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Abstract
Capturing visual similarity among images is the core of many
computer vision and pattern recognition tasks. This prob-
lem can be formulated in such a paradigm called metric
learning. Most research in the area has been mainly focus-
ing on improving the loss functions and similarity measures.
However, due to the ignoring of geometric structure, exist-
ing methods often lead to sub-optimal results. Thus, several
recent research methods took advantage of Wasserstein dis-
tance between batches of samples to characterize the spacial
geometry. Although these approaches can achieve enhanced
performance, the aggregation over batches definitely hinders
Wasserstein distance’s superior measure capability and leads
to high computational complexity. To address this limitation,
we propose a novel Deep Wasserstein Metric Learning frame-
work, which employs Wasserstein distance to precisely cap-
ture the relationship among various images under ranking-
based loss functions such as contrastive loss and triplet loss.
Our method directly computes the distance between images,
considering the geometry at a finer granularity than batch
level. Furthermore, we introduce a new efficient algorithm us-
ing Sinkhorn approximation and Wasserstein measure core-
set. The experimental results demonstrate the improvements
of our framework over various baselines in different applica-
tions and benchmark datasets.

Introduction
Learning a distance metric has been a key step for many
applications in machine learning (Meng et al. 2019; Chen
et al. 2019). In this work, we propose a novel Deep Wasser-
stein Metric Learning Framework that features the ability to
learn beyond Euclidean space. The framework takes advan-
tage of two new ranking based loss functions: wtriplet loss
and wcontrastive loss, which are formulated to capture im-
age similarities via Wasserstein distance. We further utilize
the Sinkhorn approximation and Wasserstein measure core-
set to reduce the high computational complexity of Wasser-
stein losses.

Method
We show a simple and elegant design is the best suit
for Wasserstein loss in deep metric learning. We re-
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place the Euclidean distance with Wasserstein distance
in original contrastive loss and triplet loss by defining
dw(x, y) = W1(x, y). So the new Wasserstein-contrastive
(wcontrastive) loss and Wasserstein-triplet (wtriplet) loss
can be formulated as the following:

Lwcontrastive =
1

b

b∑
(i,j)∈P

Iyi=yjdw (ϕi, ϕj)+

Iyi ̸=yj [γ − dw (ϕi, ϕj)]+

(1)

Lwtriplet =
1

b

b∑
(a,p,n)∈T
ya=yp ̸=yn

[dw (ϕa, ϕp)− dw (ϕa, ϕn) + γ]+ (2)

In practice, direct computation of Wasserstein distance is
way beyond the capability of our computational resources.
We address this problem and improve efficiency by using
the idea of Sinkhorn. The resulting entropic regularized p-
Wasserstein distance is:

W p
p,η(µ, ν) = argmin

π∈Π(µ,ν)

∫
X×X

∥x− y∥pdπ(x, y)+

ηKL(π∥µ⊗ ν)

(3)

Regularizing the Wasserstein distance with an entropic
penalty opens the door for new numerical approaches to
compute optimal transport. (Genevay, Peyré, and Cuturi
2018) further introduces Sinkhorn divergences, defined as
follows:

SDp,η(µ, ν) = Wp,η(µ, ν)−
1

2
(Wp,η(µ, µ) +Wp,η(ν, ν)) (4)

We use the Sinkhorn divergence as an approximation of
Wasserstein distance in practice. However, experiments
demonstrate Wasserstein losses take much more time com-
paring to the rest of loss. So we further take advantage of the
coreset idea to reduce computational cost.

Most existing methods focus on coreset optimization with
Euclidean space (Mirzasoleiman, Cao, and Leskovec 2020).
Furthermore, this problem formation ignores the fact that a
dataset is an empirical sample of data distribution, which de-
scribes a learning task. To build the bridge between coreset
and Wasserstein distance, we introduce the idea of Wasser-
stein coreset (Claici, Genevay, and Solomon 2020) and fol-
low the notations and definitions of coreset and measure
coreset. Then we have the following proposition:
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Algorithm 1: WCRAIG (Wasserstein Coresets for Acceler-
ating Incremental Gradient Descent)
Input: measure µ, n > 0, minibatch size m, γ > 0
Output: Subset S ⊆ V
initialize (x1, . . . , xn) ∼ µ
S0 ← ∅, s0 = 0, i = 0
Fw(S) < L ({s0})− ϵ j ∈ argmaxe∈V \Si−1

