paren-
theses pairs to retain the sub-tree information. The model
Code2Seq (Alon et al. 2019) uses the concatenation of the
token sequences along the paths between pairs of terminal
nodes in an AST to represent a computer program. While
these methods and models have been shown to be effective in
comparison to “flat” sequence of tokens of code, the choices
of the traversal method and the ordering of the tokens appear
to be still arbitrary.

We propose to use the Prüfer sequence of the AST
of a computer program to design a sequential representa-
tion scheme that preserves the structural information in an

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

AST. Our representation makes it possible to develop deep-
learning models in which signals carried by lexical tokens
in the training examples can be exploited automatically and
selectively based on their syntactic role and importance. Un-
like other recently-proposed approaches, our representation
is concise and lossless due to the fact that an AST can be
uniquely reconstructed from its Prüfer sequence.

Prüfer Sequence of an AST
The Prüfer sequence (West 2000) of a node-labeled tree is a
sequence of node labels from which the tree can be uniquely
reconstructed. Given a tree T with n nodes labeled by the
integers {1, · · · , n}, its Prüfer sequence is a sequence of
(n − 2) node labels (i.e., integers) and can be formed by
successively removing the leaf with the smallest label and
including the label of its parent as the next node label in the
Prüfer sequence. The process stopped when only two nodes
were left in the tree.

Since ASTs are labeled by syntactic and lexical tokens,
we use a fixed mapping to map each token in the given token
set to a unique integer and use it as the integer label of the
AST-node that is labeled by the token. The Prüfer sequence
constructed from this integer-labeled AST is then mapped
back to a sequence of syntactic tokens, which we call the
“syntactic Prüfer sequence” and is used as part of the input
sequence to our learning model.

Advantages of Learning with a Prüfer-Sequence
Representation
The syntactic Prüfer sequence can be regarded as a “trans-
formed” and “quantified” version of an AST and the corre-
sponding source code where
1. the frequency with which a syntactic token appears is de-

cided by the degree of the corresponding AST node and
quantifies the “importance” of the token (measured the
size of the code block it controls);

2. the positions of the appearances of syntactic tokens in
the Prüfer sequence are decided by the position of the
corresponding node in the tree; and

3. a lexical token labeling a leaf node of an AST never ap-
pears in the Prüfer sequence, but its “significance” can be
measured by the syntactic importance of the parent of the
leaf node.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12977

Model S-BLEU C-BLEU METEOR ROUGE-L
Lexical-Token-Only Model 36.21 27.30 19.01 40.78
Code2Seq (Alon et al. 2019) 20.72 4.56 10.21 20.63
TL-CodeSum (Hu et al. 2018) 37.20 28.43 19.64 41.29
BFS-Hybrid-DeepCom (Hu et al. 2020) 37.98 29.08 19.72 41.03
Hybrid-DeepCom (Hu et al. 2020) 38.19 29.28 19.87 41.15
Our Model (Prüfer Encoder + Hu’s Source Encoder) 38.38 (0.5%) 29.43 (0.5%) 20.13 (1.3%) 41.82 (1.3%)
Our Model (Prüfer Encoder + Context Encoder) 39.67 (3.3%) 31.01 (5.7%) 21.01 (5.6%) 43.45 (5.1%)

Table 1: Effectiveness of Models based on Machine Translation metrics for Dataset-1

Model S-BLEU C-BLEU METEOR ROUGE-L
Lexical-Token-Only Model 9.21 3.07 7.96 19.84
Code2Seq (Alon et al. 2019) 2.27 0.30 3.5 12.23
BFS-Hybrid-DeepCom (Hu et al. 2020) 13.41 3.47 7.29 20.42
Hybrid-DeepCom (Hu et al. 2020) 15.02 3.7 8.27 18.01
Our Model (Prüfer Encoder + Hu’s Source Encoder) 15.50 (3.15%) 3.85 (3.97%) 8.9 (6.925%) 20.79 (1.8%)
Our Model (Prüfer Encoder + Context Encoder) 16.15(7.02%) 4.49 (19.29%) 9.72 (15.05%) 24.73 (19.09%)

Table 2: Effectiveness of Models based on Machine Translation metrics for Dataset-2

This is contrary to all the other recently proposed represen-
tations, where all tokens are treated equally, and their po-
sitions only partially capture their roles in the AST. Other
properties that distinguish our representation are as follows.

1. A Uniqueness and Lossless Representation
Our Prüfer-sequence representation is a lossless en-
coding because, given a fixed syntactic-token-to-integer
mapping, there is a one-to-one correspondence between
the set of ASTs and their syntactic Prüfer sequences.

2. Natural Separation of Lexical and Syntactic Tokens
Properties of Prüfer sequences make it possible for us to
define a structure-aware lexical context of an AST and to
use it to design a Context Encoder in our deep learning
model to learn more effectively from the lexical tokens
from the source code.

Prüfer-Sequence-Based Learning Model For Code
Summarization
We developed an attention-based seq2seq model1 for code
summarization to study the effectiveness of the Prüfer-
sequence-based representation, where we used two separate
encoders, i.e., Prüfer Sequence Encoder is designed to learn
from the structural information of the ASTs that are loss-
lessly encoded in their syntactic Prüfer sequences. Gated
Recurrent Units (GRUs) are used to map the syntactic Prüfer
sequence (X = x1,, xn) of a computer program to a se-
quence of hidden states as follows:

st = GRU(xt, st−1)

The Context Encoder, also consisting of GRUs, is designed
to learn from the collection of lexical tokens (i.e., user-
defined and program-specific values in the source code) or-
ganized in a way that reflects the structural information of
the AST.

We perform our experiment on two Java datasets. Dataset-
1 with 68469 pairs of java code and comments2 and Dataset-

1Prüfer-Model-https://github.com/kardol123/Prufer
2https://github.com/xing-hu/TL-CodeSum/tree/master/data

2 with 163316 pairs of java code and comments3.

Results and Observations
As shown in the second last rows in Tables 1 and 2, our
Prüfer Sequence Encoder and Hu’s Source Encoder (second
last rows in both Tables 1 and 2) has already had notable
improvement over the baseline models, with the average per-
formance improvement being 0.9% for Dataset-1 and 3.96%
for Dataset-2. We attribute the performance improvement to
the properties of the Prüfer sequence representation: a con-
cise and lossless encoding that quantifies the “importance”
of syntactic tokens and preserves their structural roles in de-
scribing the source code.

As shown in the last row in both Tables 1 and 2, the use of
the Context Encoder boosted the performance of our model
dramatically. The average performance improvement over
baseline models is increased from 0.9% to 5% for Dataset-1
and 3.96% to 15.11% for Dataset-2. The significant perfor-
mance gain of our model can be attributed to the context we
have designed that helps amplify the learning-relevant lexi-
cal signals in the source code than the use of entire tokens as
they appear in the source code.

References
Alon, U.; Brody, S.; Levy, O.; and Yahav, E. 2019. code2seq:
Generating Sequences from Structured Representations of
Code. In International Conference on Learning Representa-
tions.
Hu, X.; Li, G.; Xia, X.; Lo, D.; and Jin, Z. 2020. Deep
code comment generation with hybrid lexical and syntactical
information. Empirical Software Engineering, 2179–2217.
Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; and Jin, Z. 2018.
Summarizing Source Code with Transferred API Knowl-
edge. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, 2269–2275.
West, D. B. 2000. Introduction to Graph Theory. Prentice
Hall, 81–83.

3https://github.com/microsoft/CodeXGLUE/tree/ main /Code-
Text/code-to-text

12978