Fw (e | Si−1)

Si = Si−1 ∪ {j}
i = i+ 1
Sample (y1, . . . , ym) ∼ µ
Update estimate of v∗ using samples yk.
Define generalized Voronoi regions Vi (v

∗).
Step: xi ← xi − γ∇xSDp,η

Proposition 1 (Wasserstein Coresets). A sufficient condi-
tion for ν to be a ε-coreset for µ and F is W1(µ, ν) ≤ ε.
Thus, a strategy for constructing an n-point coreset for a
measure µ is to solve for {xi}ni=1

argmin
x1,...,xn

W1

(
µ,

1

n

n∑
i=1

δxi

)
(5)

Then we make an intuitive modification to the original
CRAIG algorithm. in the submodular facility location func-
tion, we define

Fw(S) =
∑
i∈V

max
j∈S

1

SDp,n(i, j)
(6)

where we use the reciprocal of the Sinkhorn divergence to
represent the similarity between two images i, j ∈ V The
procedure for WCRAIG is outlined in Algorithm 1.

Experiments
The experiments aim to demonstrate that our method can
achieve superior performance compared to several represen-
tative deep metric learning methods on image retrieval and
clustering tasks. We follow the experiment set up from (Roth
et al. 2020). We summarize the ten loss functions’ perfor-
mance and highlight the best performance for each bench-
mark in Table 1. Overall, wtriplet achieves superior perfor-
mance in most metrics against all the baseline loss functions,
including the state-of-the-art loss functions: margin loss and
multisimilarity loss (Roth et al. 2020).

Conclusion
We propose a novel Deep Wasserstein Metric Learning ap-
proach from optimal transport perspective, which offers new
insight into deep metric learning. We take advantage of
the Sinkhorn approximation and Wasserstein measure core-
set to address the computational challenge. This framework
offers several appealing benefits: it suggests a way to ex-
tend deep metric learning beyond the Euclidean setting. The
method achieves competitive results on standard image re-
trieval and clustering benchmarks. The experimental results
demonstrate the superiority of our framework over existing
methods.

CUB200-2011 (Wah et al. 2011)
Approach R@1 R@4 NMI F1 mAP
Wtriplet 0.7277 0.8763 0.6876 0.3610 0.2474

Wcontrastive 0.6094 0.8168 0.6720 0.3615 0.2395
Triplet 0.5949 0.7098 0.8023 0.2968 0.2357

Contrastive 0.5738 0.7919 0.6053 0.2906 0.1925
Npair 0.6241 0.8295 0.6676 0.3599 0.2332

ProxyNCA 0.6280 0.8190 0.6693 0.3610 0.2394
GenLifted 0.5959 0.7950 0.6563 0.3486 0.2203
Histogram 0.6055 0.8056 0.6526 0.3388 0.2265

Margin 0.6493 0.8489 0.6836 0.3593 0.2411
Multisimilarity 0.6280 0.8501 0.6855 0.3603 0.2258

Stanford Online Products (Song et al. 2016)
Approach R@1 R@4 NMI F1 mAP
Wtriplet 0.7400 0.8313 0.9023 0.3875 0.3995

Wcontrastive 0.6989 0.8297 0.8911 0.3473 0.3733
Triplet 0.6094 0.8168 0.7720 0.3615 0.3695

Contrastive 0.6204 0.7918 0.7553 0.3237 0.3307
Npair 0.5976 0.8028 0.6325 0.3050 0.3166

ProxyNCA 0.6214 0.8242 0.8761 0.3220 0.3058
GenLifted 0.7321 0.8193 0.8984 0.3593 0.3903
Histogram 0.7130 0.8205 0.8993 0.3158 0.3488

Margin 0.7352 0.8289 0.8903 0.3836 0.3836
Multisimilarity 0.7399 0.8301 0.8900 0.3675 0.3852

Table 1: Information Retrieval and Cluster Performance
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